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Continuous-time quantum walks on dynamic graphs
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Continuous-time quantum walks (CTQWs) on static graphs provide efficient methods for search and sampling
as well as a model for universal quantum computation. We consider an extension of CTQWs to the case of
dynamic graphs, in which an ordered sequence of graphs governs free evolution of the quantum walk. We
then consider how perfect state transfer during the quantum walk can be used to design dynamic graphs that
implement a universal set of quantum logic gates. We give explicit examples for a complete logical basis, and we
validate implementations using numerical simulations for quantum teleportation and addition circuits. Finally,
we discuss the potential for realizing CTQWs on dynamic graphs using actively controlled quantum optical
waveguides.
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I. INTRODUCTION

Quantum walks offer a unique paradigm for using quantum
mechanics to perform computation [1], where a walk may
represent either the discrete or continuous-time propagation
of a quantum state over a graph [2,3]. In a continuous-time
quantum walk (CTQW), free evolution of an N-dimensional
quantum state under a Hamiltonian is represented by prob-
ability amplitudes assigned to each vertex in a graph on N
vertices. The CTQW was originally envisioned as a method
for sampling decision trees [4] and later applied to a va-
riety of search and sampling problems on d-dimensional
lattices, searches on balanced trees, as well as quantum nav-
igation of networks [5–10]. Moreover, Childs has shown that
CTQWs on time-independent graphs offer a novel model for
universal quantum computation [11,12], while Qiang et al.
have described how efficient implementations of CTQWs
may be useful for comparing the broader computational
power of quantum computing to conventional computing
models [13].

In a typical CTQW, the Hamiltonian is interpreted as the
connectivity of the underlying graph on which the quantum
state evolves. The graph connectivity determines the evolution
of the quantum state and specific graphs have been found to
demonstrate well-defined quantum walk behaviors. For exam-
ple, perfect state transfer occurs in a quantum walk when the
amplitude assigned to a subset of vertices transfers with unit
probability to a distinct vertex set within a well-defined period
of evolution [14]. Kendon and Tamon have surveyed perfect
state transfer for a number of several specific graphs including
the singleton graph K1, the complete graph on two vertices K2,
the path graph on three vertices, and the cycle on four vertices
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C4 [15]. Perfect state transfer has also been shown to exist
for graphs on more vertices, including certain graph products,
weighted join graphs, and quotient graphs [16–18].

The versatility of CTQWs across many known types of
graphs motivates our consideration for how quantum walks
may behave on dynamic graphs. We define a dynamic graph
as a well-defined sequence of static graphs in which the
CTQW evolution changes at specific transition times. In the
dynamic graphs discussed below, we use perfect state transfer
under the component static graphs to demonstrate how more
complex unitary processes can be realized. We provide ex-
plicit realizations of quantum walks on dynamic graphs for
realizing a complete set of computational gates, and we then
illustrate how compositions of multiple walks correspond to
examples of quantum circuits. This formalism establishes a
connection between CTQWs on dynamic graphs and the gates
found in the conventional quantum circuit model. We also
provide a connection between this model of computation and
the development of tunable optical waveguides for performing
continuous-time quantum walks.

Our approach to quantum walks on dynamic graphs shares
similarities with Childs’ model for universal quantum com-
putation [11,12]. Both approaches draw on the use of un-
weighted and relatively sparse graphs to formalize state trans-
fer as well as the composition of such graphs to describe more
complex operations. However, the models differ in the types
of underlying graphs as Childs relies on strictly static graphs
while we employ dynamic graphs. Another closely related
model is the hybrid quantum walk proposed by Underwood
and Feder, which combines concepts from both continuous
and discrete walk models [19]. In that work, a series of
weighted adjacency matrices corresponding to distinct graphs
are used to propagate a quantum state. They refer to this model
as a discontinuous quantum walk, where free evolution is
again based on widgets that control propagation dynamics.
Underwood and Feder emphasize the use of a dual-railing
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encoding to represent individual qubits and the interleaving of
continuous and discrete quantum walks to perform computa-
tion. By comparison, we design quantum walks on dynamic
graphs to implement a sequence of continuous-time evolu-
tions that perform quantum logic using perfect state transfer
in the native vertex space. Du et al. considered the task of
designing a quantum walk to implement a single-qubit X gate
by walking on a single static, weighted graph [20], whereas
our work develops implementations for a complete gate set
using dynamics graphs. Chakraborty et al. have explored
spatial search using CTQW on time-ordered sequences of
random graphs, for which they demonstrated a threshold for
the optimal run time using Grover’s algorithm [21], while our
work uses deterministic, time-ordered sequences to carry out
discrete logic gates.

The paper is organized as follows. Following a review
of CTQWs on static graphs in Sec. II, we describe quan-
tum walks on disconnected graphs in Sec. III and dynamic
graphs in Sec. IV. Using this formalism, we design a series
of quantum walks that implement elementary logic gates in
Sec. V, and we demonstrate how the sparsely connected
dynamic graphs may be composed to correspond with gate-
based circuits in Sec. VI. We offer a discussion on these results
in Sec. VII, where we establish a connection between dynamic
quantum walks and current approaches to designing quantum
computing hardware based on optical waveguides and ion trap
technologies.

