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Engineering fidelity of the generalized Pauli channels via legitimate memory kernels
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We analyze the fidelity of the generalized Pauli channels governed by memory kernel master equations. It is
shown that by appropriate engineering of parameters of the corresponding memory kernel, the quantum evolution
with nonlocal noise can have higher fidelity than the corresponding purely Markovian evolution governed by the
Markovian semigroup. Similar engineering can substantially influence the evolution of quantum entanglement,
entropy, and quantum coherence. Interestingly, by adding a nonlocal noise, one can protect the system against a
sudden death of entanglement.
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I. INTRODUCTION

Recently, much effort has been devoted to the analysis of
open quantum systems [1–3]. No realistic system is perfectly
isolated due to the interaction with external environment, and
therefore it has to be treated as an open system. Assuming
that the interaction between the system and the environment
is sufficiently weak, the well-known Born-Markov approxi-
mation can be applied to the evolution equation. This way,
one derives the celebrated Markovian master equation,

ρ̇(t ) = L[ρ(t )], (1)

with the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
generator [4,5],

L[ρ] = −i[H, ρ] +
∑

α

γα

(
VαρV †

α − 1

2
{V †

α Vα, ρ}
)

, (2)

and γα being (positive) decoherence/dissipation rates (for
an intriguing history and importance of the GKSL master
equation, see a recent review [6]). The noise operators Vα are
responsible for decoherence and dissipation phenomena. In
general, such environmental noise has a detrimental impact
on a variety of quantum information processing tasks. As a
result, the quantum error correction has gained a considerable
relevance and ultimately became a separate field of research
[7]. There has also been a rapid development of passive
schemes to protect quantum states from noise, such as the
decoherence-free subspaces (see, for example, Ref. [8]). How-
ever, the way we perceive the role of the environmental noise
has changed radically due to the seminal paper [9], where it
was shown that dissipation can be used to enhance quantum
information processing. In particular, quantum information
can be encoded in a set of steady states of a strongly dissipa-
tive system and manipulated coherently by using an effective
dissipation-projected Hamiltonian [10,11]. It was shown that
the memory effects caused by environmental noise can im-
prove the channel fidelity [12], and also play a significant role
in quantum thermodynamics, influencing, for example, our
ability to extract the work [13]. For the averaged dynamics of
quantum systems subject to the action of classical stochastic
fields, Budini [14] used the channel fidelity as a measure of

decoherence processes. Authors of Ref. [15] showed that it
is possible to perform the universal quantum computations
that are robust to certain types of errors. The robustness of
adiabatic quantum computation was considered in Ref. [16].

In recent years, considerable efforts have been made to
describe the quantum evolution beyond the standard Marko-
vian master equation. To do this, one has to take into account
the memory effects caused by the nontrivial influence of the
environment (see Refs. [17–20] for recent reviews). One pop-
ular approach uses the so-called Nakajima-Zwanzig master
equation [21,22],

ρ̇(t ) =
∫ t

0
K (t − τ )[ρ(τ )]dτ, (3)

where the memory kernel K (t ) encodes nontrivial memory
effects.

The algebraic structure of legitimate memory kernels is
known only for a limited number of cases [23,24]. Yet,
sufficient conditions for the memory kernel to generate dy-
namical maps have been determined [25]. Also, large classes
of legitimate quantum evolution have been provided, such
as the quantum semi-Markov evolution [26] or the quantum
stochastic dynamics corresponding to non-Markovian classi-
cal processes [27].

A decrease of the error accumulation was achieved for the
dissipative Markovian processes [28] and their generalizations
[26,29]. In particular, it was shown that adding noise to the
Markovian evolution slows down the rate at which the state of
the system approaches the steady state [28]. This conclusion
was based on investigating the minimal channel fidelity of
the dynamical maps provided by the Markovian semigroup
generator Eq. (2) and its extension by the nonlocal memory
kernel. As examples, the authors provided the multipartite
Pauli channels and the generalized amplitude damping chan-
nel. This remarkable result shows that, instead of overcoming
the environmental noise, one can actually benefit from it.

In this paper, we analyze how the channel fidelity of the
generalized Pauli channels [24,30,31] changes in time for the
evolution governed by Eq. (3) with

K (t ) = δ(t )L + K(t ). (4)
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In the above equation, L is a legitimate Markovian generator,
and the nonlocal term K does not involve the Dirac delta
function; therefore, it is purely nonlocal. Recall that, using
Uhlmann’s transition probability formula [32], one defines the
fidelity [33] between two mixed quantum states ρ, σ by

F (ρ, σ ) =
[

Tr

(√√
ρσ

√
ρ

)]2

. (5)

Now, for a given quantum channel �, the extremal values of
the channel fidelity on pure input states |ψ〉 are defined via

fmin(�) := min
P

F (P,�[P]) = min
P

Tr(P�[P]),

(6)
fmax(�) := max

P
F (P,�[P]) = max

P
Tr(P�[P]),

where P = |ψ〉〈ψ |. Due to concavity, fmin(�) is also the
minimal channel fidelity on mixed quantum states ρ [34,35].
Moreover, the maximal fidelity on ρ is reached on the maxi-
mally mixed state ρ∗ := I/d and is equal to identity. Hence-
forth, we refer to fmin and fmax in Eqs. (6) simply as the
minimal and maximal channel fidelity, respectively.

