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Experimental study of Shor’s factoring algorithm using the IBM Q Experience
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We study the results of a compiled version of Shor’s factoring algorithm on the ibmqx5 superconducting chip,
for the particular case of N = 15, 21, and 35. The semiclassical quantum Fourier transform is used to implement
the algorithm with only a small number of physical qubits, and the circuits are designed to reduce the number of
gates to the minimum. We use the square of the statistical overlap to give a quantitative measure of the similarity
between the experimentally obtained distribution of phases and the predicted theoretical distribution of phases
for different values of the period. This allows us to assign a period to the experimental data without the use of the
continued fraction algorithm. A quantitative estimate of the error in our assignment of the period is then given
by the overlap coefficient.
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I. INTRODUCTION

Shor’s factoring algorithm [1] is a well-known example of
a quantum algorithm outperforming the best known classi-
cal algorithm. Experimental implementation of the algorithm
with physical qubits, however, remains a challenge because of
the errors introduced by the large number of qubits and gates
required to execute the algorithm. In this paper we provide
a proof-of-principle demonstration of a compiled version of
Shor’s factoring algorithm to factor the numbers N = 15, 21,
and 35 using five, six, and seven superconducting qubits,
respectively. Similar experiments have been done on setups
like NMR [2], trapped ions [3], photons [4–6], photonic chips
[7], and superconducting qubits [8,9]. However, with the
exception of [3,5], all these realizations involve an oversim-
plified version of the algorithm which is equivalent to coin
flipping [10] and no quantum hardware is needed to obtain
the same results.

In our implementation, classical processing is used along-
side quantum computation to overcome the lack of key func-
tions of the device used. Furthermore, the number of physical
qubits and the circuit depth are reduced to the minimum in
order to minimize the effects of noise. The data are presented
as estimates of the probability distribution of the values re-
turned by the period register. While obtaining the probability
distributions of the period register requires running the algo-
rithm many times, as opposed to just once with the original
continued fraction expansion, this allows the performance
of quantum computers running this algorithm to be more
directly evaluated. To measure the success of the experiments
in different ways, the results are analyzed in both a qualitative
way, with probability plots [11], and a quantitative way, with
the square of statistical overlap (SSO) [12]. Probability plots
are a useful tool to visualize differences between probability
distributions, while the SSO provides a quantitative measure
of their similarity. Using the overlap coefficient (see below),
we can also use the SSO to assign a period to the experimental

data, avoiding the continued fraction algorithm which does
not work for such low number of qubits. Also, the overlap
coefficient (OVL) gives an estimate of the probability that the
experiment succeeded. The results of the experiments are in
good agreement with the theory for N = 15 and 21. However,
the experiment succeeded for N = 35 only about 14% of
the time, where the cumulative errors coming from the high
number of two-qubit gates became too large.

The paper is organized in the following way. A brief
overview of Shor’s factoring algorithm is given in Sec. II.
Section III describes the hardware used for the experiment.
In Sec. IV the implementation of the factoring experiment
for N = 15, 21, and 35, respectively, is described. The results
obtained from running the algorithm on the ibmqx5 quantum
processor are analyzed and discussed in Sec. V. Conclusions
follow in Sec. VI.

II. OVERVIEW OF SHOR’S FACTORING ALGORITHM

The factoring algorithm invented by Shor [1] relies on the
relation between the problem of factoring and the problem of
order finding, for which a quantum speedup exists. In fact,
finding the prime factors of a number N is equivalent to
finding the exponent x for which the function axmodN = 1,
where a is an integer smaller than N picked at random. Such
exponent is called the order, or period, of a. Let us briefly
review the quantum part of the algorithm before diving into
the details of the experiment. Two quantum registers are
needed for the computation. One register is used to store
the value of the period, called the period register, and the
other is used to store the results of the computation, called
the computational register. The size of both registers depends
on the number N to be factored. In particular, the period
register should have a number of qubits np in the interval
log2(N2) � np � log2(2N2) and the computational register
should be large enough to be able to represent the number
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FIG. 1. Coupling map between the 16 qubits of the ibmqx5
device. The arrows indicate the possible CNOT gates between pairs
of qubits. In particular, the arrow starts from the control qubit and
points to the target qubit.