II. CONTINUOUS-TIME QUANTUM WALKS

Consider an undirected graph G = (V, E ) with a canoni-
cally labeled vertex set V = {0, 1, . . . , N − 1} of N vertices
and an edge set E = {(i, j) : i ∼ j}. We allow no multiedges
in the graph, i.e., there can be at most one edge incident
with any two vertices. However, we do allow for a self-loop
on a vertex v ∈ V if and only if there does not exist u ∈ V
such that u �= v and u ∼ v. Additionally, the edges of G are
undirected. Let BG = {| j〉 : ∀ j ∈ V } be a linearly independent
basis for the complex vector space CN with the inner product
〈 j|k〉 = δ jk . Graphs G and G′ = (V ′, E ′) have the same basis
if V = V ′. The Hamiltonian for the graph G is denoted as HG

and is defined as the adjacency matrix of the graph as given by
the edge set E . The adjacency matrix A of G is a 0–1 valued
N × N matrix such that for u, v ∈ V (G), if u ∼ v, Au,v =
Av,u = 1, and 0 otherwise. We will use the convention that if a
vertex v is not adjacent to any other vertices then Av,v = 1, a
convention also used in studies of classical random walks. The
resulting real-valued adjacency matrix A is symmetric about
the main diagonal.

We define the quantum state of a graph G, or graph state
for short, as a normalized vector |ψG〉 ∈ BG such that

|ψG〉 =
∑
j∈V

c j | j〉, (1)

with c j ∈ C and

〈ψG|ψG〉 =
∑
j∈V

|c j |2 = 1. (2)

For a continuous-time quantum walk, the graph state
transforms with respect to time τ under the Schrödinger

|0〉 |1〉
K2

FIG. 1. The K2 graph supports perfect state transfer between the
two vertices labeled by the single-qubit computational basis states
|0〉 and |1〉.

equation,

ih̄
∂|ψG(τ )〉

∂τ
= HG|ψG(τ )〉, (3)

where h̄ is Planck’s constant divided by 2π . When the Hamil-
tonian is constant over the interval [t0, t], the formal solution
to Eq. (3) is given by the propagation operator,

UG(t, t0) = e−iHG(t−t0 )/h̄, (4)

such that

|ψG(t )〉 = UG(t, t0)|ψG(t0)〉, (5)

where the boundary condition |ψG(t0)〉 is the state at time t0.
The propagation operator UG is unitary since HG is Hermitian.
We say that a graph G admits perfect state transfer between
unique vertices u, v ∈ V (G) at time t if

UG(t, 0)|u〉 = a|v〉, (6)

where a ∈ C such that |a| = 1.
There are several well-known examples that illustrate per-

fect state transfer using CTQW on static graphs. The singleton
graph K1 has vertex set V = {0} and an empty edge set E = ∅.
As the lone vertex |0〉 is adjacent to no other vertices during
the CTQW, we represent the unitary dynamics by a self-loop.
The K1 Hamiltonian is then represented in its eigenbasis as

HK1 = λ1|0〉〈0|, (7)

where λ1 is the real-valued energy eigenvalue, and the nor-
malized state,

|ψK1 (t0)〉 = c0(t0)|0〉, (8)

has |c0| = 1 for all time such that

|ψK1 (t )〉 = e−iν1t |0〉, (9)

where ν1 = λ1/h̄ is the frequency.
As a second example, the complete graph on two vertices

K2 shown in Fig. 1 has vertex set V = {0, 1} and edge set E =
{(0, 1)}. We specify the Hamiltonian for K2 as the free evo-
lution operator over degenerate basis states, i.e., 〈0|HK2 |0〉 =
〈1|HK2 |1〉, which offers a natural representation of a qubit in
a degenerate eigenbasis. Setting this eigenenergy to zero, the
Hamiltonian is represented as

HK2 = λ2(|0〉〈1| + |1〉〈0|), (10)

where the eigenvalue λ2 defines the energy scale and the
characteristic frequency ν2 = λ2/h̄. The time propagator for
K2 may be decomposed by series expansion as

UK2 (t, t0) = cos[ν2(t − t0)]I2 − i sin[ν2(t − t0)]HK2 , (11)
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|00〉 |01〉

|10〉 |11〉
C4

FIG. 2. The C4 graph supports perfect state transfer between
vertices labeled by the two-qubit computational states.

where IN is the N-dimensional identity matrix. The K2-graph
state evolves as

|ψK2 (t )〉 = (c0 cos[ν2(t − t0)] − ic1 sin[ν2(t − t0)])|0〉
+ (c1 cos[ν2(t − t0)] − ic0 sin[ν2(t − t0)])|1〉,

(12)

which is capable of perfect state transfer up to a trivial phase
factor for propagation time t = π

2ν2
[15].

As a final example, the cycle graph C4 shown in
Fig. 2 has a vertex set V = {0, 1, 2, 3}, edge set E =
{(0, 1), (0, 2), (1, 3), (2, 3)}, and Hamiltonian

HC4 = λ4(|0〉〈1| + |0〉〈2| + H.c.), (13)

where H.c. denotes the Hermitian conjugate, λ4 is the energy
scale, and ν4 = λ4/h̄ defines the characteristic frequency. The
propagation operator may be decomposed as

UC4 (t, t0) = I4 + 1

2
cos(2ν4(t − t0))H2

C4

− i

2
sin(2ν4(t − t0))HC4 (14)

to yield the state |ψC4 (t )〉 with coefficients in the nodal basis
as

c0(t ) = 1
2 [c0(1 + cos(2t )) − i sin(2t ) (c1 + c2)

+ c3(−1 + cos(2t ))], (15)

c1(t ) = 1
2 [−i sin(2t ) (c0 + c3) + c1(1 + cos(2t ))

+ c2(−1 + cos(2t ))], (16)

c2(t ) = 1
2 [−i sin(2t ) (c0 + c3) + c1(−1 + cos(2t ))

+ c2(1 + cos(2t ))], (17)

and

c3(t ) = 1
2 [c0(−1 + cos(2t )) − i sin(2t ) (c1 + c2)

+ c3(1 + cos(2t ))]. (18)

Perfect state transfer in C4 is a special instance of the case of
an N-dimensional hypercube [15], which has been shown by
Christandl et al. to be capable of perfect state transfer for all N
at time t = π

2νN
[22,23]. For the remainder of our presentation,

we will simplify the analysis to the case that νN = 1 for k =
1, 2, 4 and we will set h̄ = 1 for convenience.