The extremal channel fidelities allow us to measure how
much, in the best and worst case scenarios, a given quantum
channel distorts the initial quantum state. Therefore, the larger
the value of the channel fidelity, the better the channel can
preserve the quantum information sent through it. Measuring
the channel fidelity and engineering optimal quantum chan-
nels are two of the current challenges in quantum information
theory [36]. Naturally, in quantum information processing, we
would like to engineer such quantum channels that are as close
as possible to the identity channel. Through a proper choice
of the system parameters, we demonstrate a number of cases
where the channel fidelity of �(t ) generated by K (t ) is better
than that of the Markovian channel generated by L itself. This
way, we prove that nonlocal memory effects can be used to
decrease the error rate associated with the quantum channel.
Interestingly, a similar technique allows one to engineer the
evolution of quantum entropy, quantum entanglement, and
quantum coherence.

II. FIDELITY OF THE GENERALIZED PAULI CHANNELS

Consider a d-dimensional Hilbert space that admits the
maximal number of d + 1 mutually unbiased bases (MUBs).
It is known that this is the case for d = pr with a prime p and
a natural r [37,38]. Recall that the bases {ψ (α)

0 , . . . , ψ
(α)
d−1} for

α = 1, . . . , d + 1 are mutually unbiased if for any β �= α,

〈
ψ

(α)
k , ψ

(α)
l

〉 = δkl ,
∣∣〈ψ (α)

k , ψ
(β )
l

〉∣∣2 = 1

d
. (7)

Introducing the rank-1 projectors onto the MUB vectors
P(α)

l = |ψ (α)
l 〉〈ψ (α)

l | allows us to define d + 1 unitary opera-
tors

Uα =
d−1∑
l=0

ωlP(α)
l , (8)

where ω = e2π i/d . Now, let us use them to construct d + 1
completely positive maps:

Uα[ρ] =
d−1∑
k=1

U k
α ρU k†

α . (9)

Finally, the generalized Pauli channel is defined as follows
[30,31]:

� = p01l + 1

d − 1

d+1∑
α=1

pαUα, (10)

where pα is the probability distribution and 1l denotes the
identity map. For d = 2, one reproduces the Pauli channel

�[ρ] =
3∑

α=0

pασαρσα, (11)

with σ0 = I and σα being the Pauli matrices. The eigenvalue
equations for the generalized Pauli channel read �[I] = I and

�
[
U k

α

] = λαU k
α , k = 1, . . . , d − 1, (12)

with the eigenvalues

λα = p0 + d

d − 1
pα − 1

d − 1

d+1∑
β=1

pβ. (13)

On the other hand, one can express the probability distribution
in terms of the eigenvalue functions,

p0 = 1

d2

[
1 + (d − 1)

d+1∑
α=1

λα

]
, (14)

pα = d − 1

d2

⎡⎣1 + dλα −
d+1∑
β=1

λβ

⎤⎦. (15)

Observe that � is completely positive and trace preserving
if and only if it satisfies the generalized Fujiwara-Algoet
conditions [30,39,40]:

− 1

d − 1
�

d+1∑
β=1

λβ � 1 + d min
β

λβ. (16)

Theorem 1. The minimal and maximal channel fidelities
on pure input states for the generalized Pauli channel �

defined by Eq. (10) are given by

fmin(�) = 1

d
[1 + (d − 1)λmin], (17)

fmax(�) = 1

d
[1 + (d − 1)λmax], (18)

where λmin = minα λα and λmax = maxα λα .
Proof. Let us take an arbitrary rank-1 projector and write

it as

P = 1

d

(
I +

d+1∑
α=1

d−1∑
k=1

xαkU
k
α

)
. (19)

When acting on such P, the channel � transforms it into

�[P] = 1

d

[
I +

d+1∑
α=1

d−1∑
k=1

λαxαkU
k
α

]
. (20)
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Therefore, the channel fidelity of the generalized Pauli chan-
nel acting on P reads

F (P,�[P]) = Tr(P�[P]) = 1

d

(
1 +

d+1∑
α=1

λα

d−1∑
k=1

|xαk|2
)

.