N − 1, resulting from the modular exponentiation function
(MEF) axmodN , thus requiring nq = log2N qubits.

At the beginning of the quantum algorithm, the two reg-
isters are initialized to the state |00...0〉p|00...1〉q, where the
subscripts p and q denote the period register and the com-
putational register, respectively. The period register stores all
the possible values of the exponent x, which will give an
estimate of the period, by creating a uniform superposition of
all possible bit strings through Hadamard gates on all qubits

1√
Q

∑Q−1
x=0 |x〉p, where Q = 2np , while the computational regis-

ter stores the results of the MEF, axmodN . After the first step,
the two registers are in the state 1√

Q−1

∑Q−1
x=0 |x〉p|axmodN〉q.

Then, the quantum Fourier transform (QFT) is applied to the
period register so that |x〉p → 1√

Q

∑Q−1
s=0 e

2π isx
Q |s〉p. As a result

of the QFT, interference between all the possible states occurs.
If the period register is then measured, a value of the phase s is
measured with probability P(s) = 1

Q

∑Q−1
x=0 |e 2π isx

Q |2. Rewriting
x in terms of the period r as x = x0 + dr, where x0 and d
are integers, the probability of an outcome s can be written

as P(s) = 1
Q |e 2π ix0

Q |2 ∑
d |e 2π isdr

Q |2. Clearly, a value of s such
that s

Q = c
r , where c is an integer, will be observed with high

probability.
The final part of the algorithm involves classical processing

of the measurement obtained in the quantum part. The value
of the period r can be found from the fraction s

Q by using
the continued fraction algorithm or, as done in this paper, by
running the algorithm many times to get a direct estimate
of the probability distribution of the values for the period
register. A comparison between the measured probability
distribution and the theoretically predicted distribution for the
period r can be made using the SSO and the best fit gives the
most likely period. If the period r calculated in this way is
odd or r = 0, the algorithm fails and one restarts by picking a
different base a. If r is even, (ar − 1)modN can be factored
into (a

r
2 − 1)(a

r
2 + 1) modN . The final step is to check if

(a
r
2 + 1)modN has a common divisor with N by checking that

gcd(a
r
2 + 1, N ) �= 1. If that is true, then the two factors of N

are gcd(a
r
2 + 1, N ) and gcd(a

r
2 − 1, N ).

FIG. 3. Circuits used in the experimental implementation of
Shor’s algorithm on ibmqx5. The circuit of Fig. 2 is divided in three
separate parts. Each circuit contains a stage of modular exponentia-
tion and a measurement of the period register. The different circuits
are joined using a classical algorithm which computes the quantum
state of the computational register at the end of the previous circuit
and feeds it as input to the next circuit. The classical algorithm also
adds the right rotation gates on the period qubit in each successive
circuit, based on the results of previous measurements.

As mentioned earlier, the execution of this version of the
algorithm requires nq = log2(N ) qubits in the computational
register to perform the modular exponentiation and at least
another np = 2log2(N ) qubits in the period register to perform
the QFT. Thus the complete algorithm requires a total number
of 3log2(N ) qubits. Even the factoring of a number as small
as N = 15 needs 12 qubits in the input register to execute
this algorithm, which is still a challenge for today’s physical
realizations of quantum computers. However, Kitaev [13]
observed that for the purpose of algorithms like Shor’s, where
one does not need the information on the relative phase of the
output states but only their measured probability amplitudes,
one can replace the fully coherent quantum Fourier transform
with the semiclassical quantum Fourier transform (sc-QFT).
In the sc-QFT, one of the qubits of the period register is
measured each time. The result of the measurement of the
qubit is then used to determine the type of measurement on
the next one. This enables the replacement of the 2log2(N )
qubits of the period register with a single qubit measured

FIG. 2. Circuit for factoring N = 15, 21, and 35 implemented using the scheme shown in [3]. The first register (top), the period register,
stores the estimation of the period, which can be done by using only one qubit through the sc-QFT. The second register (bottom), the
computational register, stores the outcomes of the modular exponentiation function axmodN computed through the controlled-Uax gate. The
specific circuits for Uax used in factoring N = 15, 21, and 35 for a specific base a are shown in the Appendix.
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(a)