III. QUANTUM WALKS ON DISCONNECTED GRAPHS

We now consider quantum walks on disjoint graphs G1 and
G2 with Gj = (Vj, Ej ), where the disjoint union G = G1 +
G2 has vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2.
We require that G1 and G2 are disconnected graphs, termed
components of the graph G, and that V1 ∩ V2 = ∅. The basis
for the disjoint union G is BG = BG1 ⊕ BG2 and a composite
quantum state for G takes the form,

|ψG〉 = |ψG1〉 ⊗ |ψG2〉, (19)

with ⊕ the direct sum and ⊗ the Kronecker product. The
corresponding Hamiltonian is defined as H (G) = HG1 ⊕ HG2 ,
which yields decoupled equations of motion,

i
∂|ψGj (t )〉

∂t
= HGj |ψGj (t )〉, j = 1, 2, (20)

and a composite time propagator,

UG1+G2 (t, t0) = e−iHG1 (t−t0 ) ⊗ e−iHG2 (t−t0 ). (21)

The graph state of G is modeled by two disconnected states
|ψG1〉 ∈ BG1 and |ψG2〉 ∈ BG2 and

|ψG(t )〉 = UG1 (t, t0)|ψG1 (t0)〉 ⊗ UG2 (t, t0)|ψG2 (t0)〉. (22)

As an example, consider the empty graph on N vertices
K̄N , which is the complement of the complete graph KN and
expressed as the union,

K̄n =
N−1⋃
j=0

K ( j)
1 , (23)

where K ( j)
1 is the singleton graph with vertex label j. The

composite Hamiltonian is the direct sum of N singleton
Hamiltonians,

HK̄n
=

N−1⊕
j=0

HK ( j)
1

, (24)

and the quantum state is defined as the Kronecker product of
the individual states,

|ψK̄N
〉 =

N−1⊗
j=0

|ψK1
( j)〉, (25)

in the basis formed from the union of these graphs,

BK̄N
=

N−1⋃
j=0

BK ( j)
1

. (26)

The graph state for the jth singleton graph is now given as

UK ( j)
1

(t, t0)| j〉 = e−iν ( j)
1 t | j〉, (27)

with ν
( j)
1 the energy eigenvalue of the jth vertex. We will

assume that the vertices are indistinguishable and therefore
ν

( j)
1 = ν1 for all j. Thus, the Hamiltonian of these N disjoint

identical vertices,

HK̄N
=

N−1⊕
j=0

λ1| j〉〈 j| = λ1IN , (28)
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is proportional to the N-dimensional identity operator IN over
the basis BK̄N

. This yields an N-fold Kronecker sum of K1

states with the form of Eq. (9).
As a second example, consider the disjoint union K2 + K1

with Hamiltonian

HK2+K1 = HK2 ⊕ HK1 , (29)

represented as

HK2+K1 =
⎛
⎝ 0 λ2 0

λ2 0 0
0 0 λ1

⎞
⎠. (30)

The composite state of this disjoint graph propagates as

UK2+K1 (t, t0)|ψK2+K1〉 = UK2 (t, t0)|ψK2 (t0)〉
⊕UK1 (t, t0)|ψK1 (t0)〉, (31)

and may be recast as

UK2+K1 (t, t0)|ψK2+K1〉
= [c1 cos(ν2(t − t0)) − ic1 sin(ν2(t − t0))]|0〉

+ [c1 cos(ν2(t − t0)) − ic0 sin(ν2(t − t0))]|1〉
+ c2e−iν1t |2〉. (32)

IV. QUANTUM WALKS ON DYNAMIC GRAPHS

We next consider quantum walks on dynamic graphs, in
which a dynamic graph G = {(G	, t	)} is a set of graphs
G	 = (V	, E	) with associated propagation times t	 < t	+1 for
	 ∈ Z. In subsequent discussion, we will consider the case that
only the edge sets change while the vertex sets stay constant,
i.e., V	 = V , such that the bases for all G	 are the same.
However, the case of changing vertex sets is equally valid
as this represents the growth and reduction of the underlying
Hilbert space, for example, through the addition or removal of
ancillary vertices.

The Hamiltonian of a dynamic graph G is expressed as the
weighted sum,

HG =
L−1∑
	=0

HG	

	(t ), (33)

where transitions between graphs are modulated by the func-
tions 
	(t ). We consider the explicit case that the 	th tran-
sition function takes the form of the 	th rectangle function:


	(t ) =
{

1 t	 < t < t	+1

0 otherwise , (34)

with [t0, tL] the interval over which the entire walk is defined.
The dynamics is then expressed as a sequence of propagations
through the series of Schrödinger equations,

i
∂|ψG	

(τ )〉
∂τ

= HG	
|ψG	

(τ )〉, t	 < τ < t	+1. (35)

As the set of discontinuities is countable, the function is still
Riemann integrable, and this system of equations yields the

FIG. 3. The time-dependent probability densities of two vertices,
0 and 1, as the state propagates under K1 + K1 for t = π

2 units of time
before switching to K2 and propagating for an additional time t = 3π

2 .

