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Microwave-to-optical conversion via four-wave mixing in a cold ytterbium ensemble
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Interfacing superconducting qubits with optical photons require noise-free microwave-to-optical transducers, a
technology currently not realized at the single-photon level. We propose to use four-wave mixing in an ensemble
of cold ytterbium (Yb) atoms prepared in the metastable “clock” state. The parametric process uses two high-
lying Rydberg states for bidirectional conversion between a 10 GHz microwave photon and an optical photon
in the telecommunication E-band. To avoid noise photons due to spontaneous emission, we consider continuous
operation far detuned from the intermediate states. We use an input-output formalism to predict conversion
efficiencies of ≈50% with bandwidths of ≈100 kHz.
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I. INTRODUCTION

Superconducting circuits are promising candidates for re-
alizing scalable quantum computation [1,2]. However, their
operation at microwave frequencies precludes their integra-
tion in a long-distance quantum network [3], which requires
optical photons in the telecommunication wavelength window
(∼1.25–1.65 μm). Therefore, a coherent, low-noise, high-
bandwidth quantum transducer between the microwave and
optical domains that is both reversible and can operate at the
typical single-photon bandwidths of superconducting circuits
is desirable.

There are multiple prominent approaches to coherent
microwave-to-optical conversion (MOC) that use mechanical
resonators [4–6], resonantly enhanced electro-optics [7,8],
solid-state emitter ensembles [9–11], and trapped atoms
[12–16,18] to achieve strong nonlinearities. However, several
of these approaches require integrating superconductors in
close proximity to high-intensity optical fields [5,8]. This can
have deleterious effects on the microwave resonator Q factors
and, in the case of nanomechanical resonators, it introduces
noise photons into the conversion process.

In the neutral atom approach, coupling to microwave pho-
tons is most notably mediated by transitions between two
highly excited Rydberg states since they have large transition
electric dipole moments [13–19]. The desired microwave fre-
quency can be selected simply by choosing the principle quan-
tum number n of the Rydberg levels appropriately. All such
efforts focus on alkali-metal atoms in which optical transitions
in the telecommunication window are only accessible via
complex schemes involving six or seven internal states, many
of which are short lived [14–16,18]. Significantly, the com-
plexity associated with six- and seven-wave mixing makes
continuous-wave (cw) operation with significant detuning
from intermediate states challenging, and most efforts have
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focused on resonant pulsed operation. Indeed, some efforts
even use pulse design with optimal control techniques [16].
Moreover, the nuclear spins of the alkali metals give rise
to hyperfine structure in the Rydberg manifold, resulting in
undesirable additional off-resonant couplings.

Here, we propose detuned, cw four-wave mixing [20–22]
to achieve cw microwave-to-optical transduction in an en-
semble of ytterbium (Yb) atoms, which have a strong tran-
sition in the telecommunication E-band at 1389 nm from
a long-lived metastable state [23] (see Fig. 1). Specifically,
we consider N = 150 174Yb atoms with zero nuclear spin
in a cigar-shaped geometry [15]. The ensemble is placed
inside a copper microwave resonator with Qμ = 4.5×103 at
resonance frequency fμ = 10.1 GHz. While the large optical
density along this axis gives rise to a collective enhancement
of the optical interaction, a small optical cavity linewidth
(≈100 kHz) is required for good impedance matching, and
thus a resonator with F = 1.4×104 is needed. The use of
an ensemble results in a large cooperativity on the optical
transition. We demonstrate that bandwidths of ≈100 kHz are
possible in detuned, cw operation.

II. OVERVIEW OF THE CONVERSION PROCESS

We begin with an overview of the parametric conversion
cycle, including properties of the levels involved, and the
required phase-matching conditions. The four-level cycle op-
erates in a diamond configuration whose lowest level is the
“clock” state 3P0 of lifetime > 20 s, which can be accessed
from the ground state 1S0 by either direct excitation [24,25]
or by multiphoton excitation via 3P1 [26] (see Ref. [23]
for a more complete level diagram and Appendix B 1 for
analysis of the branching ratios to the 3PJ manifold). The
diamond configuration of the transducer cycle is shown in
Fig. 1, where the four states of the cycle are |{1, 2, 3, 4}〉 ≡
|{6s6p 3P0, 6s60s 3S1, 6s60p 3P0, 6s5d 3D1}〉.

The dipole matrix element (DME) of the 3D1 → 3P0 tran-
sition is do = 1.63e a0 [23]. The DMEs for the two optical
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FIG. 1. Conversion loop. The atom is initialized in the 6s6p 3P0

“clock” state (|1〉). This state is in a loop of three other states which
include the 6s60s 3S1 Rydberg state (|2〉), the 6s60p 3P0 Rydberg
state (|3〉), and the 6s5d 3D1 state (|4〉). The two Rydberg states
|2〉 and |3〉 are spaced by 10.1 GHz and strongly coupled by an
electric dipole moment. The states |4〉 and |1〉 are separated by a
telecom-band photon with wavelength λo = 1389 nm. We consider
continuous wave operation in which the coupling fields are de-
tuned from the intermediate states. The population primarily resides
in |1〉.

transitions to the Rydberg states d12 and d34 and the
Rydberg-Rydberg transition d23 can be estimated with mod-
erate accuracy using the Coulomb wave-function approach
as described in Appendix B. They are determined to be
d12 ≈ 2.0×10−3e a0 and d34 ≈ 3.7×10−4e a0. The Rydberg-
Rydberg transition dipole matrix element for n = 60 is d23 ≈
dμ = 1436e a0.