(b)

(c)

FIG. 4. (a) Probability of finding a given phase for N = 15 with
base a = 2 and (b) probability plot of the theoretical distribution and
the experimental distribution for r = 4. The experimental distribu-
tion is depicted through the collection of data and a fit of the data.
(c) SSO of the experimental data with the theoretical probability
distribution corresponding to all possible values of the period r.

multiple times. For the case of factoring N = 15, Kitaev’s
approach reduces the total number of qubits required to n = 5

and for the case of N = 21 and 35 to n = 6 and 7, respec-
tively, which are small enough numbers for the presently
available hardware to handle. This decrease in the system size,
however, comes with the drawback of requiring in-sequence
single-qubit readout and state reinitialization together with
feed-forward of gate settings based on previous measurement
results. The implementation of the sc-QFT has been described
in [12,14] and realized in [3]. At present the IBM1 quantum
computer does not perform in-sequence single-qubit readout
and qubit reinitialization. Below, we provide a procedure for
going around this hurdle to implement the sc-QFT on the IBM
Q device.

III. HARDWARE

We use the IBM ibmqx5 chip with 16 superconducting
qubits to implement our experiments for factoring the num-
bers N = 15, 21, and 35. The qubits are distributed on the
plane, as two adjacent arrays of eight qubits each with cou-
plings shown in Fig. 1.

The qubits’ relaxation time T1 ranges from 25 to 60 μs
and their dephasing time T2 ranges from 20 to 100 μs. The
single-qubit gates have a high fidelity, measured at ∼99.8% at
the time of the experiment. The multiqubit gate fidelity was
measured around 95–98% depending on the pairs of qubits
considered. All gate errors are measured using simultaneous
randomized benchmarking. Another source of error comes
from the readout of the states of the qubits, which amounts to
roughly an error of 5%. Using these parameters, the effects of
noise can be incorporated in the simulation, obtaining a more
accurate prediction for the output of the device.

IV. EXPERIMENT

Following the example given in [3], we implement the
quantum part of Shor’s factoring algorithm using the circuit
depicted in Fig. 2. As can be seen in the circuit diagram in
Fig. 2, rotations of the control qubit depend on the outcome
of each of its measurements in the previous steps. Since the
ibmqx5 chip does not allow for qubit reset and conditional
operation based on measurements, which are required to
implement the sc-QFT suggested by Kitaev, we implement
the algorithm as three separate quantum circuits as shown in
Fig. 3.

In the first circuit, the system is initialized in the state
|0〉p|0...01〉q and the first bit, b0, encoding the value of the
period, is measured at the end. In the second circuit, the initial
state |0〉p|ψb0〉q is prepared. Different states |ψb0 are prepared
depending on the value of b0 measured in the previous cir-
cuit. Rotation gates on the period register are also inserted
conditional on the value of b0 before measuring the second
bit encoding the value of the period, b1. In the third circuit,
depending on the values of b0 and b1, the qubit registers
are initialized to |0〉p|ψb0b1〉q and rotation gates are inserted
before the measurement of b2. The possible quantum states
of the computational register can be computed classically for

1The views expressed are those of the authors and do not reflect the
official policy or position of IBM or the IBM Q team.
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FIG. 5. (a) Probability of finding a given phase for N = 15 with
base a = 11 and (b) probability plot of the theoretical distribution
and the experimental distribution. (c) SSO of the experimental data
with the theoretical probability distributions corresponding to all
possible periods.

the full algorithm, conditional on the measurement results
of the period register. This is just the result of successive
modular exponentiation. At the beginning of each circuit,

except the first one, there are two possible states of the
computational register that have to be prepared depending on
the value of the period register measured in the previous stage.
If the measurement of the period register gives zero, then the
computational register is prepared to the state |ψ0〉q = |ψ〉q +
ZUax |ψ〉q. If the period register gives 1, the computational
register is initialized to |ψ1〉q = |ψ〉q − ZUax |ψ〉q. This means
that for an implementation with m stages a superposition of 2m

product states has to be prepared. However, the state at the mth
stage is, at worst, the result of m − 1 modular exponentiations.
Thus, breaking the circuit in this way only adds an extra
number of gates which is polynomial in the number of stages
m: 1 + 2 + 3 + · · · + m = m(m+1)

2 , due to the gates needed for
the state initialization at each stage. This retains the scalability
of the implementation given in [3].