In this example, the initial state
√

1
3 |0〉 +

√
2
3 |1〉.

composite propagation operator,

UG (tL, t0) =
L−1∏
	=0

e−iHG	
(t	+1−t	 ), (36)

which is understood to be a product ordered from right to
left with increasing index. The quantum state of the dynamic
graph G is then defined under this operator transform as

|ψG (t )〉 = UG	
(tL, t0)|ψG (t0)〉, (37)

with initial condition |ψG (t0)〉 ∈ BG and 〈ψG (t0)|ψG (t0)〉 = 1.
As a simple example of a quantum walk on a dynamic

graph, consider the case of two disjoint K1 graphs switched
to a bipartite K2. The dynamic graph is expressed as G =
{(K1 + K1, t0), (K2, t1)}, where t0 and t1 denote the transition
times. Taking the initial quantum state as a superposition over
the nodal basis, Fig. 3 plots the time-dependent probability for
each basis state with respect to the propagation time. Initially
under the K1 + K1, the probability remains constant until the
transition time t1, after which the Hamiltonian switches to
K2 and creates an edge between vertices. This leads to the
oscillations in probability as expected by Eq. (11). Figure 4 is

FIG. 4. The time-dependent probability density of four vertices,
0, 1, 2, and 3, as the state propagates under K2 + K2 for time t = π

2
followed by C4 for time t = 3π

2 . In this example, the initial state is√
1
3 |00〉 +

√
2
3 |10〉.
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an example of two K2 graphs allowed to propagate on their
own and then connected as a C4 and allowed to propagate
again.

V. QUANTUM WALKS FOR ELEMENTARY GATES

The formalism of quantum walks on dynamic graphs may
be used to realize one- and two-qubit gates within the quantum
circuit model by identifying the quantum walk on a graph of
|V | = N = 2n vertices with a corresponding n-qubit circuit.
Let the vertex label v ∈ V map to the computational basis state
|v1, v2, . . . , vn〉 with vi the ith coefficient in the binary ex-
pansion of the n-bit, non-negative integer v. We demonstrate
several explicit examples of how few-qubit quantum gates can
be realized using perfect state transfer limited to K1, K2, and
C4 graphs. We limit our CTQWs to those on K1, K2, and
C4 because the periods are all multiples of π and achieve
perfect state transfer at times kπ

2 for k ∈ N . In fact, we use the
K (i)

1 graph exclusively to add a phase factor to the ith qubit.
We add the phase factors for sake of completeness in some
of the CTQWs, but for implementation purposes, the phase
factor may be omitted if desired by removing the appropriate
CTQWs. We show that in some instances, such as the Z gate,
the realization of gate logic within the quantum walk model
requires additional vertices whereas other gates, such as CNOT

and CCNOT, are straightforward to realize.
The realization of elementary gates from the circuit model

provides a constructive approach to demonstrate the com-
pleteness of quantum walks on dynamics graphs. While the
quantum walk formalism can naturally represent any unitary
of the form exp(iAt ), we have imposed the restriction that the
Hermitian matrix A must represent the connectivity of the dy-
namic graph and that these graphs should be limited to a small
number of vertices. By demonstrating that a complete basis of
elementary gates can be constructed under these restrictions,
we can then invoke the Solovay-Kitaev theorem to establish
universality. The Solovay-Kitaev theorem establishes the fea-
sibility of approximating an arbitrary unitary transformation
when only a limited subset of such transformation may be
accessed [24]. We demonstrate an explicit realization for a
universal set of gates, including the Pauli, H, T and CNOT

gates described below, from which it follows that sequences
of these gates of length O(logc(1/ε)) may approximate an
arbitrary unitary within precision ε for constant c ≈ 3.97 [24].

A. Single-qubit gates

The Pauli gates provide a set of single-qubit operations
represented in the computational basis as

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (38)

We can implement these gates exactly using perfect state
transfer within a dynamic graph. For example, the X gate may
be implemented on two graph vertices using a quantum walk
on K2. For simplicity, we assume the vertices are labeled 0 and
1 and that the graph state is initially prepared as c0|0〉 + c1|1〉.
The walk under K (0,1)

2 for a period of 3π
2 prepares the state

i(c1|0〉 + c0|1〉). The resulting global phase factor of i may be
removed by evolving under K (0)

1 + K (1)
1 for a second period of

FIG. 5. A dynamic graph representation of the X gate consists of
two graphs and the associated propagation times. This sequence of
CTQW executes the logical bit flip operation on the graph state.

π
2 , and we include these dynamics in our definition of the X
gate. The dynamic graph for the X gate is defined as

GX =
{(

G(0,1)
K2

,
3π

2

)
,

(
G(0)

K1
+ G(1)

K1
,
π

2

)}
, (39)

and Fig. 5 provides a graphical representation. When the
target pair of vertices is embedded in a larger graph state, it
is understood that all other nodes evolve disjointly from the
above dynamic graph.