We now consider the phase-matching conditions in
order to gain insight on the required propagation axes of
the four fields. The phase-matching conditions require
ω12 + ω23 = ω34 + ω41 and �k12 + �k23 = �k34 + �k41, where
ω is the angular transition frequency and �k is the wave
vector of the photon in the atomic medium. The frequencies
are {ω12, ω23, ω34, ω41}/(2π ) ={990, 10.1 × 10−3, 780, 216}
THz [27]. Assuming the detunings δi are large
compared to the Rabi frequencies �i and the linewidths
γi, the wave numbers are {k12, k23, k34, k41}/(2π ) =
{33 100, 0.34, 25 900, 7200} cm−1. Accordingly, ω23 and
k23 are negligible, which allows θ12 ≈ θ34 ≈ θ41 = 0◦ with
respect to the z axis, and θ23 = 90◦ (i.e., along the y axis),
where �k · r̂ = k cos(θ ) and r̂ points along the z axis and long
axis of the ensemble [see Fig. 2(a)]. This configuration allows
for a crossed-cavity geometry of the microwave and optical
resonators.

III. FORMULATION VIA ADIABATIC ELIMINATION

We focus on the case of large detunings, |δi| > |�i| for
i ∈ {2, 4} (note that excitation to |3〉 is a two-photon process
and the requisite conditions are analyzed below), for which
we can adiabatically eliminate the intermediate states |2〉, |3〉,
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FIG. 2. Transduction circuit in a cryogenic environment. (a) The
copper microwave resonator with round capacitor plates on conically
tapered pillars (not to scale). The red beams show the optical dipole
trapping of the cigar-shaped cloud (green). (b) The cryogenic envi-
ronment with transduction circuit inside. The black box shows the
cryostat surfaces and the blue shows the viewports for the optical
fields, which can be combined using a dichroic mirror. A traveling
microwave photon in mode bin(t ) from an external superconducting
circuit enters the microwave resonator (orange) containing the atomic
cloud (green ellipse). The UV (purple) and blue (blue) driving fields
and the telecommunication-wavelength cavity mode (red) are coaxial
to obtain phase matching in the atomic medium. (c) A zoom-in of
the microwave resonator plates and the atomic ensemble, shown on
the yz plane and the xy plane. Simulated root-mean-square (RMS)
electric-field magnitude per single photon shown on the yz plane
(d) and xy plane (e). The vector field between the resonator plates
is shown in (e). The field amplitude and orientation is uniform across
the atomic cloud.

and |4〉 [9,28]. Such an approach is analogous to working with
solid-state spin ensembles [9,11] and it allows us to apply an
input-output formalism [29–31] for the microwave and optical
fields.

We begin by considering the effective Hamiltonian de-
scribing the coupling between the microwave and optical
modes. The relevant terms have a linear coupling, which upon
the adiabatic elimination of the excited states has the form
[9,28]

Heff/h̄ = (Sa†b + S∗b†a), (1)

where a† (a) is the creation (annihilation) operator for the
optical field, b† (b) is the creation (annihilation) operator for

012307-2



MICROWAVE-TO-OPTICAL CONVERSION VIA FOUR-WAVE … PHYSICAL REVIEW A 100, 012307 (2019)

the microwave field, and

S = �̃12�
∗
34gμg̃∗

o

δ2δ3δ4
F. (2)

S describes the coupling strength between the microwave
and optical modes. �̃12 = √

N�12 is the collectively en-
hanced Rabi frequency of the |1〉 − |2〉 transition for N = 150
atoms, gμ is the single-atom coherent coupling rate to the
microwave field for the |2〉 − |3〉 transition, �34 is the single-
atom Rabi frequency of the |3〉−|4〉 transition, and g̃o =√

Ngo

is the collectively enhanced coherent coupling rate to the
optical field of the |4〉 − |1〉 transition. See Appendix A for
a discussion of the Hamiltonian and the collective states.
In contrast to three-wave mixing schemes in solid-state spin
ensembles [9,11], there is only up to one atomic excitation
in either of the states coupled to the microwave field (i.e.,
|2〉 and |3〉 in our scheme). Thus there is no collective en-
hancement of this transition. Note that a priori each quantity
is atom dependent, for which we could sum over the atoms
in the ensemble. As shown in Appendix D, inhomogeneous
broadening is negligible, and thus we consider collectively
enhanced quantities. The detunings δi are defined in Fig. 1.

The factor F contains the effects of imperfect mode overlap
as an effective filling factor [9]:

F = 1

Ve

∣∣∣∣
∫

Ve

χ12(r)χμ(r)χ34(r)χo(r)d3r

∣∣∣∣, (3)

where Ve is the volume of the atomic ensemble. The χμ(r),
χ12(r), χo(r), and χ34(r) are the mode functions for the
microwave and three optical modes, respectively. They are
defined as the slowly varying electric-field amplitudes of
the optical and microwaves fields and the phase matching is
satisfied as discussed in Sec. II. Here, the field distribution is
defined where the maximal value at the center of the atomic
cloud is set to unity. Hence the range of this factor is between
zero and one. The uniformity of the microwave and the optical
fields over the atomic cloud results in a good overlap with
F ≈ 0.9.