(21)
We know that if P is a rank-1 projector, then

TrP2 = 1

d

(
1 +

d+1∑
α=1

d−1∑
k=1

|xαk|2
)

= 1, (22)

and hence
d+1∑
α=1

d−1∑
k=1

|xαk|2 = d − 1. (23)

Therefore, the minimal value of F (P,�[P]) is attained when

xαk = 0 for α �= αm,

with αm corresponding to λαm = λmin. Similarly, the maximal
value of F (P,�[P]) is attained when

xαk = 0 for α �= αM,

with αM corresponding to λαM = λmax. �

III. MARKOVIAN SEMIGROUP VS GENERAL
DYNAMICAL MAP

Consider the generalized Pauli channel evolution of
the density matrix governed by the Markovian semigroup
�MS(t ) = etL. This evolution is given by ρ �−→ ρ(t ) =
�MS(t )[ρ], where {�MS(t )|t � 0} is the family of the gener-
alized Pauli channels with the initial condition �MS(0) = 1l.
Clearly, it satisfies the semigroup property:

�MS(t )�MS(s) = �MS(t + s).

The corresponding time-independent operator L is given by

L =
d+1∑
α=1

γαLα, Lα = 1

d
[Uα − (d − 1)1l]. (24)

The eigenvalues of L read μ0 = 0 and

μα = γα − γ0, (25)

where γ0 = ∑d+1
α=1 γα , L[U k

α ] = μαU k . Hence, the eigenval-
ues λMS

α (t ) of the corresponding �MS(t ) are equal to

λMS
α (t ) = exp[−(γ0 − γα )t]. (26)

The more general evolution, which includes the memory
effects, is provided by the memory kernel master equation,

�̇(t ) =
∫ t

0
K (t − τ )�(τ )dτ, (27)

with the memory kernel:

K (t ) =
d+1∑
α=1

kα (t )Lα. (28)

One has

K (t )
[
U k

α

] = κα (t )U k
α , K (t )[I] = 0, (29)

where the eigenvalues

κα (t ) = kα (t ) − k0(t ), (30)

with k0(t ) = ∑d+1
β=1 kβ (t ). Therefore, Eq. (27) is equivalent to

the following evolution equation for the eigenvalues of K (t )
and �(t ):

λ̇α (t ) =
∫ t

0
κα (t − τ )λα (τ )dτ, (31)

with λα (0) = 1. Using the Laplace transform method of solv-
ing differential equations, we find

λ̃α (s) = 1

s − κ̃α (s)
, (32)

where f̃ (s) = ∫ ∞
0 f (t )e−st dt is the Laplace transform of f (t ).

Now, let us introduce the following parametrization:

λα (t ) = 1 −
∫ t

0
�α (τ )dτ. (33)

In Ref. [24], the authors provided the necessary and sufficient
conditions for the legitimate memory kernels that generate the
generalized Pauli dynamical maps.

Theorem 2. The memory kernel K (t ) given in Eq. (28)
gives rise to a legitimate generalized Pauli dynamical map
�(t ) if and only if its eigenvalues κα (t ) are equal to

κ̃α (s) = − s�̃α (s)

1 − �̃α (s)
, (34)

where the functions �α (t ) satisfy the conditions∫ t

0
�α (τ )dτ � 0,

d+1∑
α=1

∫ t

0
�α (τ )dτ � d2

d − 1
, (35)

d+1∑
α=1

∫ t

0
�α (τ )dτ � d

∫ t

0
�β (τ )dτ,

for β = 1, . . . , d + 1.
This is just a reformulation of Fujiwara-Algoet condition

Eq. (16) in terms of �α (t ).

IV. HOW TO REALIZE THE GENERALIZED
PAULI CHANNELS

Consider a family of stochastic Hamiltonians,

Hα (t ) =
d−1∑
k=0

ξ
(α)
k (t )P(α)

k , (36)

where ξ
(α)
k is a Gaussian noise satisfying〈〈

ξ
(α)
k (t )

〉〉 = 0 ,
〈〈
ξ

(α)
k (t )ξ (α)

l (s)
〉〉 = 1

2χα (t − s)δkl , (37)

and 〈〈. . .〉〉 denotes the noise average. Now, let us couple the
system to a (d + 1)-dimensional ancilla and consider a total
stochastic Hamiltonian,

H (t ) =
d+1∑
α=1

Hα (t ) ⊗ �α, (38)
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where �α are mutually orthogonal rank-1 projectors in the
ancilla Hilbert space. Taking a classical state of the ancillary
system,

ω(t ) =
d+1∑
α=1

ωα (t )�α, (39)

one defines the following dynamical map:

�(t )[ρ] = 〈〈TrA(U (t )ρ ⊗ ω(t )U †(t ))〉〉, (40)

where a stochastic unitary operator

U (t ) = Te−i
∫ t

0 H (τ )dτ =
d+1∑
α=1

Te−i
∫ t

0 Hα (τ )dτ ⊗ �α.

Since [Hα (t ), Hα (t ′)] = 0, one finds

U (t ) =
d+1∑
α=1

Uα (t ) ⊗ �α, (41)

with

Uα (t ) = e−i
∫ t

0 Hα (τ )dτ . (42)

This gives rise to the following formula for the dynamical
map:

�(t )[ρ] =
d+1∑
α=1

ωα (t )

⎛⎝∑
k,l

C(α)
kl (t )P(α)

k ρP(α)
l

⎞⎠, (43)

where

C(α)
kl (t ) = 〈〈

e−i
∫ t

0 [ξ (α)
k (τ )−ξ

(α)
l (τ )]dτ

〉〉
. (44)

