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Operation and intrinsic error budget of a two-qubit cross-resonance gate
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We analyze analytically, semianalytically, and numerically the operation of a cross-resonance (CR) gate for
superconducting qubits (transmons). We find that a relatively simple semianalytical method gives accurate results
for the controlled-NOT (CNOT) -equivalent gate duration and compensating single-qubit rotations. It also allows us
to minimize the CNOT gate duration over the amplitude of the applied microwave drive and find the dependence
on the detuning between the qubits. However, full numerical simulations are needed to calculate the intrinsic
fidelity of the CR gate. We decompose numerical infidelity into contributions from various physical mechanisms,
thus finding the intrinsic error budget. In particular, at small drive amplitudes, the CR gate fidelity is limited by
imperfections of the target-qubit rotations, while at large amplitudes it is limited by leakage. The gate duration
and fidelity are analyzed numerically as functions of the detuning between qubits, their coupling, drive frequency,
relative duration of pulse ramps, and microwave crosstalk. The effect of the echo sequence is also analyzed
numerically. Our results show that the CR gate can provide intrinsic infidelity of less than 10−3 when a simple
pulse shape is used.
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I. INTRODUCTION

Two decades have passed since the first superconducting
qubit was created [1], and today superconducting quantum
computing is a well-developed field with various types and
uses of qubits [2–11]. Currently, the most popular type of
superconducting qubits is the transmon [12] (including its
Xmon and gmon modifications [13,14]), though other types
of qubits (see, e.g., [15–17]) are also of interest. Besides
sufficiently good coherence of the qubits, quantum computing
applications need high-fidelity gates forming a universal set
[18]. While single-qubit gates are already considered to be
simple and accurate, current fidelity of two-qubit gates also
exceeds 99% [5,19,20].

One of the high-fidelity two-qubit gates used for supercon-
ducting qubits is the cross-resonance (CR) gate [21,22]. In
this gate, two frequency-detuned qubits have a fixed coupling
(usually via a resonator) and one of them (called control qubit)
is driven by a microwave with frequency of the other one
(target qubit). This induces Rabi oscillations of the target
qubit, whose frequency depends on the state (|0〉 or |1〉) of the
control qubit, thus entangling the two qubits and providing a
natural way to realize controlled-NOT (CNOT) operation. Since
the CR gate uses only microwave control, it permits the use
of single-junction transmons, thus avoiding sensitivity to flux
noise. However, the drawback is a relatively long gate duration
compared with the gates based on tune-detune operation [19].

The idea of the CR gate was proposed in Ref. [23] and then
experimentally implemented for flux qubits in Ref. [24] under
the name of selective darkening (the difference compared
with a simple CR gate is an additional active cancellation
pulse applied to the target qubit). The CR terminology was
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introduced in the theoretical paper [21] and the first experi-
ment under this name was realized with capacitively shunted
flux qubits in Ref. [22] with a fidelity of 81%. The CR
gate was applied to transmons in Ref. [25], with a resulting
fidelity of 95%. Since then the CR gate has been used in
numerous experiments by several groups (e.g., [3,20,26–30]),
with a gradual increase of maximum fidelity. An important
improvement of the CR operation was achieved by using the
echo sequence [26,28], which not only increased the fidelity
but also allowed protocols that avoid compensating one-qubit
rotations in implementing the CNOT gate. The CR gate with a
duration of 160 ns and fidelity of 99.1% reported in Ref. [20]
was achieved by using both the echo sequence and active
cancellation pulses applied to the target qubit.

In spite of extensive experimental use of the CR gate, its
theoretical analysis has been rather limited. Besides the initial
papers [21,23] laying out the main idea, the CR gate was
analyzed in Ref. [31] with an account of the next level, briefly
mentioned in Ref. [32], and analyzed in detail in the recent
paper [33]. There were also numerical studies [34,35] and
related papers [36,37].

In this paper we analyze the operation of the basic CR
gate for transmons (using a simple pulse shape without the
echo sequence, which is considered only in the Appendix)
at three levels of complexity and accuracy: analytical, semi-
analytical, and numerical. Some of the goals of our analysis
are similar to those of Ref. [33]; however, the approach
is very different. After discussing the ideal theory of CR
operation for transmons (using the Duffing oscillator model),
we develop the next-order approximation, somewhat similar
to that of Ref. [33] (which still does not work well, as follows
from comparison with full numerics), and then develop the
semianalytical approach, based on the numerical solution of a
simple one-qubit time-independent Schrödinger equation.
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The semianalytical approach gives very accurate results
(compared with full numerics) for the CNOT-equivalent gate
duration and compensating single-qubit rotations. In partic-
ular, it can be used to find the shortest CNOT gate duration,
corresponding optimal drive amplitude, and their dependence
on detuning between the qubits. However, the semianalytical
approach cannot be used for finding the intrinsic fidelity
of the gate (neglecting decoherence), for which we use a
full numerical simulation. Our numerical simulation includes
7 × 5 levels in the qubits (we replace qubit coupling via a
resonator with an equivalent direct coupling) and is based on
Magnus expansion [38] for the evolution matrices. We use a
simple pulse shape with cosine-shaped ramps and a flat middle
part.

After calculating the gate infidelity, we numerically de-
compose it into the contributions from various physical mech-
anisms, thus finding the intrinsic error budget. We show that
at small drive amplitudes, the error is dominated by imperfec-
tions of the unitary operation within the computational sub-
space. In contrast, at large drive amplitudes (which correspond
to reasonably short gate durations) the infidelity is dominated
by leakage. Particular leakage channels depend on detuning
between the qubits. In this regime, the analytical estimate for
the leakage probability agrees reasonably well with the results
for the gate infidelity.