Now we apply the input-output formalism [29–31] to arrive
at the relations between the optical (microwave) resonator
input ain(t ) [bin(t )] and output modes aout(t ) [bout(t )]. We
immediately apply a Fourier transform to arrive at

ãout(ω) = iS
√

κo
e κ

μ
e

κ̃oκ̃μ(1 + C̃oμ)
b̃in(ω)

+
(

1 − κo
e

(1 + C̃oμ)κ̃o

)
ãin(ω) (4)

and similarly for b̃out

b̃out(ω) =
(

1 − κ
μ
e

(1 + C̃oμ)κ̃μ

)
b̃in(ω)

+ iS
√

κo
e κ

μ
e

κ̃oκ̃μ(1 + C̃oμ)
ãin(ω). (5)

κ̃o = (κo
e + κo

i )/2 − iω, κ̃μ = (κμ
e + κ

μ

i )/2 − iω, and C̃oμ =
|S|2/κ̃oκ̃μ, which is the effective cooperativity for the full
system. κo

e and κ
μ
e are the external bandwidths for the op-

tical and microwave resonator, respectively, and κo
i and κ

μ

i

are the intrinsic bandwidths limited by the materials of the
cavities. The Fourier frequency ω = 0 corresponds to the
resonance condition and hence we can define ω = ω34 + ωo −
ω12 − ωμ. Note that this formalism generically applies to
two coupled resonators and the details of the adiabatically
eliminated excited states are all contained in the coupling
strength parameter S.

In the limit that the intrinsic linewidths κi are taken to zero,
Eqs. (4) and (5) reduce to the following spectral relation
obtained in Ref. [9]:

ãout(ω) = 4iS
√

κoκμ

4|S|2 + (κo − 2iω)(κμ − 2iω)
b̃in(ω)

+ 4|S|2 − (κo + 2iω)(κμ − 2iω)

4|S|2 + (κo − 2iω)(κμ − 2iω)
ãin(ω) (6)

and

b̃out(ω) = 4|S|2 − (κo + 2iω)(κμ − 2iω)

4|S|2 + (κo − 2iω)(κμ − 2iω)
b̃in(ω)

+ 4iS
√

κoκμ

4|S|2 + (κo − 2iω)(κμ − 2iω)
ãin(ω). (7)

The first term in Eq. (6) and the second term in Eq. (7)
describe the photon conversion amplitude between the mi-
crowave and optical fields, and the square of those terms give
the conversion efficiency η(ω) [9]. Accordingly, we obtain
an impedance matching condition required to reach η = 1
when ω = 0: 4|S|2 = κoκμ [9,29–31]. This relation provides
a concrete approach to designing the transduction circuit and
quantifying the bandwidth and efficiency.

For the microwave and optical cavities described below
and shown in Fig. 2, the single-atom coupling rates are
gμ = 2π×1.4 MHz and go = 2π×130 kHz, respectively. The
collective coupling rate for the latter is g̃o = 2π×1.5 MHz
with N = 150 atoms. For convenience, we choose gμ �
�̃12 = �34 = g̃o. Naturally, we must choose the detunings
to maintain adiabaticity and to limit the off-resonant scat-
tering rates to well below the conversion rate. We take δ2 =
2π×4.5 MHz, δ3 = 2π×1.5 MHz, and δ4 = 2π×4.5 MHz.
The role of small populations in the excited states and sponta-
neous emission are analyzed in Appendix C.

For these values and the other parameters listed below,
we find S = 2π×140 kHz. We focus on Qμ = 4.5×103 and
Qo = 4×109. Figure 3(a) shows η(ω = 0) as a density plot of
the filling factor F and the microwave resonator Qμ. The pro-
posed conditions are shown as the thick black dot, for which
η(ω = 0) ≈ 0.5. The bandwidth η(ω) is shown in Fig. 3(b)
for values of Qμ. For Qμ = 4.5×103, the FWHM bandwidth
is �̃oμ/2π ≈ 100 kHz, which approaches typical bandwidths
reached in superconducting quantum circuits [1,2].

IV. PARAMETERS

We now turn to the design of the experiment to obtain all
the relevant quantities. Thermal excitations of the microwave
mode will result in additional noise photons during transduc-
tion. To reduce the thermal photon noise level the transducer
needs to be operated inside a dilution refrigerator where
the thermal occupancy can be reduced below nth � 0.01 at
100 mK. However, we note that, in an efficient converter,

012307-3



COVEY, SIPAHIGIL, AND SAFFMAN PHYSICAL REVIEW A 100, 012307 (2019)

0.0

0.2

0.4
0.5

8 10
μ

0.4

0.8

1.0

F

(a)

0.0
0.1
0.2
0.3
0.4
0.5

η(
ω

)

(b)

0.0 0.1-0.2
ω/2π (MHz)

0

0.6

2.0-0.1
0.0

2 4 6

0.2 0.1

0.3

η(ω
=0)

•

FIG. 3. Impedance matching and bandwidth. (a) The conversion
efficiency η(ω = 0) as a color plot ranging from 0.0 to �0.6. It is
shown as a function of the mode filling fraction F on the vertical
axis and the Q- factor of the microwave resonator on the horizontal
axis. The thick black dot corresponds to the proposed values in this
work. (b) The conversion efficiency η(ω) as a function of frequency
ω. The three colors correspond to Qμ = 1×103 (blue, bottom),
Qμ = 2×103 (orange, middle), and Qμ = 4.5×103 (green, top).
We focus on the case of Qμ = 4.5×103 throughout [which corre-
sponds to the black dot in (a)], for which the FWHM bandwidth
is ≈100 kHz.

the microwave cavity photons decay primarily to the optical
and microwave output fields at lower temperatures instead of
the phonon temperature of the resonator. This effect results
in a reduced thermal noise in the transduction and has been
utilized for proposals using high-temperature quantum com-
munication with microwave photons [32].