The Z gate may be implemented using a K1 and C4 defined
on five vertices. Notice that |001〉 must propagate as a sin-
gleton for π units of time to flip the sign of the coefficient,
however, |000〉 needs to propagate as a C4 in the same time
frame in order to keep its original sign. We maintain a clear
correspondence with the circuit model by using a graph on
eight vertices which represent the full Hilbert space for three
qubits. Three of these vertices will propagate as singletons for
the entirety of the walk. For example, given the initial state
c0|0〉 + c1|1〉 for a graph of |V | = 8 vertices, the dynamic
graph representing the Z gate is defined as

GZ = {(
G(0,2,4,6)

C4
+ G(1)

K1
+ G(3)

K1
+ G(5)

K1
+ G(7)

K1
, π

)}
. (40)

A graphical representation of the walk for the Z gate is shown
in Fig. 6. Note this dynamic flips the signs of |011〉, |101〉, and
|111〉 in addition to |001〉

A Y gate may be derived from the commutation relations
for the Pauli operators and implemented by performing the
X and Z gates in series. An additional phase shift of i is

FIG. 6. A graphical representation of the Z gate using CTQW
on GZ .
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|000 |001

|010 |011

|100 |101

0 ≤ t < π
2

|000 |001

|010 |011

|100 |101

π
2 ≤ t < 3π

2

FIG. 7. A graphical representation of the Y gate using CTQW
on GY .

required and this may be recovered by evolving all vertices
under disjoint singletons for t = 3π/2. Of course, reversing
the order in which the X and Z gates are performed would
change the necessary phase shift, −iY . Alternatively, the Y
transformation may be implemented by propagating vertices
|000〉 and |001〉 under K2 for π/2 units of time, then allowing
vertex |001〉 to propagate as a singleton for π units while
simultaneously allowing |000〉 to propagate as a C4 to three
new vertices. The dynamic graph for the latter Y operation is
given as

GY =
{(

G(0,1)
K2

+ G(2)
K1

+ G(3)
K1

+ G(4)
K1

,
π

2

)}
,

{(
G(1)

K1
+ G(0,2,3,4)

C4
, π

)}
, (41)

which is illustrated in Fig. 7. Completing the Pauli group,
we note that the identity gate may be implemented using a

number of different dynamic graphs. This includes assigning
every vertex to propagate under the singleton graph for t =
2π , connecting pairs of vertices as K2 graphs for t = 2π , or
connecting four vertices as a C4 and propagating for t = π .
The best choice for implementation is likely to be determined
by other scheduling concerns.

The single-qubit Hadamard gate is defined in the computa-
tional basis as

H = 1√
2

(
1 1
1 −1

)
, (42)

and may be implemented using a series of C4 and K2 graphs.
The Hadamard gate may be performed with only five vertices,
but we again use eight vertices to establish a clear corre-
spondence with three qubits in the circuit model. Consider
the initial state c0|0〉 + c1|1〉 embedded in a Hilbert space
represented by |V | = 8 nodes. Figure 8 illustrates the dynamic
graph for the H gate, defined as

GH = {(
G(0,2,4,6)

C4
+ G(1)

K1
+ G(3)

K1
+ G(5)

K1
+ G(7)

K1
, 3π/2

)
,(

G(0,7)
K2

+ G(1,6)
K2

+ G(2,5)
K2

+ G(3,4)
K2

, π/4
)
,(

G(0,2,4,6)
C4

+ G(1)
K1

+ G(3)
K1

+ G(5)
K1

+ G(7)
K1

, 3π/2
)
,(

G(0,1)
K2

+ G(2,3)
K2

+ G(4,5)
K2

+ G(6,7)
K2

, π/2
)
,(

G(0)
K1

+ G(1)
K1

+ G(2)
K1

+ G(3)
K1

+ G(4)
K1

+ G(5)
K1

+ G(6)
K1

+ G(7)
K1

, 3π/2
)}

. (43)

We show in the Appendix that the CTQW defined by Eq. (43)
implements the logical transformation for the Hadamard gate.

The T gate is defined as

T =
(

1 0
0 e

iπ
4

)
, (44)

FIG. 8. A graphical representation of the H gate using CTQW on GH .
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FIG. 9. A graphical representation of the T gate using GT .

and may be implemented using K1, K2, and C4 graphs, along
with the star graph on five vertices. A star graph is a connected
graph G on n vertices such that exactly one vertex has degree
n − 1 and all other vertices have degree one. Figure 9 illus-
trates the dynamic graph used for the T gate, which is written
as

GT =
{(

G(0,2)
K2

+ G(1)
K1

+ G(3)
K1

+ G(4)
K1

+ G(5)
K1

+ G(6)
K1

+ G(7)
K1

,
π

4

)
,

(
G(0,3,4,5)

C4
+ G(1)

K1
+ G(2)

K1
+ G(6)

K1
+ G(7)

K1
,
π

2

)
,

(
G(2,4)

K2
+ G(3,5)

K2
+ G(0)

K1
+ G(0)

K1
+ G(1)

K1
+ G(6)

K1
+ G(7)

K1
,
π

4

)
,

(
G(2,5,6,7)

C4
+ G(0)

K1
+ G(1)

K1
+ G(3)

K1
+ G(4)

K1
,
π

2

)
,

(
G(0,2,3,4,5)

S5
+ G(1)

K1
+ G(6)

K1
+ G(7)

K1
,

7π

4

)
,

(
G(0)

K1
+ G(1)

K1
+ G(2)

K1
+ G(3)

K1
+ G(4)

K1

+ G(5)
K1

+ G(6)
K1

+ G(7)
K1

,
π

4

)}
. (45)

FIG. 10. A graphical representation of the CNOT gate using
CTQW on GCNOT.

We show in the Appendix that the CTQW defined by Eq. (45)
implements the logical transformation for the T gate.

B. Multiqubit gates

Quantum walks on dynamics graphs may also be used to
construct multiqubit gates. For example, the two-qubit CNOT

gate,

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, (46)

FIG. 11. A graphical representation of the CCNOT (Toffoli) gate
using CTQW on GCCNOT.