Using numerical results for the CNOT gate duration and
fidelity, we analyze their dependence on various parameters,
including detuning between qubits, their coupling, drive fre-
quency, smoothness (relative duration of the pulse ramps),
and microwave crosstalk. In the Appendix we also analyze
the effect of the echo sequence. Our results show that the CR
gate can provide an intrinsic infidelity of about 10−3 (and even
lower, comparable to 10−4) with a simple pulse shape.

The paper is organized as follows. In Sec. II we discuss
the system and its Hamiltonian. In Sec. III we first consider
the ideal operation of the CR gate, then derive the next-
order analytics, and then develop the semianalytical approach.
The numerical method is discussed in Sec. IV. Numerical
results for the CNOT-equivalent gate duration and compen-
sating single-qubit rotations are discussed in Sec. V. Then
in Sec. VI we analyze the error budget for the CNOT gate
intrinsic infidelity. In Sec. VII, we discuss the dependence of
CNOT duration and infidelity on parameters. We summarize
in Sec. VIII. In the Appendix, we analyze the echo-CR gate
operation.

II. SYSTEM AND HAMILTONIAN

In the CR gate, the control and target qubits (with fre-
quencies ωc and ωt , respectively) are usually detuned by
50–300 MHz and are permanently coupled via a resonator.
However, in this paper, for simplicity, we will consider a direct
qubit-qubit coupling g (Fig. 1) since the usual analysis of the
CR gate [32,33] also reduces the coupling via a resonator to
an effective direct coupling. For the CR operation, the control
qubit is rf driven at the frequency of the target qubit, ωd ≈ ωt .
This produces an effective drive (x rotation) of the target qubit,
with the strength depending on the state of the control qubit.
Such a process can be naturally used to realize the CNOT

gate by calibrating the target-qubit rotation angle difference

FIG. 1. Schematic of the CR gate. Detuned control and target
qubits (transmons with frequencies ωc and ωt) have coupling g and
the control qubit is microwave driven at the frequency of the target
qubit, ωd ≈ ωt . The microwave drive amplitude is ε.

(between rotations for the control-qubit states |0〉 and |1〉) to
be equal to π and somehow compensating the target-qubit
rotation for the control-qubit state |0〉. This compensation can
be done, for example, by using the echo sequence [20,26,28]
or active cancellation [20,24]; however, in this paper we will
assume that the compensation is done afterward [21,22] by ap-
plying single-qubit rotations (the echo sequence is considered
only in the Appendix). We intentionally consider the simplest
case in order to focus on developing a good understanding of
the basic operation of the CR gate.

The operating principle of the CR gate can be under-
stood classically, by replacing qubits with classical oscillators
(Fig. 2). Since the drive is off-resonance with the control oscil-
lator (ωd �≈ ωc), it will produce very small forced oscillations
at the drive frequency ωd. However, since the target oscillator
is on-resonance with this frequency (ωd ≈ ωt), it will still get
excited via the coupling g with the control oscillator. Note
that if the control oscillator is linear, then its own state (its
oscillation with frequency ωc) does not matter because of
linearity. However, if the control oscillator is nonlinear, then
its effective frequency depends on its own state (i.e., ampli-
tude of ωc oscillations); therefore, the amplitude of the small
forced oscillations of the control oscillator and consequently
the excitation rate of the target oscillator will depend on the
control-oscillator state. This simple classical picture explains
the basic physical mechanism of the CR gate operation for
transmons, which are slightly nonlinear oscillators. It also
explains why the CR gate speed depends on nonlinearity
of the control qubit and practically does not depend on the
target-qubit nonlinearity.

FIG. 2. Classical CR gate counterpart: two coupled nonlinear
oscillators, with one oscillator driven by a periodic force F on-
resonance with the other oscillator.
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For quantum analysis of the CR gate (Fig. 1), let us start
with the rotating-frame Hamiltonian (the rotating frame is
based on the drive frequency ωd)

H = Hqb + Hg + Hε, (1)

where Hqb describes two uncoupled transmon qubits, Hg de-
scribes their coupling, and Hε describes the microwave drive
on the control qubit. The uncoupled-qubit part can be written
as

Hqb =
∑
n,m

(
E (c)

n + E (t)
m

)|n, m〉〈n, m|, (2)

E (c)
n = E (c,lf)

n − nωd, E (t)
m = E (t,lf)

m − mωd, (3)

where in the notation |n, m〉 the control-qubit state is at the left
(n = 0, 1, 2, . . .) and the target-qubit state is at the right (m =
0, 1, 2, . . .), the control-qubit energies E (c)

n in the rotating
frame are related to the laboratory-frame energies E (c,lf)

n via
the drive frequency ωd, and there is a similar relation for
the target-qubit energies E (t)

m . We set E (c)
0 = E (t)

0 = 0. For the
energies E (c)

n and E (t)
m , in this paper we use the Duffing (Kerr)

oscillator approximation

E (c)
n = n(� + δ) − n(n − 1)

2
ηc, (4)

E (t)
m = mδ − m(m − 1)

2
ηt, (5)

� ≡ ωc − ωt, δ ≡ ωt − ωd ≈ 0, (6)

where � is the detuning between the qubits, while ηc and ηt

are anharmonicities of the control and target qubits, respec-
tively (for transmons ηc > 0 and ηt > 0). A small mismatch
δ between the drive frequency ωd and the bare frequency ωt

of the target qubit can be used, e.g., to make the drive exactly
resonant with the hybridized target qubit for the control-qubit
states |0〉 or |1〉 (or in between). Note that � + δ = ωc − ωd.
Instead of the approximation (4)–(6), it is possible to use
numerical results for the transmon energies or at least the
improved approximation [39,40]. However, we prefer the
simple approximation for easier comparison with the previous
theoretical analyses of the CR gate.