In the following experiments, we limit ourselves to the
choice of one, or two, bases a to avoid redundancy. We
specifically choose a nontrivial base (in the sense of [10])
for which a working quantum processor is needed to find
the results. One could adopt the same approach to treat any
such nontrivial bases. To understand what happens in the case
of a trivial base, consider factoring N = 15. The possible
periods r for any of the bases a are all powers of 2. This
means that any even value of the phase s measured from the
period register will give a fraction s

Q proportional to 1
r which

always allows one to find the period. In fact, by analyzing
the state of the quantum registers along the circuit, it is
possible to see that no quantum interference happens between
the states in the computational register. Therefore, in this
case the correct results can be obtained regardless of the
quality of the entangling gates of the device, as long as one can
entangle the period register with the computational register.
To show that the quantum processor ibmqx5 is giving us
the correct answer by exploiting quantum interference it is
sufficient to run the experiment for one of the possible bases.
This in turn is related to the quality of the entangling gates and
the noise of the device. Thus, the ability to factor higher and
higher N using a nontrivial base (one which has a period that
is not a power of 2) gives a benchmark of the performance of
the device.

In the experiment for the N = 15 case, five input qubits are
required: one qubit initialized to |0〉p for the period register,
acting as a control qubit, and all other qubits initialized to the
state |ψ〉 = |0001〉q belonging to the computational register.
Alongside the quantum registers, we also need a three-bit
classical register to store the results of the measurement of
the control qubit, which encodes the value of the period.

The case N = 15 is the simplest possible case and it does
not provide an example where quantum interference between
the states of the computational register brings an advantage
to the computation. For this reason, we attempt to factor the
second smallest number which is a product of two primes,
N = 21. In this case, there are bases a for which the period
is not a power of 2, thus constructive quantum interference
between states in the computational register is needed to in-
crease the likelihood of finding the correct result. An example
of such case was first demonstrated in [5].

We implement an algorithm for factoring N = 21 with base
a = 2 using three bits of precision for the estimation of the
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phase which encodes the period. In this case the quantum
register is composed of five qubits in the computational reg-
ister and one qubit in the period register. We adopt the same
methodology used previously, breaking each stage of the mod-
ular exponentiation and manually feeding the output of each
section as input to the next. This means that the circuit will
have three stages of modular exponentiation, where a single
bit of the phase which encodes the period is estimated at each
stage (details in the Appendix). Therefore, the circuit looks
like the one in Fig. 3. The modular exponentiation circuit is
specifically designed to calculate ax mod 21, where we choose
the base a = 2. This base has periods r = 6, thus 1/r cannot
easily be represented in binary. Therefore, the accuracy of the
estimation of the period depends on the number of bits used
for the phase estimation.

The same method is applied to factor N = 35 with base
a = 4. In this case we need six qubits in the computational
register and one qubit in the period register. As in the case
of N = 21, the period of 4x mod 35 is r = 6, therefore 1/r
cannot be easily represented in binary. As a result of running
the quantum algorithm we obtain a probability distribution for
the estimated phase s which is peaked around the multiples of
1/r. We use a three-bit register for the estimation of the phase
which encodes the period. Again, the circuit for running the
algorithm is realized as shown in Fig. 2; each stage, estimating
one bit of the phase, is implemented separately and then joined
through a classical algorithm. The individual circuits which
compute the MEF at the different stages can be found in the
Appendix.

V. RESULTS AND DATA ANALYSIS

Figures 4(a), 5(a), 6(a), and 7(a) show the results obtained
running the quantum part of the factoring algorithm on the
ibmqx5 superconducting device. Depicted are the experimen-
tal relative probabilities found (in blue or dark gray) side
by side with the expectation values which can be computed
theoretically (in yellow or light gray) for each value of the
estimated phase s for the bases a used. The algorithm was run
1000 times for each base.