Now, any Gaussian noise ξ (t ) satisfies〈〈
e−i

∫ t
0 ξ (τ )dτ

〉〉 = e− 1
2 〈〈(∫ t

0 ξ (τ )dτ )2〉〉, (45)

and also 〈〈(∫ t

0

[
ξ

(α)
k (τ ) − ξ

(α)
l (τ )

]
dτ

)2
〉〉

= (1 − δkl )
∫ t

0
dτ

∫ t

0
ds χα (τ − s). (46)

Finally, the dynamical map �(t ) defines the generalized Pauli
channel with

p0(t ) = 1

d

d+1∑
α=1

ωα (t )(1 + [d − 1]cα (t ))

and

pα (t ) = d − 1

d
[1 − cα (t )]ωα (t ),

with

cα (t ) = exp

(
−1

2

∫ t

0
dτ

∫ t

0
ds χα (τ − s)

)
.

Clearly, one generates the Markovian semigroup by taking the
Gaussian white noise characterized by

χα (t ) = χαδ(t ) (47)

with constant χα .

V. EXAMPLES

In this section, we analyze several examples showing that
the nonlocal part K(t ) in the memory kernel can effectively
improve the fidelity of the dynamical map �(t ).

A. Oscillations

In Ref. [28], the authors analyzed the Pauli channels �(t )
whose evolution is governed by K (t ) = Lδ(t ) + K(t ) with

L = γLα∗ , K(t ) = k(t )Lα∗ (48)

for a fixed α∗ ∈ {1, 2, 3}, where Lα∗ is given by formula
Eqs. (24) for d = 2. An important property of this memory
kernel is that both L and K(t ) generate legitimate solutions.
As the memory function k(t ), one considers [28]

k(t ) = γ B2e−t/T , (49)

where the constants γ , B, and T are positive.
This example can be easily generalized to the general-

ized Pauli channels. One simply replaces the generator Lα∗
with a general Lα∗ , α∗ ∈ {1, . . . , d + 1} defined in Eqs. (24).
Now, observe that the memory kernel K (t ) is associated with
�α∗ (t ) = 0 and

�α (t ) = γ

ζ
e− (1+γ T )t

2T

[
(1 + 2B2T − γ T ) sin

ζ t

2T
+ ζ cos

ζ t

2T

]
(50)

for every α �= α∗ with (possibly complex)

ζ :=
√

−(1 − γ T )2 + 4γ B2T 2. (51)

For the corresponding dynamical map �(t ), the eigenvalues
λα∗ (t ) = 1 and λα (t ) ≡ λ(t ) for α �= α∗. Therefore, the maxi-
mal and minimal channel fidelities are equal to fmax[�(t )] =
1 and

fmin[�(t )] = 1

d
[1 + (d − 1)λ(t )]. (52)

The eigenvalues

λ(t ) = 2BT
√

γ

ζ
e− (1+γ T )t

2T cos

(
ζ t

2T
+ arctan

γ T − 1

ζ

)
(53)

oscillate for ζ 2 > 0 and decay exponentially for ζ 2 < 0. For
d = 2, the choice of constants γ , T , and B is arbitrary [28].

For d > 2, the analysis of the necessary and sufficient
conditions for oscillating eigenvalues λ(t ) is much more com-
plicated. Therefore, we restrict our attention to the case where
T = 1/γ . Now, ζ = 2B/

√
γ is always real, and hence

λ(t ) = e−γ t cos(B
√

γ t ) (54)

always oscillates.
Proposition 1. The generalized Pauli channel with the

eigenvalues given in Eq. (54) describes a legitimate quantum
evolution if and only if

B � π
√

γ

ln(d − 1)
. (55)

Proof. For λ(t ) in Eq. (54), condition Eq. (16) reduces to

− 1

d − 1
� e−γ t cos(B

√
γ t ) � 1, (56)

012303-4



ENGINEERING FIDELITY OF THE GENERALIZED PAULI … PHYSICAL REVIEW A 100, 012303 (2019)

FIG. 1. The minimal channel fidelity for d = 3, γ = 2s−1, and
T = 2s. The solid line corresponds to Markovian semigroup (B = 0),
and the dashed line to the general evolution with B = 3s−1/2.

where the second inequality trivially holds. It is enough to
check that the first inequality is satisfied for the minimal value
of λ(t ); namely,

− 1

d − 1
� e−γ t∗ cos(B

√
γ t∗), (57)

with t∗ = π/B
√

γ . This simplifies to

1

d − 1
� e−π

√
γ /B, (58)

which is equivalent to condition Eq. (55). �
Now, let us consider the Markovian evolution generated by

L in Eqs. (48). This corresponds to �MS(t ) with λMS
α∗ (t ) = 1

and λMS
α (t ) ≡ λMS(t ) for α �= α∗, where

λMS(t ) = e−γ t . (59)

The maximal fidelity fmax[�MS(t )] = 1, whereas the minimal
fidelity

fmin[�MS(t )] = 1

d
[1 + (d − 1)e−γ t ]. (60)

If minimal fidelity Eq. (52) oscillates, then for some t > 0,
one has

fmin[�(t )] < fmin[�MS(t )]. (61)

Note that if T = 1/γ , then the above inequality holds for all
t > 0. Therefore, the interesting case of increased fidelity cor-
responds to T �= 1/γ . One possible choice of such parameters
is shown in Fig. 1.