The qubit-qubit coupling Hamiltonian Hg in general cou-
ples all pairs of the bare states |n, m〉 and |n′, m′〉. However, in
this paper we use the simplest (traditional) approximation for
transmons by keeping only the excitation-preserving terms,
i.e., applying the rotating-wave approximation (RWA), and
using the matrix elements for linear oscillators,

Hg =
∑
n,m

g
√

nm|n, m − 1〉〈n − 1, m| + H.c. (7)

additionally assuming (without loss of generality) that the
coupling constant g is real. Similarly, we use the RWA linear-
oscillator matrix elements for the drive Hamiltonian (in the
rotating frame)

Hε =
∑
n,m

ε(t )
√

n|n, m〉〈n − 1, m| + H.c., (8)

where the complex amplitude ε of the drive depends on time,
so ε(t ) is the pulse shape of the CR gate, with ε(t ) = 0 before
and after the gate. Instead of Hamiltonians (7) and (8), it is

FIG. 3. Diagram of bare energy levels for the CR gate. Each
vertical ladder is for all control-qubit states, with a fixed state of
the target qubit (we use the notation |control, target〉). Slanted blue
lines illustrate coupling between the bare levels due to the qubit-qubit
coupling Hg; orange lines are due to the drive Hamiltonian Hε . On
this diagram we assumed δ = 0 (a nonzero δ would produce an
energy shift between the ladders; also, in this case, � should be
replaced with � + δ). Control-qubit states above |3〉 and target-qubit
states above |2〉 are not shown.

possible to use improved perturbative Hamiltonians [39,40]
or numerical matrix elements for transmons, but in this paper
we use the simple traditional approximation. Here we do not
consider the microwave crosstalk [20,22,25,33]; however, it
will be added in Sec. VII.

It is convenient to draw a diagram (Fig. 3) of bare levels
|n, m〉 in which the left ladder of levels corresponds to the
target-qubit state |0〉 (m = 0), the next ladder corresponds
to the target-qubit state |1〉, then |2〉, and so on. Note that
for δ = 0, the left two ladders are at exactly equal energies.
In Fig. 3 the coupling Hg is represented by slanted blue
arrows and the drive Hε corresponds to vertical orange arrows.
For clarity, in Fig. 3 we show the case � > 2ηc, while in
experiments usually 0 < � < ηc. In such a case, all ladders
turn down after the states |1, m〉 and the diagram becomes
visually complicated, so for gaining intuition it is easier to
use the case of Fig. 3.

Besides the bare states |n, m〉, we will also use the eigen-
states of the Hamiltonian Hqb + Hg (without the drive), which
we denote by an overline: |n, m〉. The coupling Hg affects the
qubit frequencies, so instead of the bare frequency ωt of the
target qubit, we have two eigenfrequencies ωc0

t and ωc1
t , de-

pending on the control-qubit state (|0〉 and |1〉, respectively).
They can be calculated as

ωc0
t = E (lf)

|0,1〉 − E (lf)
|0,0〉, ωc1

t = E (lf)
|1,1〉 − E (lf)

|1,0〉, (9)

where E (lf)
|n,m〉 is the laboratory-frame eigenenergy of the state

|n, m〉. We will call zz coupling the difference between these
frequencies,

ωzz ≡ ωc1
t − ωc0

t = E |11〉 + E |00〉 − E |01〉 − E |10〉, (10)
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where this combination of eigenenergies is the same in the
laboratory and rotating frames. The zz coupling is mainly due
to the repulsion of the energy level |11〉 from the levels |02〉
and |20〉, which gives the approximate value

ωzz ≈ 2g2

� + ηt
− 2g2

� − ηc
. (11)

From Eq. (10) we see that the zz coupling can be also defined
as ωzz = ωt1

c − ωt0
c , where ωt0

c and ωt1
c are the eigenfrequen-

cies of the control qubit for the target-qubit states |0〉 and
|1〉, respectively. Nonzero ωzz will be important for numerical
results; however, it will be neglected for analytical and semi-
analytical results in the next section; in particular, we will not
distinguish between ωc0

t , ωc1
t , and ωt .

III. ANALYTICAL AND SEMIANALYTICAL ANALYSIS

A. Ideal CR gate operation

There is no drive, ε = 0, before and after the CR gate
operation. Therefore, the initial and final two-qubit states
should be considered in the eigenbasis |n, m〉 of the Hamil-
tonian Hqb + Hg. The drive Hamiltonian Hε couples these
eigenstates, providing an evolution used in the CR gate.

As follows from Fig. 3, in the rotating frame based on the
drive frequency ωd, there is a near-resonance condition be-
tween states |n, 0〉 and |n, 1〉, which leads to a near-resonance
between eigenstates |n, 0〉 and |n, 1〉, while other pairs of
states are off-resonance. Therefore, as long as the perturbation
produced by Hε is small enough, it effectively couples only
states |n, 0〉 and |n, 1〉, and for the ideal effective Hamiltonian
H ideal

CR of the CR gate we can write

H ideal
CR − (Hqb + Hg) = (ε̃0|0, 1〉 〈0, 0| + ε̃1|1, 1〉 〈1, 0|

+ ε̃2|2, 1〉 〈2, 0| + · · · ) + H.c.,

(12)

where ε̃0 is the amplitude of the effective drive on the target
qubit when the control-qubit state is |0〉, ε̃1 is the effective
drive amplitude for the control-qubit state |1〉, etc. (for small
g there is almost no difference between the effective drive in
the bare basis or eigenbasis). The effective drive amplitudes
ε̃n depend on the actual drive amplitude ε (in the linear
approximation being proportional to ε).