The success of the experiment is evaluated in two different
ways. We use probability plots to give a qualitative estimation
of the correctness of the results, while the SSO is used as
a quantitative measure. Probability plots [11] are a useful
tool to visually compare two distributions. In a probability
plot, one distribution is plotted against the other. If the two
distributions are identical, the plot will show a straight line
(y = x). The amount of deviation from the straight y = x line
is an indication of the difference between the two probability
distributions plotted. For the case at hand, this means plotting
on the (x, y) plane a point for each value of the phase, where
the value of the x coordinate is given by the theoretical value
of the probability distribution for that phase and the value of
the y coordinate is given by the corresponding experimental
value found. The data are then fitted with a straight line for
comparison with the ideal y = x case. Error bars on the fit are
given as a range of y values compatible with the error on the
fit coming from both slope and offset of the fitted line at a
fixed x value. Thus, all straight lines contained within these
error bars are compatible with the experimental data within

(a)

(b)

(c)

FIG. 6. (a) Probability of finding a given phase for N = 21 with
base a = 2 and (b) probability plot of the theoretical distribution and
the experimental distribution. (c) SSO of the experimental data with
the theoretical probability distributions corresponding to different
periods.

the estimated error for the fit. The probability plots between
the experimental distribution and the expected theoretical one
for each case are shown in Figs. 4(b), 5(b) 6(b), and 7(b). In
the case of N = 15, the data in Figs. 4(b) and 5(b) are on a
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(a)

(b)

(c)

FIG. 7. (a) Probability of finding a given phase for N = 35 with
base a = 4 and (b) probability plot of the theoretical distribution
and the experimental distribution. (c) Plot of the SSO between the
experimental data and all the possible theoretical distributions for
the different values of r.

straight line very close to the y = x line (tagged as “Ideal” on
the plots). For the N = 21 case, the data lie on a straight line
parallel to the y = x ideal line as can be seen from Fig. 6(b).

This means that there is an offset in the relative frequency
of each phase in our experimental distribution. However, the
overall shape coincides with the theoretical one, indicating
that the difference in relative frequencies between phases is
preserved. Finally, for N = 35, the data in Fig. 7(b) lie on a
straight line which is very far from the y = x line, indicating
an important deviation of the experimental results from the
theoretically expected ones. In fact, looking at the histogram
in Fig. 7(a) shows that the experimental results were affected
by noise, which tends to make all phases equally probable. In
summary, for N = 15 and 21 the fit is close to the ideal line
(within the error bars) but for N = 35 it is not. Therefore, we
believe that the probability plots provide a good qualitative
measure of the similarity between probability distributions, as
they correctly describe the similarity which is apparent by the
comparison of the histograms of the distributions.

Next we give a quantitative measure of the correctness of
the results. In particular, we want to answer the following
question: given the experimental data obtained, what is the
likelihood that these data come from a given probability dis-
tribution? The answer to this question will reveal two aspects
of our experiment. First, it will allow us to assign a period
to the results without the need for the continued fraction
algorithm. Second, it will give us a measure of the error we
make in the assignment. Our method of assigning the period
to the experimental data relies on the following observation:
the probability of obtaining a certain phase s is

P(s) = 1

Q

∣∣∣e 2π ix0
Q

∣∣∣
2 ∑

d∈Z

∣∣∣e 2π isdr
Q

∣∣∣
2
. (1)

As a function of the estimated phase s, the probability
distribution P(s) is completely characterized by the values of
the parameters r and Q: the period and the number of bits
log2Q used to encode the value of the period, respectively.
Therefore, there is a fixed probability distribution for each
value of r and Q. To determine the period to assign to the
experimental data, we compare the probability distribution
Pexp(s) obtained experimentally, with all the possible proba-
bility distributions Pr

th(s) given by values of r from 2 to Q − 1,
for fixed number of bits log2Q encoding the period. The period
of the theoretical distribution which is most similar to the
experimental data is then assigned to the experiment.