In addition to the thermal microwave photons, the optical
trapping and driving fields will result in additional heating
(see Appendix E for further discussion). It is therefore im-
portant to design the system to minimize the optical power
and light scattering using antireflection coated radiation shield
windows. Initial construction and testing of this system at 4 K
could therefore be enlightening before the single-photon level
is approached.

A. Microwave resonator

Since the Rydberg-Rydberg microwave transition is an
electric dipole transition, we employ a microwave resonator
where the two conically tapered, extruded, disk-shaped plates
in the box confine the electric-field energy to a small mode
volume [see Fig. 2(a)]. The geometry of the resonator is
shown in Figs. 2(a) and 2(c). The plates are separated by
100 μm and have a radius of 150 μm. This geometry was
chosen to match the size of the atomic ensemble, though the
mode volume is larger than the profile of the atomic ensemble
to ensure homogeneity across the cloud. DC Stark shifts of the
Rydberg atoms are expected to be negligible in our system at
cryogenic temperatures [16,33]. Moreover, while the dc polar-
izabilities of the Rydberg levels in Yb have not been measured
to date, they are expected to be smaller than the corresponding
values for the alkali-metal atoms rubidium and cesium [34].
The copper box has a volume of 16×16×7 mm3 and can have
many holes for optical beam paths, as in Fig. 2(a).

We simulate the mode distribution of the cavity using
the COMSOL finite-element-method solver [see Fig. 2(c)]
and obtain a root-mean-square (rms) electric-field amplitude
of E rms

μ ≈ 110 mV/m per photon with excellent uniformity
in magnitude and direction over the volume of the cloud.

The vacuum Rabi frequency (i.e., corresponding coherent
coupling rate) gμ is given in terms of the electric field as

gμ = dμ

√
2E rms

μ

2h̄ , from which we obtain gμ/2π ≈ 1.4 MHz.
We choose a moderate quality factor of Qμ

e = 4.5×103,
which is small compared to the intrinsic quality factor for cop-
per resonators of Qμ

i ≈ 104 (see, e.g., Refs. [35–37]). Hence
it is possible to maintain high conversion efficiencies. The
corresponding external linewidth for our resonator operating
at 10.1 GHz is κ

μ
e ≈ 2π×2.2 MHz.

The use of copper instead of a high-Q superconducting res-
onator relaxes the constraints on the applied magnetic fields.
Though we operate the conversion cycle with only a small
quantization magnetic field, laser cooling and initialization
may require fields on the order of 10 G. Since magnetic fields
are known to decrease the Q of superconducting resonators,
we choose copper for simplicity. The effects of the incident
optical power on the resonator are discussed in Appendix E.

B. Optical resonator and pump modes

We assume the optical dipole trapping beam, the pump
fields �̃12 and �34, and the optical field g̃o all propagate in
the z direction and have approximately the same mode profile.
The optical field g̃o is assumed to have a 1/e2 waist radius of
37 μm in order to roughly match the radial size of the atomic
ensemble (see Fig. 2 and Sec. IV C), while still facilitating
stable optical cavity operation. The axial profiles of all optical
modes are determined by their respective Rayleigh lengths
dictated by Gaussian optics.

We propose the use of a moderate-finesse optical resonator
with a finesse F = 1.4×104. We assume asymmetric reflec-
tivities of the cavity mirrors such that the photon is prefer-
entially extracted on one side of the cavity, as in Fig. 2(b).
Such a resonator allows the possibility of coupling in all
the optical fields while still providing a sufficient optical
quality factor Qo

e . Since the finesse is related to the mirror
reflectivities r1 and r2 and loss per pass ξ by F (r1, r2, ξ ) =
π 4

√
r1r2(1 − ξ )/[1 − √

r1r2(1 − ξ )], we see that a finesse of
F = 1.4×104 requires reflectivities of r1 = 0.99998 and r2 =
0.9996 with a loss per pass of ξ = 0.00001. This allows us
to use dichroic coatings to inject the 302 and 386 nm pump
beams and the 760 nm trapping beam along the cavity axis
into the optical resonator via the mirror with reflectivity r2

[see Fig. 2(b)].
Now we can estimate Qo based on the proposed optical

resonator. We assume a cavity length of L = 20 cm. In order to
achieve a mode waist of wo

0 = 37 μm the radius of curvature
of the resonator mirrors must be Rc = 10.01 cm. This value is
near the stability edge of L/2, but expected to be robust under
the proposed conditions. The mode volume of the resonator
is Vo = π/4(wo

0 )2L = 0.2 mm3. The corresponding free spec-
tral range of this cavity is FSR = 2π×750 MHz, for which
the linewidth κo

e = FSR/F = 2π×54 kHz. Accordingly, the
quality factor of this resonator is Qo

e = ωo/κ
o
e = 4×109. We

assume an intrinsic optical quality factor of Qo
i = 10Qo

e ,
which will be limited only by the optical coating required to
insert the UV pump fields.

We calculate the coherent coupling rate using Vo and we
find go/2π ≈ 130 kHz. This quantity is collectively enhanced
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by the ensemble and the collective coupling rate is g̃o/2π ≈
1.5 MHz. Accordingly, the system is in the strong-coupling
regime and the cavity induced atomic decay rate �1D =
(g̃o/δ4)2κe is much less than the free space spontaneous
emission rate �4.