Note that if we are interested only in the states |0〉
and |1〉 of the control qubit, then in the terminology of
Refs. [22,25,29,33] the effective Hamiltonian (12) can be
written as

ε̃0 − ε̃1

2
ZcXt + ε̃0 + ε̃1

2
IcXt,

where the Pauli operators Zc and Ic act on the control qubit and
the operator Xt acts on the target qubit (here we assume real
ε̃0 and ε̃1; otherwise, we also need Yt). The CNOT gate can be
realized with this effective interaction by applying the drive
pulse with duration τp, satisfying the condition∫ τp

0
[2ε̃1(t ) − 2ε̃0(t )]dt = π (mod2π ), (13)

complemented with two one-qubit rotations. The additional
x rotation of the target qubit by the angle − ∫ τp

0 2ε̃0(t )dt

compensates the target-qubit rotation for the control-qubit
state |0〉, also providing x rotation by angle π for the control-
qubit state |1〉. Besides the x rotation of the target qubit, the
control qubit should be z rotated by the angle π/2 (relative to
the rotating frame of the control qubit). This is needed because
the x rotation of the target qubit by angle π produces the
operation −iX instead of the desired (for CNOT) operation X ,
thus requiring an additional phase factor i for the control-qubit
state |1〉 (the same factor exists in a one-qubit X gate, but it is
not important since it is an overall phase, in contrast to the
phase difference in a controlled two-qubit operation). Note
that the factors of 2 in Eq. (13) are needed because the Rabi
frequency is twice larger than the drive matrix element in the
Hamiltonian.

The effective drive amplitudes ε̃n in Eq. (12) can be easily
found (in the ideal lowest-order case) by comparing Eqs. (1)
and (12), which gives

ε̃n = 〈n, 1|Hε|n, 0〉. (14)

To calculate ε̃n to the lowest order, let us assume that δ = 0,
i.e., the drive is resonant with the bare target qubit (the differ-
ence between bare and eigenfrequencies is not important for
these approximate calculations). Then using |0, 0〉 = |0, 0〉
(see Fig. 3) and the first-order approximation |0, 1〉 = |0, 1〉 −
(g/�)|1, 0〉 (normalization correction is of the second order),
we find the linear approximation

ε̃0 = − g

�
ε. (15)

Similarly, using the first-order approximations |1, 0〉 =
|1, 0〉 + (g/�)|0, 1〉 and |1, 1〉 = |1, 1〉 − [

√
2g/(� −

ηc)]|2, 0〉 + [
√

3g/(� + ηt )]|0, 2〉 (see Fig. 3), we obtain
the approximation

ε̃1 = g

�
ε −

√
2g

� − ηc

√
2ε = − g

�

� + ηc

� − ηc
ε. (16)

Also similarly, using approximations |2, 0〉 = |2, 0〉 +
[
√

2g/(� − ηc)]|1, 1〉 and |2, 1〉 = |2, 1〉 − [
√

3g/(� −
2ηc)]|3, 0〉 + [2g/(� − ηc + ηt )]|1, 2〉, we find

ε̃2 =
√

2g

� − ηc

√
2ε −

√
3g

� − 2ηc

√
3ε

= − g(� + ηc)

(� − ηc)(� − 2ηc)
ε, (17)

and for an arbitrary control-qubit state |n〉, within the model
(1)–(8) we obtain

ε̃n = ngε

� − (n − 1)ηc
− (n + 1)gε

� − nηc

= − g(� + ηc)

[� − (n − 1)ηc](� − nηc)
ε. (18)

Since the target-qubit rotation for the control-qubit state |0〉
is usually compensated, most important are the differences of
effective drive amplitudes from ε̃0, e.g.,

ε̃1 − ε̃0 = 2gηc

�(ηc − �)
ε, (19)

ε̃2 − ε̃0 = 2gηc(ηc − 2�)

�(ηc − �)(2ηc − �)
ε. (20)
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Note that these formulas depend on anharmonicity ηc of the
control qubit but do not depend on the target-qubit anhar-
monicity ηt . Also, for ηc = 0 we have ε̃n = ε̃0 = −(g/�)ε.
These properties are in agreement with the classical descrip-
tion of the CR gate operation discussed in Sec. II.

Language of virtual-state transitions

Instead of using Eq. (14), we can find the effective drive
amplitudes ε̃n (still to the first order) using the ideology of
transitions via a virtual state. As seen in Fig. 3, it is possible
to go from the state |0, 0〉 to the resonant state |0, 1〉 in
two jumps, |0, 0〉 → |1, 0〉 → |0, 1〉, which have transition
amplitudes (matrix elements) ε and g, with the intermediate
state separated by the energy difference �. Therefore, the
amplitude of this transition (effective coupling between states
|0, 0〉 and |0, 1〉) is

ε̃0 = ε
−1

�
g, (21)

which coincides with Eq. (15).
For the transition between states |1, 0〉 and |1, 1〉, there are

two two-jump paths: via the state |2, 0〉 (which is higher in
energy by � − ηc) and via |0, 1〉 (which is lower in energy by
�). Adding these two amplitudes, we obtain

ε̃1 =
√

2ε
−1

� − ηc

√
2g + g

−1

−�
ε, (22)

which coincides with Eq. (16). Similarly, adding the ampli-
tudes for the paths |n, 0〉 → |n + 1, 0〉 → |n, 1〉 and |n, 0〉 →
|n − 1, 1〉 → |n, 1〉, we obtain

ε̃n = −
√

n + 1ε
√

n + 1g

� − nηc
+

√
ng

√
nε

� − (n − 1)ηc
, (23)

which coincides with Eq. (18).

B. Next-order analytics

Numerical results for the effective drive amplitudes ε̃n

(discussed later) show that ε̃n is proportional to the actual
drive amplitude ε [as expected from Eq. (18)] only in some
range of ε values. A minor deviation from the linearity at very
small ε (discussed later) is due to the dependence of the target-
qubit frequency on the control-qubit state [see Eq. (10)]. The
deviation from linearity at large ε is much more important for
practice since it makes it impossible to shorten the CNOT gate
duration beyond some value by simply increasing the drive
amplitude.