Following [3], we use the SSO introduced in [12] as a
measure of similarity between probability distributions. The
SSO is defined as

SSO =
⎛
⎝

7∑
j=0

m1/2
j e1/2

j

⎞
⎠

2

, (2)

where mj and e j are the measured and expected output-state
probabilities of state | j〉, respectively.

One can calculate the error on the SSO from the Poissonian
counting error of the data, assuming Gaussian propagation of
errors:

�SSO =
√√√√

7∑
j=0

∂

∂mj

(
m1/2

j e1/2
j

)2
�m2

j . (3)
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For each base used in the experiments, we calculate the
SSO of Pexp(s) with all possible Pr

th(s). To better visualize
which Pr

th(s) most resembles the data, we plot unit area nor-
malized Gaussian distributions with the SSO as the mean and
�SSO as the standard deviation. The Gaussian whose value
of the mean is closest to 1 comes from the Pr

th(s) most similar
to Pexp(s). Therefore, we assign period r to our data. While
the spread of each Gaussian gives an indication of the error
in the calculation of the SSO. To quantitatively determine the
error in the assignment of the period, we calculate the area
of overlap between the Gaussian distribution with the highest
SSO and the second closest one. This is done through the
overlap coefficient [15] between the normal distributions. The
OVL is defined as

OVL[ f (x1), f (x2)] =
∑

x

min( f (x1), f (x2)), (4)

where f (x1) is the normal distribution with the highest SSO
and f (x2) is the normal distribution with second highest SSO.
The OVL tells us what is the probability that the assignment
is done incorrectly, i.e., the highest SSO for our experimental
data comes from a different theoretical probability distribution
than the assigned one. Thus, we quantify the error on our
assignment as εi j ≡ OVL[ f (xi ), f (x j )] where i denotes the
period of the distribution with the highest SSO and j denotes
the period of the distribution with the second highest SSO.

The results of the comparison for all experiments are pre-
sented in Figs. 4(c), 5(c) 6(c), and 7(c). Figures 4(c) and 5(c)
show the SSO of the experimental distributions and their devi-
ations obtained for N = 15, a = 2, and a = 11, respectively.
For a = 2, the highest SSO is 0.97 for the theoretical distri-
bution corresponding to the period r = 4. Thus, we assign the
period r = 4 to the experimental distribution obtained. The
error we make in assigning the period r = 4 instead of period
r = 7, which is the closest match, is ε47 = 3.8×10−134. For
a = 11, the highest SSO is 0.92, which corresponds to r = 2.
The error in the assignment of r = 2 with respect to r = 4,
which has the second highest SSO, is ε24 = 4.1×10−31. The
results obtained for N = 21 with a = 2 are shown in Fig. 6(c).
Here, it is more difficult to determine the period with certainty.
The highest SSO is 0.78, which corresponds to the theoretical
distribution with r = 6. The error in assigning r = 6 to the
experimental data is ε67 = 1.2×10−3. Therefore, there is a
∼0.1% chance that we assigned the period incorrectly and
the true period was r = 7 instead. For the case of N = 35
and a = 4, the results presented in Fig. 7(c) show that the
highest SSO between the experimental data and the theoretical
distribution corresponding to all possible periods is 0.99 for
r = 7, although this is not the expected period. There is
another close match with an SSO of 0.98 for r = 6, which
is the correct one. The error in assigning period r = 7 to the
experimental data instead of r = 6 is ε76 = 0.14. Thus, in this
case it is quite difficult to discern the correct period.

VI. CONCLUSIONS

Although the results are obtained with a compiled and
simplified version of Shor’s factoring algorithm, our purpose
is to show a way to proceed with the implementation of
generic algorithms on the approximate quantum computers