B. Exponential decay I

As the next example, let us consider the exponential func-
tions

�α (t ) = ηe−ξαt . (62)

Observe that

�α (t ) = ξαe−ξαt + (η − ξα )e−ξαt , (63)

where the term (η − ξα )e−ξαt controls the departure from the
Markovian semigroup. From Theorem 2, it follows that this

choice leads to a legitimate dynamical map �(t ), provided
that the coefficients η, ξα satisfy additional constraints. The
necessary and sufficient conditions are presented in the fol-
lowing proposition.

Proposition 2 (Ref. [24]). The functions �α (t ) = ηe−ξαt

result in a legitimate dynamical map �(t ) if and only if
η, ξα > 0 and

η

d+1∑
α=1

1

ξα

� d2

d − 1
, (64)

d+1∑
α=1

1

ξα

� d

ξβ

. (65)

Note that the corresponding memory kernel K (t ) is
given by

kα (t ) = 1

d
ηδ(t ) + η(ξα − η)e−(ξα−η)t

− 1

d

d+1∑
β=1

η(ξβ − η)e−(ξβ−η)t . (66)

The associated dynamical map �(t ) has

λα (t ) = 1 − η

ξα

(1 − e−ξαt ). (67)

Now, the extreme values of the channel fidelity read

fmin[�(t )] = 1 − (d − 1)η

dξmin
(1 − e−ξmint ), (68)

fmax[�(t )] = 1 − (d − 1)η

dξmax
(1 − e−ξmaxt ). (69)

Observe that the minimal and maximal fidelities are reached
at the minimal ξmin and maximal ξmax values of the parameters
ξα , respectively.

Using Eq. (66), we decompose the memory kernel K (t )
into the Markovian generator,

L = η

d

d+1∑
α=1

Lα, (70)

and the memory kernel,

K(t ) =
d+1∑
α=1

Kα (t )Lα, (71)

with

Kα (t ) =η(ξα − η)e−(ξα−η)t

− 1

d

d+1∑
β=1

η(ξβ − η)e−(ξβ−η)t .
(72)

Note that K(t ) never produces legitimate solutions; that is,
it cannot be considered as a separate generator. Here, we
compare two evolutions: one given by Markovian generator
Eq. (70) and one provided by Lδ(t ) + K(t ). Both evolutions
can be generated by a suitable choice of the Gaussian noises.
Now, let us consider the evolution governed by L from
Eq. (70). For the corresponding dynamical map �MS(t ), it
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turns out that

fmin[�MS(t )] = fmax[�MS(t )] ≡ f [�MS(t )]

= 1

d
(1 + (d − 1)e−ηt ). (73)

Interestingly, the fidelity f [�MS(t )] can be lower than the
fidelity f [�(t )] for the evolution with nonlocal noise.

Proposition 3. At any given t > 0, the minimal channel
fidelities in Eqs. (68) and (73) satisfy the following inequali-
ties:

(1) if ξmin < η, then fmin[�(t )] < f [�MS(t )],
(2) if ξmin = η, then fmin[�(t )] = f [�MS(t )],
(3) if ξmin > η, then fmin[�(t )] > f [�MS(t )].
Proof. To prove the inequality fmin[�(t )] < f [�MS(t )] for

ξmin < η, we show that

fmin[�(t )] − f [�MS(t )]

= η
d − 1

d

[
1 − e−ηt

η
− 1 − e−ξmint

ξmin

]
< 0. (74)

This follows from the fact that the function

h(t ; A) = 1 − e−At

A
(75)

is monotonically decreasing with the increase of A at a fixed
t > 0. The proofs of the remaining relations are analogical.�

Proposition 4. At any given t > 0, the maximal channel
fidelities in Eqs. (69) and (73) satisfy the following inequali-
ties:

(1) if ξmax < η, then fmax[�(t )] < f [�MS(t )],
(2) if ξmax = η, then fmax[�(t )] = f [�MS(t )],
(3) if ξmax > η, then fmax[�(t )] > f [�MS(t )].

C. Exponential decay II

Let us consider

�α (t ) = ηα�(t ). (76)

For the exponential function �(t ) = e−ξ t , Theorem 2 leads to
the following proposition.