In order to understand the reason for the deviation from
linearity at large ε, in this section we develop the next-order
analytics for ε̃0 and ε̃1, which gives corrections compared with
Eqs. (15) and (16). Note that a similar next-order analytics has
been developed in Ref. [33], though in a very different way
(after a misprint correction, the result of Ref. [33] coincides
with our result).

The simple analytics (15)–(18) has been obtained from
Eq. (14), which treats the drive Hamiltonian Hε as a small
perturbation. However, for a large drive amplitude ε, the
eigenbasis of Hqb + Hg is no longer the appropriate eigenba-
sis; instead, Hqb + Hε is the main Hamiltonian, while Hg is the
perturbation. Note that in the linear approximation, the same

ε̃n as in Eq. (14) can be obtained by exchanging the roles of
Hg and Hε, i.e., by using

ε̃n = ε〈n, 1|Hg|n, 0〉ε, (24)

where |n, m〉ε denotes the eigenstate of Hqb + Hε. This equiv-
alence is clear from the above-discussed approach of virtual-
state transitions, which treats Hg and Hε on equal footing.

For a large ε, Eq. (24) is more appropriate than Eq. (14) to
calculate ε̃n. Even though the initial and final states should
still be treated in the eigenbasis of Hqb + Hg, during the
front and rear ramps of the microwave pulse the appropriate
eigenbases essentially transform into each other, leading to
Eq. (24). While we do not have a rigorous justification of the
approximation (24) (only a general understanding in the spirit
of the adiabatic theorem), numerical results confirm its good
accuracy.

Since for the eigenstates |n, m〉ε used in Eq. (24) the
ladders in Fig. 3 are uncoupled, we can write

|n, 0〉ε = |n〉ε|0〉t, |n, 1〉ε = |n〉ε|1〉t, (25)

where |n〉ε are the control-qubit eigenstates, which account for
the drive. They satisfy the Schrödinger equation

H (c)
qb+ε|n〉ε = E |n〉ε |n〉ε (26)

with the Hamiltonian for only the control qubit,

H (c)
qb+ε =

∑
n

E (c)
n |n〉〈n| + √

n(ε|n〉〈n − 1| + ε∗|n − 1〉〈n|).
(27)

Then solving this Schrödinger equation and finding the eigen-
states

|n〉ε =
∑

k

c(n)
k |k〉, (28)

we find the effective drive amplitudes ε̃n from Eq. (24) as (see
Fig. 3)

ε̃n = g
∑

k

√
kc(n)

k

(
c(n)

k−1

)∗
. (29)

Let us use this approach to find ε̃0 up to the order ε3

[instead of ε1 in the linear approximation (15)], treating Hε as
a perturbation of Hqb. The eigenstate |0〉ε of the control qubit
can be written as

|0〉ε = |0〉 + α|1〉 + β|2〉 + γ |3〉 + · · ·
N , (30)

where N is a normalization. Substituting this form into the
Schrödinger equation (26) and equating the coefficients for
the basis states |0〉, |1〉, and |2〉, we obtain

εα = E , (31)

E1α +
√

2εβ + ε = Eα, (32)

E2β +
√

2εα +
√

3εγ = Eβ, (33)

where for brevity E = E |0〉ε , En = E (c)
n , we used E0 = 0 [as

in Eq. (4)], and we also assumed that ε is real.
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To the lowest order, assuming small ε (therefore γ � β �
α and E ≈ 0), we crudely find

α ≈ −ε

E1
, β ≈ −√

2εα

E2
≈

√
2ε2

E1E2
, E ≈ −ε2

E1
. (34)

Using these values for β and E in Eq. (32), we obtain a better
approximation (up to ε3) for α:

α ≈ −ε(1 + 2ε2/E1E2)

E1 + ε2/E1
≈ − ε

E1

(
1 + 2ε2

E1E2
− ε2

E2
1

)
. (35)

To find ε̃0 with accuracy up to ε3, we need α with accuracy
up to ε3, β with accuracy up to ε2, and N with accuracy up to
ε2, while γ is not needed [see Eq. (29)]. Thus, we use Eq. (35)
for α, Eq. (34) for β, and N ≈ 1 + (ε/E1)2/2 to obtain

|0〉ε ≈
(

1 − ε2

2E2
1

)
|0〉 − ε

E1

(
1 + 2ε2

E1E2
− 3ε2

2E2
1

)
|1〉

+
√

2ε2

E1E2
|2〉. (36)

The energy of state |0〉ε (not needed for this derivation but
needed later) is

E |0〉ε = εα ≈ − ε2

E1

(
1 + 2ε2

E1E2
− ε2

E2
1

)
. (37)

Finally, using Eqs. (29) and (36), we obtain

ε̃0 = −g
ε

E1

(
1 − 2ε2

E2
1

+ 4ε2

E1E2

)
(38)

with accuracy up to ε3. Note that E1 = E (c)
1 = � + δ, E2 =

E (c)
2 = 2(� + δ) − ηc, and we can neglect δ (i.e., use δ =

0). For a complex ε, we need to replace ε2 in parentheses
with |ε|2.

Calculation of ε̃1 up to the order ε3 is similar and requires
finding |1〉ε. Note that the calculations are easier if the ener-
gies are counted from E1, because then the eigenenergy E in
equations similar to Eqs. (31)–(33) is small. The calculations
give

|1〉ε ≈
(

1 − ε2

2E2
01

− ε2

E2
21

)
|1〉

−
√

2ε

E21

(
1 + 3ε2

E21E31
− ε2

E01E21
− 3ε2

E2
21

− ε2

2E2
01

)
|2〉

− ε

E01

(
1 − 3ε2

2E2
01

− 2ε2

E01E21
− ε2

E2
21

)
|0〉 +

√
6ε2

E21E31
|3〉,

(39)

where Enn′ ≡ En − En′ = E (c)
n − E (c)

n′ . The corresponding en-
ergy is

E |1〉ε ≈ E1 − ε2

E01

(
1 − ε2

E2
01

− 2ε2

E21E01

)

− 2ε2

E21

(
1 + 3ε2

E21E31
− 2ε2

E2
21

− ε2

E01E21

)
. (40)

FIG. 4. Effective drive amplitudes ε̃0 (blue lines) and ε̃1 (orange
lines) as functions of the drive amplitude ε, calculated using the
ideal-case approximation (15) and (16) (dashed straight lines), the
third-order formulas (38) and (41) (solid lines without symbols),
and numerically (solid lines with symbols). We used the qubit-qubit
coupling g/2π = 3 MHz, qubit anharmonicity ηc/2π = ηt/2π =
300 MHz, and detuning �/2π = 130 MHz.