012306-7



REBEKAH HERRMAN AND TRAVIS S. HUMBLE PHYSICAL REVIEW A 100, 012306 (2019)

FIG. 12. The circuit model representation of quantum teleporta-
tion uses three qubits and a series of elementary gates.

can be realized using a quantum walk on four vertices that
span the space of the control and target qubits. Let vertices
0 and 1 propagate as singletons for time 2π while allowing
vertices 2 and 3 to propagate under K2 as shown in Fig. 10,

GCNOT =
{(

G(0)
K1

+ G(1)
K1

+ G(2)
K1

+ G(3)
K1

,
3π

2

)
,

(
G(0)

K1
+ G(1)

K1
+ G(2,3)

K2
,
π

2

)}
. (47)

The three-qubit CCNOT, or Toffoli, gate is constructed
similarly but now using |V | = 8 vertices that represent the
two control qubits and one target qubit. The implementation
of the Toffoli gate is identical to the CNOT gate but with four
additional vertices allowed to propagate as singletons for 2π

units of time. It is used in both the carry and sum subcircuits
in the quantum adder circuit. It is also reversible, meaning
its effects may be reversed using other operations. Figure 11
illustrates the dynamic graph for the Toffoli gate.

C. Measurement and initialization

We model measurement of the quantum state on a graph G
as a projection onto a subspace of the basis BG. In establishing
a correspondence with the qubit-encoded circuit model, we
decompose the labels of the basis according to a binary
expansion,

| j〉 =
m∑

i=1

ji2
m−i, (48)

with ji ∈ {0, 1} and m = log2 |V |. In this binary representa-
tion, a quantum state |ψG〉 ∈ BG can be expressed as

|ψG〉 =
∑
j∈V

c j | j1, . . . , jm〉, (49)

and measuring the ith qubit to have a fixed value j̄i corre-
sponds to projecting the state onto a subset of nodes in the
graph, i.e.,

| j̄i〉〈 j̄i|ψG〉 =
∑
j∈V

c j | j1, . . . , j̄i, . . . , jm〉. (50)

The probability to observe node j is given as

Prob( j) = |〈 j̄i|ψG〉|2 =
∑

j∈V, ji= j̄

|c j |2 � 1. (51)

We may use measurement as part of a deterministic ini-
tialization method, in which the projective outcome is trans-
formed into the desired initial state. This requires conditional
operations based on the decoded output from the measure-
ment, from which the necessary series of single-qubit gates
are applied to graph. For projections into the label basis,
these feed-forward operations consist of products of the Pauli
operators flipping the label state to a fiducial starting label,
e.g., the vertex 0.

VI. QUANTUM WALKS FOR QUANTUM CIRCUITS

We complete our analysis by providing explicit examples
of how quantum walks on dynamic graphs realize circuits
within gate-model computing. These examples highlight the
differences in the representation of the logic as well as the
resources required to achieve the desired unitary transfor-
mations. In our examples, CTQWs are performed in series
and the number of vertices needed to implement each circuit
is equal to the largest of the number of vertices needed to
perform the CTQW equivalent for each logic gate. For the
sake of completeness, we also explicitly indicate singleton
vertices that add global phase evolution to select vertices in

FIG. 13. In this graphical representation of quantum teleportation, each graph is labeled as (G	, τ	) with τ	 the propagation time in the 	th
graph. The time f (a) = arcsin(

√
a) is the state specific time required to rotate |000〉 to

√
1 − a|000〉 + √

a|001〉. From left to right, the first
four graphs rotate the state while the next five graphs correspond to the H gate on the second qubit. The following four graphs represent a
pair of CNOT gates. The next five graphs correspond with an H gate on the first qubit. Assuming a measurement outcome (b1 = 1, b2 = 1), the
remaining graphs implement the X and Z gates needed to complete teleportation.
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FIG. 14. The population dynamics for state preparation and
quantum teleportation using CTQW on the dynamic graph shown
in Fig. 13. This example corresponds to the case of measurement
outcomes b1 = 1 and b2 = 1 for qubits 1 and 2, respectively, and
completes the protocol by applying the necessary recovery opera-
tions X and Z .

order to clearly demonstrate where each gate is used in the
implementation. Future optimizations may remove such sin-
gleton CTQWs that sum to 2π from actual implementations.

A. Quantum teleportation circuit

In quantum teleportation, a qubit of information is trans-
ferred from one logical element to another as shown in Fig. 12.
In the circuit model description, three qubits are initially
prepared in the state |000〉. The first element is prepared in
the state |ψ1〉 by applying the necessary single-qubit transfor-
mation. The remaining elements are prepared in a two-qubit
entangled state by applying the Hadamard gate to the second
element followed by the CNOT gate acting on the second and
third elements. A second CNOT gate entangles the first and
second qubits. A final Hadamard gate is applied to the first,
after which measurements performed on elements 1 and 2
generate binary values b1 and b2, respectively. The effect
of these measurements is to project element 3 into the state
X b1

3 Zb2
3 |ψ3〉, which may be transformed to the original state of

element 1 with knowledge of (b1, b2).
The implementation of quantum teleportation using

CTQW on a dynamic graph is shown in Fig. 13, and it
begins with a graph on eight vertices. Initialization of these
vertices is realized through a projective measurement and,
depending on the measurement outcome, a sequence of X
operations to populate the 0 vertex. We then approximate an
arbitrary unitary operation to prepare the input superposition

c0

C
Sa0 •

b0

b1

FIG. 15. A quantum circuit for the addition of two one-bit num-
bers, where the carry circuit C and the sum circuit S are defined in
Figs. 16 and 17. Note that since we only have one carry operation, it
is our last carry, and thus is not reversed.