Proposition 5. The functions �α (t ) = ηαe−ξ t produce a le-
gitimate dynamical map �(t ) if and only if ηα, ξ > 0 and

d max
β

ηβ �
d+1∑
α=1

ηα � d2ξ

d − 1
. (77)

Again, this realized a departure from the Markovian semi-
group, as

�α (t ) = ξe−ξ t + (ηα − ξ )e−ξ t . (78)

Now, the associated memory kernel K (t ) has

kα (t ) = 1

d

⎛⎝d+1∑
β=1

ηβ − dηα

⎞⎠δ(t ) + ηα (ξ − ηα )e−(ξ−ηα )t

− 1

d

d+1∑
β=1

ηβ (ξ − ηβ )e−(ξ−ηβ )t , (79)

whereas the eigenvalues of the dynamical map �(t ) are
equal to

λα (t ) = 1 − ηα

ξ
(1 − e−ξ t ). (80)

Finally, the minimal and maximal channel fidelities are
given by

fmin[�(t )] = 1 − (d − 1)ηmax

dξ
(1 − e−ξ t ), (81)

fmax[�(t )] = 1 − (d − 1)ηmin

dξ
(1 − e−ξ t ), (82)

where ηmin = minα ηα and ηmax = maxα ηα .
The memory kernel K (t ) is decomposable into the Marko-

vian generator

L = 1

d

d+1∑
α=1

⎛⎝d+1∑
β=1

ηβ − dηα

⎞⎠Lα (83)

and the memory kernel

K(t ) =
d+1∑
α=1

Kα (t )Lα, (84)

where

Kα (t ) = ηα (ξ − ηα )e−(ξ−ηα )t

− 1

d

d+1∑
β=1

ηβ (ξ − ηβ )e−(ξ−ηβ )t . (85)

Again, the master equation with the kernel K(t ) never pro-
duces legitimate solutions. Note that generator Eq. (83) has
a more complicated structure than generator Eq. (70). It
generates the dynamical map �MS(t ), for which the minimal
and maximal fidelities do not coincide but are equal to

fmin[�MS(t )] = 1

d
(1 + (d − 1)e−ηmaxt ), (86)

fmax[�MS(t )] = 1

d
(1 + (d − 1)e−ηmint ). (87)

Let us analyze the above fidelities in comparison with
fmin[�(t )] and fmax[�(t )] given in Eqs. (81) and (82).

Proposition 6. At any given t > 0, the minimal channel
fidelities in Eqs. (81) and (86) satisfy the following inequali-
ties:

(1) if ξ < ηmax, then fmin[�(t )] < fmin[�MS(t )],
(2) if ξ = ηmax, then fmin[�(t )] = fmin[�MS(t )],
(3) if ξ > ηmax, then fmin[�(t )] > fmin[�MS(t )].
Proposition 7. At any given t > 0, the minimal channel

fidelities in Eqs. (81) and (86) satisfy the following inequali-
ties:

(1) if ξ < ηmin, then fmax[�(t )] < fmax[�MS(t )],
(2) if ξ = ηmin, then fmax[�(t )] = fmax[�MS(t )],
(3) if ξ > ηmin, then fmax[�(t )] > fmax[�MS(t )].
Example 1. The choice of

ξ = d, ηα = d

1 − xα

(88)
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corresponds to the convex combination of Markovian semi-
groups [24]

�(t ) =
d+1∑
α=1

xαedtLα = 1

d

[
(1 + [d − 1]e−dt )1l

+ (1 − e−dt )
d+1∑
α=1

xαUα

]
, (89)

where xα is the probability distribution. The extremal values
of the associated channel fidelity are

fmin[�(t )] = 1 − d − 1

d (1 − xmin)
(1 − e−dt ), (90)

fmax[�(t )] = 1 − d − 1

d (1 − xmax)
(1 − e−dt ), (91)

where xmin = minα xα and xmax = maxα xα . Note that the cor-
responding Markovian semigroup is governed by

L =
d+1∑
α=1

(1 − xα )−1Lα, (92)

which leads to the dynamical map,

�MS(t ) = 1

d2

[(
1 + [d − 1]

d+1∑
α=1

λMS
α (t )

)
1l

+
d+1∑
α=1

(
1 + dλMS

α (t ) −
d+1∑
β=1

λMS
β (t )

)
Uα

]
, (93)

with

λMS
α (t ) = exp

⎡⎣−
⎛⎝d+1∑

β=1

1

1 − xβ

− 1

1 − xα

⎞⎠t

⎤⎦. (94)

Observe that

fmin[�MS(t )] = 1

d

(
1 + (d − 1)e− dt

1−xmin
)
, (95)

fmax[�MS(t )] = 1

d

(
1 + (d − 1)e− dt

1−xmax
)
. (96)

Moreover, ηα � ξ , and therefore adding nonlocal effects
always results in the minimal and maximal fidelities that
are lower than or equal to the fidelities for the Markovian
semigroup. In particular, for the eternally non-Markovian
evolution (xα = 1/d for α = 1, . . . , d , xd+1 = 0), one has
fmax[�(t )] = fmax[�MS(t )].