Using Eqs. (29) and (39), we obtain

ε̃1 = −2εg

E21

(
1 + 6ε2

E21E31
+ ε2

E10E21
− 4ε2

E2
21

− ε2

E2
10

)

+ εg

E10

(
1 − 2ε2

E2
10

+ 2ε2

E10E21
− 2ε2

E2
21

)
(41)

with accuracy up to ε3 (note the use of E10 instead of E01 in
the preceding formulas). In this formula E10 = � + δ, E21 =
� + δ − ηc, E31 = 2(� + δ) − 3ηc, and we can neglect δ

(i.e., δ = 0). For a complex ε, we need to replace ε2 in
parentheses with |ε|2.

Figure 4 shows the effective drive amplitudes ε̃0 and ε̃1 as
functions of the actual drive amplitude ε calculated in several
ways for the following parameters (which are some typical ex-
perimental parameters): g/2π = 3 MHz, ηc/2π = 300 MHz,
and �/2π = 130 MHz. The blue lines (which initially go
down) show ε̃0 and the orange lines (which initially go up)
show ε̃1. The solid lines without symbols are calculated using
Eqs. (38) and (41) (using δ = 0), while the straight dashed
lines represent the simple linear approximation (15) and (16).
The solid lines with symbols show the numerical results
(the numerical procedure is described later in Sec. IV; for
numerics we assume ηt = ηc and ωd = ωc0

t ).
We see that the third-order approximation [Eqs. (38) and

(41)] correctly describes the deviation of the dependences
ε̃0(ε) and ε̃1(ε) from ideal straight lines at relatively small
ε, but fails to fit well the case of relatively large ε. This
is because higher-order terms become important even for
moderate values of ε. The problem is similar to the poor
performance of the perturbation approach in the analysis of
the circuit QED measurement of transmons when the number
of photons is comparable to the critical number.

Figure 5 shows the difference ε̃1 − ε̃0 as a function of ε (for
the same parameters as in Fig. 4), also calculated in several
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FIG. 5. The CR gate speed ε̃1 − ε̃0 as a function of the drive
amplitude ε, calculated using the linear-order approximation (19)
(dashed straight line), third-order approximation (38) and (41) (solid
green line), and numerically (solid blue line with symbols). The
parameters are the same as in Fig. 4.

ways. The dashed straight line corresponds to the simple
formula (19) for the ideal operation. The numerical results are
shown by the blue solid line with symbols. The green solid
line is calculated using Eqs. (38) and (41). We have checked
(analytically and numerically) that this line coincides with the
result given by Eq. (4.25) of Ref. [33] (after correction of a
misprint in the initial version of Ref. [33]; the translation of
notation is g = J[33], 2ε = �[33], � = �[33], ηc = −δ1[33], and
ε̃0 − ε̃1 = (ZX/2)coeff[33]). Most importantly, from Fig. 5 we
see that the third-order approximation correctly describes the
initial deviation of the CR gate speed from the linear-order
result, but cannot be used for quantitative analysis in the
practically interesting regime of large drive amplitudes.

C. Semianalytical results

The method developed in the preceding section can be
naturally extended to arbitrary large drive amplitudes ε. For
that the eigenstates |n〉ε of the control-qubit Hamiltonian (27)
can be found numerically, and then the effective drive ampli-
tudes ε̃n can be calculated using Eq. (29). Since numerical
diagonalization of a Hamiltonian for a few levels is very easy
(compared with full numerical simulation of the two-qubit
evolution discussed in the next section), we call this method
semianalytical.

Figure 6 shows a comparison of the semianalytical results
(dashed lines) for ε̃0 and ε̃1 with the numerical results (solid
lines with symbols) (the numerical procedure is discussed in
Sec. IV). The parameters are the same as in Figs. 4 and 5,
except we use two values of the detuning: �/2π = 130 and
190 MHz. In the semianalytics, we use seven levels of the
control qubit. We see that the numerical results agree with
semianalytics very well for all values of the drive amplitude
ε (the lines are practically indistinguishable, except for the
lowest lines at around 70 MHz, where a minor difference
is caused by a resonance between levels |0, 1〉ε and |1, 2〉ε).
Similarly, we found very good agreement for other values of
the parameters as well. Therefore, the semianalytical method

FIG. 6. Effective drive amplitudes ε̃0 and ε̃1 as functions of ε,
calculated numerically (solid lines with symbols) and using the
semianalytical approach (26)–(29) (dashed lines, practically coin-
ciding with the solid lines). We used g/2π = 3 MHz, ηc/2π =
ηt/2π = 300 MHz, and two values for the detuning: �/2π = 130
and 190 MHz.

based on Eqs. (26)–(29) seems to be a sufficiently simple and
accurate way of analyzing the dependence of the CR gate
speed on parameters.

Note that ε̃n in the semianalytical method is proportional
to the qubit-qubit coupling g and also depends on two di-
mensionless ratios �/ηc and ε/ηc (assuming δ = 0). In the
Duffing (Kerr) approximation (4), these two ratios fully define
the eigenstates (28) (in a better approximation [39,40] the
results would also depend on the dimensionless parameter
ηc/ωc). Therefore, in our analysis the ratio ε̃n/g is a function
of only two parameters �/ηc and ε/ηc.