We assume the optical pump modes �̃12 and �34 have
(1/e2) waists of 25 μm in order to be homogeneous over the
(1/e) σR = 5 μm radial extent of the atomic ensemble. The
Rabi frequencies used above were chosen to be �̃12 = �34 =
2π×1.5 MHz. Based on the DMEs of these transitions, we
estimate that powers of P12 ≈ 120 μW and P34 ≈ 500 mW are
required. While reaching λ12 will likely require two nonlinear
stages such as in fourth harmonic generation, λ34 can be
reached via second harmonic generation of a 772 nm light
from a titanium-sapphire laser. Such powers can be achieved
with commercial or homemade lasers.

C. Optical trapping

The atomic ensemble is trapped in two beams crossed at
a shallow angle along the x axis propagating through the
microwave resonator (along the z direction), which naturally
gives rise to the extended cigar-shaped geometry. We propose
an optical dipole trapping wavelength of 760 nm, which traps
both the 1S0 and 3P0 states of Yb in a “magic” condition
[25]. We consider N = 150 atoms in a cloud of sizes (1/e
radius) σR ≈ 5 μm and σZ ≈ 50 μm along the radial and
axial directions, respectively. This results in a modest density
of ρ ≈ 2×1010 cm−3, which can be reached directly after
narrow-line laser cooling.

The typical temperature of a Yb magneto-optical trap
operating on the 1S0 → 3P1 transition is T = 5–10 μK [38],
and thus a dipole trap of depth ≈20 μK is sufficient. We
assume a trapping beam waist (1/e2 radius) of ≈25 μm, and
we assume two beams crossed at a shallow angle of ≈1◦ such
that the trap aspect ratio matches the desired aspect ratio of
the cloud. These beams require a total power of ≈0.5 W. As
such, negligible power is incident on the microwave resonator.
The total cooling power of ≈1.5 mW is available on the
cold plate at 120 mK in state-of-the-art commercial dilution
fridge systems. However, significantly less power should be
incident on the copper resonator to avoid optically induced
microwave noise photons. See Appendix E for a discussion
of thermal management of the optical power. We leave a
more detailed analysis of the cooling and trapping scheme for
further investigation.

V. CONCLUSION AND OUTLOOK

We propose an Yb ensemble as a viable approach to MOC
and we show that bandwidths of ≈100 kHz are possible with
efficiencies of ≈50%. While this is a challenging experimen-
tal platform, we believe its capability and simplicity are favor-
able compared to the current efforts with alkali-metal atoms.
Further, there are several ongoing experimental efforts with
cryogenic alkaline-earth atoms for applications in precision
metrology [25,39]. Moreover, the wavelength of the optical
field used here allows the MOC circuit to be interfaced with
quantum repeater stations based on the same optical transition
in Yb atoms, as proposed recently [23], and could facilitate a

long-distance quantum network of superconducting quantum
computers.

We note that our approach could be modified in several
ways to increase transduction bandwidth and relax thermal
requirements. The use of a strong, resonant drive �12 would
enable collective enhancement on both the optical and mi-
crowave quantum fields. Noise and broadening analysis in
such a scheme is beyond the scope of this work. A wide
range of microwave frequencies could be chosen by targeting
different Rydberg states. For instance, if we instead choose
a frequency of 100 GHz, the corresponding temperature is
≈5 K, where thermal management is greatly simplified. With
continued advances in quantum frequency conversion with
nonlinear microwave circuits [40–42], single photons from
superconducting circuits operating in the ≈5–10 GHz could
be upconverted to a higher frequency band for MOC.

Finally, our system could be extended to 171Yb, an iso-
tope with nuclear spin I = 1/2, to introduce a long-lived
quantum memory. This could enable entanglement between
a microwave photon and the nuclear spin by the same mech-
anism as recently proposed for an optical photon [23] and
could provide a platform for integrating a quantum memory
with superconducting quantum circuits. Such a possibility
showcases the potential of using cold alkaline-earth atoms, in
which nuclear coherence times far exceed that of solid-state
platforms.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN
AND COLLECTIVE STATES

The system Hamiltonian described in Fig. 1 is given by

HSys/h̄ =
∑

k

(δ2,kσ22,k + δ3,kσ33,k + δ4,kσ44,k )

+
∑

k

(�12,kσ12,k + H.c.)+
∑

k

(gμ,kσ23,kb + H.c.)

+
∑

k

(�34,kσ34,k + H.c.)+
∑

k

(go,kσ41,ka + H.c.),

(A1)

where the index k runs over atoms in the ensemble and σi j,k =
|i〉〈 j| are matrix elements in the four-state Hilbert space.

We work with large detunings, where |δo,k| > |go,k|,
|δμ,k| > |gμ,k|, and |δo,kδμ,k| > |�12,k�34,k|. Note that δo,k =
δ4,k and δμ,k = δ3,k − δ2,k . Hence we can adiabatically

012307-5



COVEY, SIPAHIGIL, AND SAFFMAN PHYSICAL REVIEW A 100, 012307 (2019)

eliminate the excited states [28] to arrive at the following
effective Hamiltonian:

Heff/h̄ =
∑

k

(
− |go|2

δo,k
a†a − |gμ|2

δμ,k
b†b

+ �12,k�
∗
34,kgμ,kg∗

o,k

δ2,kδ3,kδ4,k
a†b + �∗

12,k�34,kg∗
μ,kgo,k

δ2,kδ3,kδ4,k
b†a

)
.