VI. ENGINEERING EVOLUTION OF
OTHER QUANTITIES

A. Quantum entanglement

Let us examine the effects of sending one qudit of
an entangled pair through the generalized Pauli channel.
We analyze the evolution of entanglement ρW �−→ ρW (t ) =

(1l ⊗ �(t ))[ρW ] for the maximally entangled state

ρW = |�+〉〈�+|, |�+〉 = 1√
d

d−1∑
k=0

|k〉 ⊗ |k〉. (97)

In the case of qubits (d = 2), one can measure entanglement
using Wootters’ concurrence [41,42],

C(ρ) = max{0,
√

r1 − √
r2 − √

r3 − √
r4}, (98)

where r1 � r2 � r3 � r4 are the eigenvalues of ρ(σ2 ⊗
σ2)ρ(σ2 ⊗ σ2). Under the action of the Pauli channel �(t ),
the concurrence of ρW changes as follows:

C[ρW (t )] = 1
2 max{0, |λ1(t ) − λ2(t )| − 1 − λ3(t ),

|λ1(t ) + λ2(t )| − 1 + λ3(t )}, (99)

with λα (t ) being the eigenvalues of �(t ) to the Pauli matrices
σα . Observe that this formula reduces to

C[ρW (t )] = 1
2 max{0, 3λ1(t ) − 1} (100)

for λ3(t ) = λ2(t ) = λ1(t ) � 0, or to

C[ρW (t )] = 1
2 |λi(t ) + λ j (t )| (101)

for λk (t ) = 1, {i, j, k} = {1, 2, 3}.
Example 2. Let us analyze how the concurrence of ρW (t )

changes depending on the type of channel �(t ). For the
Markovian semigroup evolution with λα (t ) = e−ηt , one has

C[ρW (t )] = 1
2 max{0, 3e−ηt − 1}, (102)

which describes exponential decay until t = ln 3/η. Now,
introduce one of two different types of noise. The mem-
ory kernel evolution with exponentially decaying functions
�α (t ) = ηe−ξ t leads to

C[ρW (t )] = 1

2
max

{
0, 2 − 3

η

ξ
(1 − e−ξ t )

}
, (103)

where again we observe exponential decay. However, the
parameters can be chosen in such a way that the concurrence
in Eq. (103) is decaying slower than in Eq. (102). In the
second case, where

�α (t ) = e−ηt [B
√

η sin(B
√

ηt ) + γ cos(B
√

ηt )] (104)

for α �= α∗, the concurrence is simply

C[ρW (t )] = e−ηt | cos(B
√

ηt )|. (105)

There are two important observations to be made regarding
the above formula. First, there is not a single moment in time
beyond which the system is always in a separable state. Sec-
ond, the state of the system becomes separable after constant
periods of time �t = π/B

√
η.

The results of Example 2 are shown in Fig. 2. Note that
adding noise to the evolution of a quantum system can prolong
the entanglement or even lead to its sudden death and rebirth
[43,44].

For d > 2, there are unfortunately no known entanglement
measures that detect all entangled states and are analytically
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FIG. 2. The concurrence for η = 1/2s−1, ξ = 1s−1, and B =
5s−1/2. The continuous line corresponds to the local evolution, the
dotted line to the nonlocal evolution with oscillations, and the dashed
line to the nonlocal evolution with exponential decay.

computable. Consider the logarithmic negativity [45,46]

N (ρ) = log2 ||ρT2 ||1, ||ρ||1 = Tr
√

ρ†ρ, (106)

where ρT2 denotes the partial transposition with respect to
the second subsystem. Note that this measure does not detect
positive partial transpose (PPT) states. For d = 3, the trace
norm of the partially transposed ρW is equal to

∣∣∣∣ρT2
W (t )

∣∣∣∣
1 = 1

6

[
2|1 − λ0(t )| + |2 + λ0(t ) +

√
Z (t )|

+ |2 + λ0(t ) −
√

Z (t )|
]
, (107)

where λ0(t ) = ∑4
α=1 λα (t ) and

Z (t ) = 9
4∑

α=1

λ2
α (t ) − 6

4∑
α=1

∑
β>α

λα (t )λβ (t ). (108)

Note that Eq. (107) simplifies to

∣∣∣∣ρT2
W (t )

∣∣∣∣
1 =

{
1
3 [1 + 8λ1(t )], λ1(t ) � 1

4

1, λ1(t ) < 1
4

(109)

for λ1(t ) = λ2(t ) = λ3(t ) = λ4(t ) and

∣∣∣∣ρT2
W (t )

∣∣∣∣
1 =

{
1 + 2λ(t ), λ(t ) � 0

1, λ(t ) < 0 (110)

for λα∗ (t ) = 1, λα (t ) = λ(t ) (α �= α∗).
Example 3. Let us analyze the behavior of the trace norm

||ρT2
W (t )||1 under the types of evolution considered in Example

2. For the Markovian semigroup evolution,

∣∣∣∣ρT2
W (t )

∣∣∣∣
1 =

{
1 , e−ηt � 1

4
1
3 (1 + 8e−ηt ) , e−ηt > 1

4

(111)

FIG. 3. The logarithmic negativity for η = 1s−1, ξ = 3/2s−1,
and B = 4s−1/2. The continuous line corresponds to the local evo-
lution, the dotted line to the nonlocal evolution with oscillations, and
the dashed line to the nonlocal evolution with exponential decay.

decays exponentially until t = ln 4/η. If the functions �α (t )
decay exponentially, then

∣∣∣∣ρT2
W (t )

∣∣∣∣
1 =

{
1, e−ξ t � 1 − 3ξ

4η

3 − 8η

3ξ
(1 − e−ξ t ), e−ξ t > 1 − 3ξ

4η
.