Figure 7 shows the dimensionless speed (ε̃1 − ε̃0)/g of the
CR gate as a function of the dimensionless drive amplitude
ε/ηc for several values of the dimensionless detuning �/ηc

(the lines are calculated using the semianalytical method).
While the behavior at small ε agrees with Eq. (19) (not
shown), the behavior at large ε mostly depends on whether
the detuning � = ωc − ωt is negative or positive and on the
integer part of the ratio 2�/ηc for positive �. As seen in
Fig. 7, at large ε the lines group according to the interval to
which � belongs: (−∞, 0), (0, ηc/2), (ηc/2, ηc), (ηc, 3ηc/2),
(3ηc/2, 2ηc), etc. (in Fig. 7 these groups of lines are labeled
sequentially as I, II, III, etc.). We do not show the lines for
�/ηc = 0, 1/2, 1, 3/2, etc., because at these values there is a
resonance between the levels, E (c)

n = E (c)
0 and E (c)

n−1 = E (c)
1 for

n = 2�/ηc + 1 [see Eq. (4) for δ = 0], and correspondingly
the CR gate does not operate as intended (due to a very large
leakage; see below), also leading to computational problems
in the semianalytical and numerical calculations.

It is simple to understand why the lines in Fig. 7 group into
bands at large ε. In the solution of the Schrödinger equation
(26) for the Hamiltonian (27) at large ε, the main effect is a
strong level repulsion, which depends on the relative position
(topology) of the bare energy levels E (c)

n (i.e., which level is
in between which levels; this topology does not change with
ε because of the adiabatic theorem). In contrast, the level
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FIG. 7. Dimensionless CR gate speed (ε̃1 − ε̃0)/g as a function
of the dimensionless drive amplitude ε/ηc for several values of the
dimensionless detuning �/ηc. The lines are calculated using the
semianalytical method (26)–(29). At large ε, the lines group into
bands. Group I is for �/ηc < 0 and group II is for �/ηc in the
interval (0, 1

2 ). Similarly, groups III, IV, and V are for �/ηc in the
intervals ( 1

2 , 1), (1, 3
2 ), and ( 3

2 , 2), respectively.

repulsion does not depend much on a particular value of the
initial bare level difference, since the effect of ε dominates.
Therefore, at very large ε the eigenstates (28) do not depend
on a particular value of �/ηc, but only on the integer part of
2�/ηc (for � > 0), which defines the topological structure
of the ladder E (c)

n (as mentioned above, the bare levels E (c)
n

intersect at integer values of 2�/ηc). Consequently, at very
large ε the effective drive amplitudes (29) depend only on the
integer part of 2�/ηc. This is why there is a grouping of lines
in Fig. 7.

We see that most of the lines in Fig. 7 (all the lines in the
experimentally important groups II and III) have a maximum,
with a relatively minor decrease after it (experimental results
[22,29] are somewhat similar). Experimentally, faster speed
(ε̃1 − ε̃0) means shorter CNOT gate duration and therefore
there is no benefit to increase the drive amplitude beyond the
maximum in Fig. 7.

The solid blue line in Fig. 8 shows the maximum value
(ε̃1 − ε̃0)max/g of the dimensionless speed (or the minimum
value for the negative speed) as a function of the dimension-
less detuning �/ηc. The dimensionless drive amplitude ε/ηc

at which this maximum is reached is shown by the dashed
orange line. We see that the maximum CR gate speed is
reached for the detuning � between ηc/2 and ηc (group III
in Fig. 7). Note that our semianalytical approach cannot be
applied in close vicinities of the detunings �/ηc = 0, 0.5, 1,
1.5, etc. The dependence of (ε̃1 − ε̃0)max on � was measured
experimentally [29] and it showed a crudely similar behavior.

IV. NUMERICAL APPROACH

Numerically, we simulate the quantum evolution due to
the rotating-frame Hamiltonian (1)–(8), taking into account
seven levels in the control qubit (the same number as in the
semianalytics) and five levels in the target qubit, so there

FIG. 8. Maximized (minimized for negative values) dimension-
less speed (ε̃1 − ε̃0 )max/g (solid blue line) and corresponding dimen-
sionless drive amplitude ε/ηc (dashed orange line), as functions of
the dimensionless detuning �/ηc. The lines are calculated using the
semianalytical method (26)–(29).

are 35 levels in total. The simulation is based on matrix
exponentiation for a time-dependent Hamiltonian, using the
second-order Magnus expansion [38]. We also tried to use
the fourth-order Runge-Kutta method, but found that for our
typical parameters it is almost an order of magnitude slower
to reach the same desired accuracy.

We start with diagonalization of the time-independent part
Hqb + Hg of the Hamiltonian and then the whole simulation
is done in the eigenbasis |n, m〉 of Hqb + Hg, with the time-
dependent drive Hamiltonian Hε(t ) (expanded in the eigenba-
sis) causing the evolution. In this way, we obtain a 35 × 35
unitary evolution matrix V (in the eigenbasis |n, m〉) for a
given pulse of the drive amplitude ε(t ) with duration τp (the
pulse shape is discussed later). The matrix V is then projected
onto the computational two-qubit subspace, thus producing a
4 × 4 matrix M, which is no longer unitary (here projection
means the simple elimination of all other elements). Note
that the reduced matrix M is still defined in the eigenbasis,
consisting of states |0, 0〉 = |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉.