•
• •
• •

FIG. 16. The carry subcircuit C used in Fig. 15.

state |ψ〉 = √
1 − a|0〉 + √

a|1〉 for a ∈ C where |a| = 1. The
number of vertices needed to represent an arbitrary |ψ〉 de-
pends on the desired state, but this single-qubit unitary can
be constructed using the universal basis described above. A
Hadamard transform is then applied to vertices 0 and 7 using
Eq. (43) followed by a pair of CNOT transforms using Eq. (47)
acting on vertices {2, 3, 6, 7} and {0, 1, 2, 3}, respectively. The
output from this series of CTQWs prepares the graph state,

|ψ〉= 1
2 (−√

1 − a|0〉 + √
1 − a|1〉 + √

1 − a|2〉−√
1 − a|3〉

−√
a|4〉 − √

a|5〉 + √
a|6〉 + √

a|7〉), (52)

and a partial projective measurement on the first two bits of
the label representation generates the four possible teleported
states. The population dynamics of the QTC CTQW are
shown in Fig. 14.

B. Quantum adder

As a second example, we consider a quantum addition
circuit for summing two positive integers such that the input
|a, b〉 → |a, a ⊕ b〉 [25]. This variant of in-place addition
takes two inputs encoded in registers a and b with the binary
representations a = an−1an−2...a1a0 and b = bn−1bn−2...b1b0.
An additional bit bn+1 = 0 is added to register b to give a size
n + 1. A third workspace register c of size n − 1 is used in
this implementation to store carry values with initialization
ci = 0 ∀ i, while the final carry value is stored in the bit bn+1.
The circuit is composed from two subcircuits for carry and
sum operations denoted as C and S , respectively, and the
subcircuits for C and S are specified in Figs. 16 and 17,
respectively. The carry operation uses a Toffoli gate with the
second and third qubit as controls and the fourth qubit as the
target. This is followed by a CNOT gate on the second and
third qubits before another Toffoli gate on the first, second,
and fourth qubits. The reverse carry RC circuit undoes the
carry computation by applying the gates in the reverse order.
The last carry bit in the computation is not reversed but stored
as bn+1. The sum subcircuit denoted as S in Fig. 17 takes three
qubits as input, in which a CNOT is applied to the second and
third qubits followed by a Toffoli gate performed with the first
two qubits being the controls and the third qubit as the target.
In Fig. 15, we show the demonstrated instance of one-bit
inputs, i.e., n = 1, for which the reverse carry subcircuit is
unnecessary. For this example, carry bits are also unnecessary
but we include the single carry bit c0 to confirm generality.

•
•

FIG. 17. The sum subcircuit S used in Fig. 15.
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FIG. 18. In this graphical representation of a one-bit quantum adder circuit, each graph is labeled as (G	, τ	) with τ	 the propagation time
in the 	th graph.

We reduce the gate sequences in the quantum addition
circuit into the dynamic graph shown in Fig. 18. Our reduction
uses the CTQWs for CNOT and CCNOT gates described in
Sec. V and sequentially orders them according to the gate
specification in Figs. 15–17. In order to verify the correct-
ness of the reduction, we have used numerical simulation to
determine the quantum state generated by the CTQW on the
dynamic graph shown in Fig. 18. Numerical simulation of
the CTQW requires a memory space that is exponential in the
number of qubits, i.e, 23n+1 . Implementing the quantum adder
circuit for n = 1 requires a dynamic graph on 16 vertices.

We show results from a specific simulation with |a0〉 =
|1〉 and |b0〉 = 1√

2
(|0〉 + |1〉) in Fig. 19. We plot the time-

dependent population of the vertices that represent the joint
state of the computational registers. The carry register is
initialized to |c0〉 = |0〉 and the resulting computational output
is |b1, b0, a0, c0〉 = 1√

2
(|0, 0, 1, 0〉 + |1, 1, 1, 0〉), where the

a0 and c0 registers remain in their initial states, and the sum
a0 + b0 is stored in the b0 and b1. As shown in Fig. 19,
our CTQW simulations verify that the dynamic graph yields
the expected output states, which corresponds to a uniform
superposition of the vertex labels 6 and 10.

FIG. 19. The population dynamics of the CTQW for quantum
addition of inputs |a〉 = |1〉 and |b〉 = 1√

2
|0, 0〉 + 1√

2
|0, 1〉. Numeri-

cal simulations of the CTQW on the dynamic graph shown in Fig. 18
calculates exactly the amplitudes of each vertex and the final state
is |b1, b0, a0, c0〉 = 1√

2
(|0, 1, 1, 0〉 + |1, 0, 1, 0〉), which corresponds

to a uniform superposition of the vertices 6 and 10.

VII. DISCUSSION

Continuous-time quantum walks offer a versatile paradigm
for quantum computing, in which the edges between vertices
in a graph serve to model the connectivity between basis
states. We have defined a dynamic graph as a time-ordered
sequence of changing connectivity through which the state of
a continuous quantum walk can be tailored to perform com-
putation and, in particular, we have provided constructions
of continuous-time quantum walks on dynamic graphs that
implement a diverse set of gates taken from the quantum cir-
cuit computational model. Our realizations of the single-qubit
Pauli, Hadamard, and T gates, and the CNOT and Toffoli gates,
as well as measurement and initialization, form a complete set
of primitive operations that can be composed to approximate
an arbitrary unitary operator. We were able to implement these
gates with a complete basis set of at most eight sparsely
connected nodes, allowing the small graph motif to extend
across any algorithm. We have presented implementations
of the bit-wise addition operation and quantum teleportation
to demonstrate composition of quantum walks and shown
how some reduction in the composite dynamic graph can be
realized by eliminating redundancies.