(A2)

Note that ac Stark shifts from the detuned drive fields have
been neglected based on the assumption of large detunings
and based on the analysis of inhomogeneous broadening in
Appendix D. Likewise, we neglect inhomogeneous effects.
Since the phase-matching condition is satisfied, each atomic
contribution adds constructively and we can replace the sums
over atoms with a factor of N .

The first two terms are due to off-resonant atoms pulling
the resonant frequencies of the two cavities. The latter two
terms are a linear coupling between the two modes with
strength S, as described in the main text.

We now analyze the collectively excited Dicke states in
the ensemble, which result from the above Hamiltonian.
We define the initial state in which the ensemble is po-
larized as |1̃〉 = |1〉⊗N . In the limit of one excitation dis-
tributed amongst the atoms in the ensemble, the normalized
collective states |2̃〉, |3̃〉, and |4̃〉 are given accordingly by
|2̃〉 = 1/

√
N

∑
k σ21,k|1̃〉, |3̃〉 = 1/

√
N

∑
k σ31,k|1̃〉, and |4̃〉 =

1/
√

N
∑

k σ41,k|1̃〉, where σn1,k excites atom k from state |1〉 to
state |n〉. We assumed a phase-matching condition and omitted
the relative atomic phases for clarity.

To analyze the effective Rabi frequencies between col-
lective states �̃i j , we consider 〈ĩ|HSys| j̃〉 for j − i = 1 and
i = 1, 2, 3. First, we consider �̃12:

�̃12 =
(

1√
N

∑
i

〈1̃|σ ∗
12,i

)( ∑
j

�12, jσ12, j

)
|1̃〉

= 1√
N

∑
i= j

�21,i =
√

N�21,k, (A3)

where the coupling for each atom is assumed to be identical
(see Appendix D). Note that, since the ensemble is initially
polarized in |1̃〉, this collective state is fundamentally different
from |2̃〉, |3̃〉, |4̃〉 within the single-excitation Dicke manifold.
Accordingly, �̃41 = g̃o will be similar to �̃12 and is given by
g̃o = √

Ngo,k .
Next, we consider �̃23 = g̃μ:

g̃μ =
(

1√
N

∑
i

〈1̃|σ ∗
13,i

)( ∑
j

gμ, jσ23, jb j |2̃〉
)

=
(

1√
N

∑
i

〈1̃|σ ∗
13,i

)(
1√
N

∑
j

gμ, jσ13, jb j |1̃〉
)

= 1

N

∑
i= j

gμ,i = gμ,k . (A4)

Similarly, �̃34 = �34,k . Hence the transitions to and from |1〉
are collectively enhanced, but the others are not. This analysis
shows that, in our four-level scheme, the optical quantum field

is collectively enhanced and the microwave quantum field is
not. We note that this is different than the three-level schemes
employed in solid-state MOC platforms [9].

APPENDIX B: DIPOLE MATRIX ELEMENTS

We now evaluate the dipole matrix elements for the tran-
sitions shown in Fig. 1. We begin by calculating the dipole
matrix elements and branching ratio from 3D1 to 3PJ for 174Yb.
Then we numerically calculate the dipole matrix elements of
the transitions involving Rydberg atoms. We refer to Ref. [43]
for a detailed description of the angular parts of the DME and
the corresponding use of the Wigner-Eckart theorem.

1. 3D1 → 3PJ branching ratios for 174Yb

We consider all the decay pathways from the
6s5d 3D1 mJ = 0 state to the 6s5p 3PJ manifold. Note
that for 174Yb there is no nuclear structure since I = 0. There
are six total decay paths: 3P2 mJ = 0 ± 1, 3P1 mJ = 0 ± 1,
and 3P0 mJ = 0. The latter is the desired decay path, and
we consider its relative weight with and without Purcell
enhancement from the optical resonator. In the absence of
Purcell enhancement, we find a branching ratio to the 3P0, 3P1,
and 3P2 manifolds of 20 : 1.5 : 1, respectively, such that the
probability of emission to 3P0 is 89%. Our system operates
in the strong-coupling regime where g̃o � κo

e as required
for impedance matching, so unfortunately there is no Purcell
enhancement to improve this branching ratio.

2. Approximate numerical calculations of Rydberg transitions

Matrix elements of alkaline-earth atoms can be accurately
calculated using only energy levels as experimental input,
but require sophisticated many-body perturbation techniques
[44,45]. Good accuracy can also be achieved using numerical
analysis based on model potentials with adjustable parameters
that are chosen to match experimental energies [46]. We show
here that greatly simplified calculations based on Coulomb
wave functions can provide matrix element estimates with
moderate accuracy that are helpful for design of experiments.

The calculation of one-electron jumps is divided into two
parts: determination of angular factors and numerical inte-
gration for reduced matrix elements. We do not expect the
calculation to have high accuracy since electron correlation
effects are not accounted for. As we will show the matrix
element of the low-lying 3P0 → 3D1 telecom band transition is
calculated with about 40% error. However, we expect matrix
elements involving one or two Rydberg states to have better
accuracy since electron correlation effects are relatively small
in Rydberg states.