(112)

Finally, for oscillating �α (t ) with γ = 1/T ≡ η,∣∣∣∣ρT2
W (t )

∣∣∣∣
1 =

{
1, cos(B

√
ηt ) � 0

1 + 2e−ηt cos(B
√

ηt ), cos(B
√

ηt ) > 0.

(113)

The logarithmic negativity for Example 3 is plotted in
Fig. 3. Comparing with the concurrence for d = 2, the loga-
rithmic negativity for oscillating functions vanishes for longer
moments. Therefore, the state of the system remains either
separable or PPT for finite periods of time.

B. Entropy

Now, let us analyze the evolution of entropy for the projec-
tor P(α)

k onto the mutually unbiased basis vector under the gen-
eralized Pauli channels �(t ). Observe that �(t ) transforms
P(α)

k into

ρk,α (t ) = �(t )
[
P(α)

k

] =
d−1∑
j=0

ν jP
(α)
j , (114)

where

νk = 1

d
[1 + (d − 1)λα (t )], (115)

ν j = 1

d
[1 − λα (t )], j �= k. (116)

Therefore, the von Neumann entropy of the output state
ρk,α (t ) reads

S[ρk,α (t )] = −νk ln νk − (d − 1)ν j ln ν j, j �= k. (117)

Note that its value depends only on the eigenvalue λα (t ) for
the distinguished α. In Fig. 4, it is shown that adding noise to
the time-local evolution can bring more order to the system,
which manifests itself in lower entropy.
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FIG. 4. The von Neumann entropy for d = 3, η = 1s−1, ξ =
3/2s−1, T = s, and B = 4s−1/2. The continuous line corresponds
to the local evolution, the dotted line to the nonlocal evolution
with oscillations, and the dashed line to the nonlocal evolution with
exponential decay.

C. Quantum coherence

Consider now the evolution of quantum coherence. The
most popular measure of quantum coherence is provided by
l1-norm [47,48]:

Cl1 [ρ] =
d−1∑
i=0

∑
j �=i

|〈i|ρ| j〉|. (118)

For d = 3 and ρk,α (t ) given in Eq. (114), one easily finds

Cl1 [ρk,α (t )] =
{

0, P(α)
k = |k〉〈k|

λα (t ), P(α)
k �= |k〉〈k|,

(119)

and it is plotted in Fig. 5.

VII. CONCLUSIONS

We analyzed the channel fidelity of the generalized Pauli
channels, which measures the distortion between the pure
input and output quantum states. We compared the evolution
of fidelity for the Markovian semigroup �SM generated by
the GKSL generator L with the general dynamical map �(t )
generated by the nonlocal memory kernel master equation
with K (t ) = δ(t )L + K(t ) (with the same local part L). It
turns out that introducing nonlocal environmental noise K(t )
to the Markovian evolution can increase the fidelity of the
time-dependent channel �(t ). In other words, this results in

FIG. 5. The l1-norm of coherence for η = 2s−1, ξ = 5/2s−1,
T = 2s, and B = 3s−1/2. The continuous line corresponds to the local
evolution, the dotted line to the nonlocal evolution with oscillations,
and the dashed line to the nonlocal evolution with exponential decay.

the output states that are less distorted. Also, the additional
noise can help to preserve entanglement for longer periods of
time, as well as decrease the entropy and increase the coher-
ence of quantum states. Therefore, we showed that sending
quantum information through the generalized Pauli channel
generated by a nonlocal memory kernel can be more effective
than through the channel generated by a purely Markovian
generator. These results support many other observations that
a proper engineering of noise can be beneficial for quantum
information processing.

It would be interesting to investigate how the nonlocal
noise K(t ) can influence not only the channel fidelity but
also the channel capacity. The latter problem is much more
difficult due to the very nontrivial definition of the channel
capacity. Some results in this direction were already derived in
Ref. [12], where it was shown that non-Markovian memory ef-
fects can increase quantum capacity. It would be interesting to
study the capacity problem for the generalized Pauli channels
as well. Another issue is related to the very structure of the
noise operator K(t ). In the examples presented in this paper,
the memory kernel K (t ) = δ(t )L + K(t ) generates legitimate
quantum evolution; however, the noise kernel K(t ) alone does
not. It would be interesting to search for the purely nonlocal
noise kernels K(t ) which generate legitimate dynamical maps.
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