An important distinction in our formulation of continuous-
time quantum walks is the condition that the Hamiltonian
represent the connectivity of the underlying basis states.
Although we permit variations in this Hamiltonian, the re-
striction has several side effects on the computational model.
For example, our design for some single-qubit gates taken
from the circuit model require graphs with more than two
vertices. These additional vertices are effectively ancilla used
to store temporarily intermediate states of the walk. This
unique representation may afford opportunities for optimizing
quantum logic by better understanding the transformation
of an input state to its output form. Similarly, multiqubit
gates such as CNOT and Toffoli are trivial to implement by
using the starkly different periods for perfect state transfer.
Algorithmic methods that take advantage of these otherwise
idle vertices may provide more compact representations of
logical transformations.

We have restricted designs of the current quantum walks
to small and relatively simple graphs, e.g, K2 and C4. These
designs are appealing because they require less complex in-
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teractions between the physical elements, but the ability to
realize these designs will depend on technological constraints
as well as algorithmic requirements. In particular, perfect state
transfer has been implemented recently in a photonic proces-
sor [26]. Chapman et al. used a linear array of evanescently
coupled waveguides to realize nearest-neighbor coupling and
transfer the polarized state of one photon to another. The
underlying tight-binding Hamiltonian provides an approxima-
tion to the connectivity graph underlying a continuous-time
quantum walk defined within the space of the single-photon
Fock states. The approximation is controlled by the spectra
of the coupled waveguides, which must be nonuniform in
their geometry for (almost) perfect state transfer using a linear
coupled chain [22,23]. The geometrical constraints imposed
by linear chains have been overcome by a recent demonstra-
tion of continuous-time quantum walks in two-dimensional
waveguide arrays [27]. Tang et al. demonstrated control of the
coupling between waveguide in a two-dimensional array by
fabricating specific distance between the channels. We antici-
pate that these capabilities may be applied to vary the coupling
along the waveguide length and, consequently, develop a
physical realization of a dynamic graph. These adaptations
may require relaxations of our model, including modifying the
sharp transitions induced by the rectangle function with more
gradual transitions. As a second possible implementation, we
note that the Mølmer-Sørensen gate commonly used in ion
trap technology enables highly tunable connectivity between
multiple qubits for a specific Hamiltonian [28,29], and it
would be interesting to apply our principles of continuous-
time quantum walks on dynamics graphs to these systems as
well.
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APPENDIX

We demonstrate that the dynamic graph representing
Eq. (43) implements the Hadamard transform by showing
explicitly the graph state prepared under the sequence of
CTQWs. We first note that the CTQW on each element G	

in a dynamic graph can be evaluated numerically for the

designated propagation time t	. For GH , we have

UG0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1 0
0 i 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 i 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 i 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 0 0 0 −i√
2

0 1√
2

0 0 0 0 −i√
2

0

0 0 1√
2

0 0 −i√
2

0 0

0 0 0 1√
2

−i√
2

0 0 0

0 0 0 −i√
2

1√
2

0 0 0

0 0 −i√
2

0 0 1√
2

0 0

0 −i√
2

0 0 0 0 1√
2

0
−i√

2
0 0 0 0 0 0 1√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1 0
0 −i 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −i 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 −1
−i 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By multiplying the resulting matrices in order, we construct
an explicit numerical representation for the CTQW under the
dynamic graph GH as

UGH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
2

0 0 0 0 0 0
1√
2

−1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 1√
2

−1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It is then apparent from this numerical representation that
the CTQW for GH is equivalent to applying the circuit-
model operator H1 ⊗ H2 ⊗ H3 on the three-qubit Hilbert
space.

We provide a similar proof that the dynamic graph repre-
senting Eq. (45) implements the T gate by showing explicitly
the graph state prepared under the sequence of CTQWs. We
first note that

UG0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 −i√
2

0 0 0 0 0

0 e
−iπ

4 0 0 0 0 0 0
−i√

2
0 1√

2
0 0 0 0 0

0 0 0 e
−iπ

4 0 0 0 0

0 0 0 0 e
−iπ

4 0 0 0

0 0 0 0 0 e
−iπ

4 0 0
0 0 0 0 0 0 e

−iπ
4 0

0 0 0 0 0 0 0 e
−iπ

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 0 0
0 −i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
−iπ

4 0 0 0 0 0 0 0

0 e
−iπ

4 0 0 0 0 0 0

0 0 1√
2

0 −i√
2

0 0 0

0 0 0 1√
2

0 −i√
2

0 0

0 0 −i√
2

0 1√
2

0 0 0

0 0 0 −i√
2

0 1√
2

0 0

0 0 0 0 0 0 e
−iπ

4 0
0 0 0 0 0 0 0 e

−iπ
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i 0 0 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 −i 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 i
2

i
2

i
2

i
2 0 0

0 e
iπ
4 0 0 0 0 0 0

i
2 0 3

4
−1
4

−1
4

−1
4 0 0

i
2 0 −1

4
3
4

−1
4

−1
4 0 0

i
2 0 −1

4
−1
4

3
4

−1
4 0 0

i
2 0 −1

4
−1
4

−1
4

3
4 0 0

0 0 0 0 0 0 e
iπ
4 0

0 0 0 0 0 0 0 e
iπ
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

UG5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, as GT is the product of the above matrices, we have

UGT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 e
iπ
4 0 0 0 0 0 0

0 0 −1
2 0 −e

−iπ
4√
2

1
2 0 0

0 0 −1
2 0 e

−iπ
4√
2

1
2 0 0

0 0 1
2

e
−iπ

4√
2

0 1
2 0 0

0 0 1
2

−e
−iπ

4√
2

0 1
2 0 0

0 0 0 0 0 0 0 e− iπ
4

0 0 0 0 0 0 e− iπ
4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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