We assume a quantization magnetic field along the y axis,
and we assume the microwave field and the three optical fields
are polarized along this axis. In this case, the dipole matrix
elements are

d21 = 1
3 〈ns||er||6p〉, (B1)

d32 = − 1
3 〈n′ p||er||ns〉, (B2)

d43 = 1
3 〈5d||er||n′ p〉, (B3)

d14 = − 1
3 〈6p||er||5d〉, (B4)
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TABLE I. Transition frequencies and reduced matrix elements
for Rydberg terms 6snp 3S1 and 6snp 3P0. The reduced dipole matrix
elements are expressed in units of e a0. See text for quantum defect
values assigned to the participating orbitals.

n ωμ/2π (GHz) 〈ns||r||6p〉 〈np||r||ns〉 〈5d||r||np〉
50 18.2 −0.0080 −2900 −0.0014
60 10.1 −0.0059 −4310 −0.0011
70 6.14 −0.0046 −5990 −0.00084
80 4.02 −0.0037 −7830 −0.00068

where the reduced matrix element can be expressed in terms
of radial overlap integrals as

〈n′l2||r||nl1〉 = (−1)l2+(1+l1+l2 )/2
√

max(l1, l2)

×
∫ ∞

0
dr r3Rn′l2 Rnl1 . (B5)

Rnl1 , Rn′l2 are radial wave functions. The integral can be
evaluated with Coulomb wave functions [47] Rγ ,l with γ =
n − μ, an effective noninteger principal quantum number
that depends on the quantum defect μ. To find μ we use
experimental energies of the initial and final states.

3. Rydberg transitions

For |2〉 we need the quantum defect of the 3S series.
A recent accurate measurement of the 1S0 states gave μ =
4.278 [48]. The relatively weak electron correlations between
ground and highly excited Rydberg orbitals implies that this
value is approximately correct for the triplet state which
should have a slightly lower energy and therefore larger
quantum defect. The highest 3S1 state that has been measured
is 6s28s 3S1 [49], which has a quantum defect of μ2 = 4.405.
We will use this value for matrix element estimates.

The energy levels of the |3PJ〉 series have been measured
in [50] together with a multichannel quantum defect analysis
of series perturbers. In line with our simplified treatment of
matrix elements we extract an effective quantum defect as the
value which gives the best root-mean-square agreement with
measured energy values. For |3P0〉 we find μ3,J=0 = 4.140
(matching to energies for 20 � n � 33). Using these values
for the quantum defects, Table I lists the transition frequencies
and one-electron reduced transition dipole matrix elements
for Rydberg transitions suitable for interfacing with super-
conducting qubits. Specifically, we tabulate the values for
n = n′ = 50, 60, 70, and 80, while we have chosen to focus
on n = n′ = 60.

4. Fine structure of 3PJ levels

The protocol for microwave to optical conversion uses
fields that are detuned from the participating atomic levels.
These fields can couple to additional fine-structure levels that
are not part of the structure shown in Fig. 1. In order for
these additional couplings to be negligible it is necessary that
the detunings are small compared to fine-structure splittings.
The fine structure of the 6s6p 3PJ and 6s5d 3DJ terms is
large enough for such off-resonant couplings to be completely
negligible.

However, the Rydberg 6snp 3PJ splittings are much smaller.
If the J-dependent quantum defects of the 3PJ terms differ by ε

this implies an energy difference at principal quantum number
n of

δU � |U (n) − U (n − ε)| � 2URyε

n3
.

For ytterbium the difference in quantum defects between J =
0, 2 is 0.225. Assuming the Landé interval rule the small-
est splitting is between J = 0 and 1, which will have ε =
0.225/3 = 0.075. For the highest levels we are considering
(n = 80) this implies a splitting of about 680 MHz, which is
much larger than the <MHz-scale Rabi frequencies we are
considering. Thus off-resonant coupling to other J levels will
be negligible.

APPENDIX C: LIFETIMES

There are two mechanisms which limit the lifetime of the
atomic system during continuous-wave operation: the finite
lifetimes of the intermediate states and the collisional decay
of the atomic sample from the metastable 6s6p 3P0 state back
to the ground state.

1. Spontaneous emission

The lifetimes of the low-lying triplet states of Yb have
been accurately measured. The 3P0 upper level of the clock
transition in bosonic Yb is > 20 s. The 3D1 state that par-
ticipates in the telecom transition has lifetime τ = 329.3 ns
[51]. The Rydberg lifetimes of the 3S and 3P series are not
well known for large n. In the following we extrapolate low n
data to provide rough estimates for high n. For the 3S series
the highest n lifetime measurement that has been reported
is τ2 = 34.3 ns at n = 8 [52]. With (n∗)3 = (n − μ)3 scaling
the estimated lifetimes are τ2 = 70, 130, 210, 320, 460 μs at
n = 50, 60, 70, 80, 90.

The 3P series are subject to perturbations which cause
short lifetimes at particular values of n [53]. We can make an
approximate estimate for large n values that are not perturbed
by extrapolating from a low n nonperturbed lifetime with
τ3 ∼ (n∗)3 scaling. At n = 15 the 3P lifetime is about 1.2 μs
and within about 10% in value to the unperturbed 1P lifetime
at the same n [53]. With n3 scaling this gives lifetimes of
τ3 = 90, 160, 260, 400, 580 μs at n = 50, 60, 70, 80, 90.