available now. In practice, the non-negligible noise and the
lack of key functions of the device force us to rethink how
to design algorithms that can work on these machines. As
it is evident from this paper, one needs to supplement the
deficiencies of the hardware with a more detailed theoretical
analysis and classical processing. By doing so, one can reduce
the length of the circuit needed to implement the algorithm,
mitigating the effects of noise and overcoming the lack of
particular functions assumed for a general-purpose quantum
computer. We emphasize that the simplification by inspection
done here was possible only due to the small size of the
circuit. Larger circuits would require a more sophisticated
optimization. We used different methods to evaluate the suc-
cess of the experiment. The first one is the probability plot,
which gives a qualitative measure of the similarity between
the distribution of the experimental data and the expected
theoretical distributions. The second one is the SSO, which
gives a quantitative measure of the similarity between prob-
ability distributions. By using the SSO, we introduced an
alternative way to assign a certain period to the probability
distribution obtained from the experimental data. In this way,
we avoid using the continued fraction algorithm, which fails
when the number of bits used to encode the value of the
period is particularly low, as in our situation. To correctly
quantify the error which can be made in this assignment, the
OVL between different candidates for the period is calculated.
Overall, the experimental results obtained from running the
algorithm on the ibmqx5 device are in agreement with the
theoretical expectation values. Excellent agreement is found
for N = 15, while deviations from the theoretical results be-
come more noticeable for N = 21. Eventually, the algorithm
fails to factor N = 35. This is due to the cumulative errors
coming from the increasing number of two-qubit gates nec-
essary to implement the more complex MEF needed for this
case.

(a) (b)

(c) (d)

FIG. 8. Modular exponentiation circuits for N = 15.
(a) a4 mod 15 for any a and a2 mod 15 for a = 11, (b) a2 mod 15 for
a = {2, 7, 8, 13}, (c) 21 mod 15 for a = 2, and (d) 111 mod 15 for
a = 11.
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APPENDIX: CIRCUITS FOR THE MEF

Here we present the procedure used to implement the MEF
in the experiments for factoring N = 15, 21, and 35. These
were specifically designed to reduce the number of gates
to the minimum and mitigate the effects of noise. To make
the approach scalable, one would need an automatic way
to generate the modular exponentiation circuits as proposed
in [3].

The circuits used for the MEF in the experiment for factor-
ing N = 15 are shown in Fig. 8. The MEF in the first circuit of
Fig. 3 shown in Fig. 8(a) is the identity operation for any base
a, making it a deterministic step. The output of the first circuit
is then fed into the second one. As shown in [3], the MEF

FIG. 9. Modular exponentiation circuits for N = 21 with base
a = 2. (a) 24 mod 21. (b) 22 mod 21. Depending on the results of
the measurement of the period register in the previous circuits we
have (c) 21 mod 21 for bit(0) = 0 and bit(1) = 0, (d) 21 mod 21 for
bit(0) = 1 and bit(1) = 0, (e) 21 mod 21 for bit(0) = 0 and bit(1) = 1,
and (f) 21 mod 21 for bit(0) = 1 and bit(1) = 1.

here reduces to a very simple circuit depending on the base a
selected for factoring. If the base a is any one of the elements
of the set {4, 11, 14}, the modular exponentiation function is
again the identity shown in Fig. 8(a) and this step turns again
into a deterministic step. If the base is one of the elements of
the set {2, 7, 8, 13}, the MEF has the same simple circuit for
any of these a, which can be seen from Fig. 8(b). The MEFs
for the two bases a = 2 and 11 for the third circuit are given
in Figs. 8(c) and 8(d), respectively.

The circuits of the MEF used in the experiment of fac-
toring N = 21 are presented in Fig. 9. The experiment was
conducted only with the base a = 2, therefore all circuits
have been designed only for this base. The MEF for the
first circuit is shown in Fig. 9(a). For the second circuit, the
MEF in Fig. 9(b) was used. In the third circuit, depending on
the values of the bits of the period register measured in the
previous stages, different states are prepared as input. For this
reason, different modular exponentiation circuits are designed
according to the results of the measurements of the period
register. The various possibilities are shown in Figs. 9(c), 9(d)
9(e), and 9(f) corresponding to the four possible outcomes 00,
01, 10, and 11, respectively.

The MEFs implemented in the experiment of factoring
N = 35 are depicted in Fig. 10. The circuits are designed for
the algorithm with base a = 4. The MEFs for first, second,
and third circuits are shown in Figs. 10(a)–10(c), respectively.
In this case, one circuit which works for any input was
designed for the MEF at each stage.

FIG. 10. Modular exponentiation circuits for N = 35.
(a) 44 mod 35. (b) 42 mod 35. (c) 41 mod 35.
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