Finally, due to the finite cw population of the intermediate
states |2〉, |3〉, and |4〉, which have lifetimes of τ2, τ3, and
τ4, respectively, we must also consider radiative decay. We
consider the populations during conversion in both directions.
For conversion in the clockwise direction (microwave-to-
optical), the steady-state populations for |2〉, |3〉, and |4〉
are given by PCW

2 = �̃2
12/δ

2
2 , PCW

3 = PCW
2 g2

μ/δ2
3 , and PCW

4 =
PCW

3 �2
34/δ

2
4 , respectively. For the values given above we have

PCW
2 ≈ 0.1, PCW

3 ≈ 0.1, and PCW
4 ≈ 0.01. For conversion

in the counterclockwise direction (optical-to-microwave),
the steady-state populations are given by PCCW

4 = g̃2
o/δ

2
4 ≈

0.1, PCCW
3 = PCCW

4 �2
34/δ

2
3 ≈ 0.1, and PCCW

2 = PCCW
3 g2

μ/δ2
2 ≈

0.01. Note that the populations are the same for the two
directions.

012307-7



COVEY, SIPAHIGIL, AND SAFFMAN PHYSICAL REVIEW A 100, 012307 (2019)

The steady-state lifetimes are τi = Piτi. In the clockwise
case, we have τCW

2 = 1.1 ms, τCW
3 = 1.7 ms, and τCW

4 =
31 μs. In the counterclockwise case, we have τCCW

4 = 3 μs,
τCCW

3 = 1.4 ms, and τCCW
2 = 12 ms. The conversion time

is given by 1/�̃oμ ≈ 1.1 μs. The decay during conversion
in both directions is dominated by |4〉, which will limit the
efficiency to ≈0.94 in the clockwise direction and ≈0.7 in the
counterclockwise direction. However, these limits are higher
than η ≈ 0.5 due to the combination of impedance matching
and intrinsic cavity loss.

2. Collisional quenching

Further, we consider the finite lifetime of the ensemble
prepared in the 3P0 state, as has been measured recently for
174Yb. The loss per density per time was measured to be
1.3(0.7)×10−11 cm3s−1 [54]. This can be interpreted to mean
that a sample of density ≈8×1010 cm−3 will have a lifetime of
one second. Comparing this to our density of ≈2×1010 cm−3

suggests lifetimes of > 4 s, which is longer than other limiting
time scales, such as off-resonant scattering of the pump fields
or the trapping beam.

APPENDIX D: INHOMOGENEOUS BROADENING

We must consider various inhomogeneous broadening
mechanisms in the ensemble. Since we are interested in a
single Rydberg excitation which is collectively enhanced by
the N = 150 atoms, we can neglect Rydberg-Rydberg in-
teractions such as van der Waals [55–57] and dipole-dipole
interactions [15]. Further, our ensemble is relatively dilute,
with an average interatomic spacing of d ≈ 3.6 μm. It is
expected that the C6 coefficients may be relatively small in
the 3S1 Rydberg series of Yb, which further reduces Rydberg-
Rydberg interactions [34]. We expect the corresponding inter-
action shift between atoms is V (d ) = C6/d6 < �12.

Further, we consider shifts due to variation in the position
and velocity of atoms in the ensemble. The spatial profile can
give rise to inhomogeneous Stark shifts due to the finite size
of the pump beams. We estimate the maximum Stark shift
variation of |2〉 over the ensemble to be |�2| = �2

12/δ2 =
2π×165 kHz for the conditions considered above. The inho-
mogeneous Stark shift from the g̃o field will be similar. For the
microwave field gμ, we note that the volume of the ensemble

Ve is in a homogeneous region of the microwave field mode
volume, so minimal inhomogeneous broadening will result
from this Stark shift. Finally, the Dipole trap can also cause
inhomogenous Stark shifts. The maximum Stark shift of a
trap of depth 20 μK is 2π×420 kHz. The maximum inho-
mogeneous broadening occurs in the radial direction where
the intensity variation in the trap over (1/e radius) σR = 5 μm
is significant, for which the inhomogeneous Stark shift of the
trap is |�trap| ≈ 2π×140 kHz.

We also consider Doppler shifts due to the finite velocity
of the atoms in the sample. However, even for a temperature
of 10 μK the Doppler shift is only ωD = 2π×20 kHz, owing
partially to the large mass of Yb. These shifts are all small
compared to δi as well as the drive fields that couple all pairs
of states. Thus we neglect them from the analysis above.

APPENDIX E: THERMAL MANAGEMENT
OF OPTICAL POWER

We analyze the incident power on the side of the mi-
crowave resonator plate and on the aperture of the resonator
box. The separation between the resonator plates is 100 μm
and the edge of the plate is at 150 μm from the waist
position of the beam. As discussed above, the pump beams
(wavelengths 302 and 386 nm) have waists (1/e2 radii) of
25 μm and the dipole trapping beams (wavelength 760 nm)
also have waists of 25 μm. The Rayleigh lengths for the pump
and trapping beams are ≈7 and ≈3 mm, respectively. The
powers incident on the disk-shaped capacitor plates are below
10−20 W for both beams, which is negligible compared to the
cooling power in 3He cryogenic environments.

We further consider the aperture sizes required on the
resonator box. The faces of the box along the z axis are 8 mm
from the center. We find that a window of radius 2.5 mm is
required for the incident power on the surface to be <1 nW
for the trapping beams. The incident power from the pump
beams is negligible for the pump beams since the Rayleigh
length is longer in the UV. However, we must also consider
the separation between the two dipole trapping beams at this
position, which have a relative angle of ≈1◦. We find their
separation to be ≈2.4 mm, for which we consider an elliptical
aperture as shown in Fig. 2(a). Such a design has minimal
effects on the properties of the microwave resonator.
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