To find the fidelity of an operation, we compare the reduced
matrix M with the desired 4 × 4 unitary operation, which we
denote by U . The fidelity between M and U is defined as
[41,42]

FMU = Tr(M†M )

d (d + 1)
+ |Tr(M†U )|2

d (d + 1)
, (42)

where d = 4 is the dimension of the two-qubit Hilbert space.
This definition of the gate fidelity is equal to the final-state
fidelity (squared overlap) averaged over all (pure) initial states
in the two-qubit subspace; therefore, FMU corresponds to the
fidelity in randomized benchmarking (assuming that the states
leaked outside the computational subspace never return).

Even though the final goal of the CR gate operation is to
produce a CNOT gate (after additional single-qubit rotations),
in the numerical procedure the desired U is obviously not the
CNOT gate. Instead, for a given pulse ε(t ) (which produces
some matrix V and corresponding matrix M), we define U
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as the closest two-qubit unitary (i.e., which maximizes the
fidelity FMU ), restricted to the class

U = eiθ0 |0〉〈0|ce−i(ϕ0/2)Xt + eiθ1 |1〉〈1|ce−i(ϕ1/2)Xt , (43)

where |n〉〈n|c acts on the control qubit, while Xt acts on
the target qubit (as mentioned above, we use the eigenbasis
of Hqb + Hg for both M and U ). The condition (43) means
that the state of the control qubit does not change (in the
eigenbasis). Also, for state |0〉 of the control qubit, the target
qubit is rotated about the x axis by angle ϕ0; similarly, for
control-qubit state |1〉, the target qubit is rotated about the x
axis by angle ϕ1. Besides that, in Eq. (43) there are phases θ0

and θ1; disregarding the unimportant overall phase, this can be
interpreted as z rotation of the control qubit by angle θ1 − θ0.
Without loss of generality, we could assume θ0 = 0 (while
keeping the same θ1 − θ0) since this affects only the overall
phase, and the definition (42) of the fidelity FMU is insensitive
to the overall phase of U . Note that Eqs. (42) and (43) can be
easily generalized to include the third state of the control qubit
(to consider it as a qutrit); however, here we consider only the
two-level subspace.

Thus, to find U for a given pulse of ε(t ), we maximize FMU

over the parameters ϕ0, ϕ1, and θ1 − θ0. Fortunately, these
optimal angles are given by analytical formulas in terms of
the matrix elements of M:

ϕ0 = −arg

(
M11 + M22 + M12 + M21

M11 + M22 − M12 − M21

)
, (44)

ϕ1 = −arg

(
M33 + M44 + M34 + M43

M33 + M44 − M34 − M43

)
, (45)

θ0 = arg[(M11 + M22) cos(ϕ0/2)

+ i(M12 + M21) sin(ϕ0/2)], (46)

θ1 = arg[(M33 + M44) cos(ϕ1/2)

+ i(M34 + M43) sin(ϕ1/2)], (47)

where the rows (and columns) 1, 2, 3, and 4 of the matrix M
correspond to the states |00〉, |01〉, |10〉, and |11〉, respectively.
In this way, for a given pulse ε(t ), the CR gate operation is
characterized by four resulting parameters: the angles ϕ0, ϕ1,
and θ0 − θ1 of the unitary (43) and also infidelity 1 − FMU ,
which is due to leakage outside the computational two-qubit
subspace and also due to the computational-space unitary not
fitting well the class (43).

We consider the pulse shape ε(t ) of duration τp,

ε(t ) =

⎧⎪⎪⎨
⎪⎪⎩

1−cos(πt/τr )
2 εm, 0 � t � τr

εm, τr � t � τp − τr

1−cos[π (τp−t )/τr ]
2 εm, τp − τr � t � τp,

(48)

which consists of the flat middle part with the real amplitude
εm of the drive and two symmetric cosine-shaped ramps (so
that there are no kinks), each with duration τr (see Fig. 9). As
discussed later, sufficiently long ramps are needed to reduce
leakage outside the computational subspace.

Effective drive amplitudes ε̃0 and ε̃1 used in Sec. III
(Figs. 4–6) have been numerically calculated as the

FIG. 9. Pulse shape ε(t ) used in numerical simulations. The total
pulse duration is τp, each cosine-shaped ramp has duration τr , and
the drive amplitude in the middle flat part is εm.

derivatives,

ε̃0 = 1

2

∂ϕ0

∂τp
, ε̃1 = 1

2

∂ϕ1

∂τp
, (49)

while keeping the ramp duration τr , the middle-part amplitude
εm (which replaces ε in Sec. III), and other parameters fixed.

The small drive frequency detuning δ in numerical simu-
lations is chosen in the following way. We first use the labo-
ratory frame, i.e., δ = ωt (for the Duffing oscillator model we
can also use δ = ωt = 0), and calculate the eigenfrequencies
of the target qubit ωc0

t and ωc1
t [see Eq. (9)]. If we want the

drive to be exactly on-resonance with the target qubit when
the control qubit is |0〉, then we need to use ωd = ωc0

t , which
gives δ = ωt − ωc0

t . Similarly, if we want ωd = ωc1
t (the drive

on-resonance with the target qubit when the control qubit is
|1〉), then we use δ = ωt − ωc1

t . If we want the drive frequency
exactly in between the two resonances ωd = (ωc0

t + ωc1
t )/2,

then we use δ = ωt − (ωc0
t + ωc1

t )/2. Note that the frequency
differences ωt − ωc0

t and ωt − ωc1
t do not depend on a choice

of the rotating frame.
Since experimentally the CR gate is mainly used to realize

the CNOT gate, in the numerical simulations we are mostly
interested in the operations equivalent to CNOT up to single-
qubit rotations. In analyzing the CNOT-equivalent gates, we
usually use the pulse shape in which the ramps occupy 30%
of the whole pulse duration each, i.e., τr = 0.3τp in Eq. (48)
(Fig. 21 is an exception). For a given middle-part amplitude
εm, we find the shortest pulse duration τp, for which

ϕ1 − ϕ0 = π (mod2π ). (50)

This is what we call the CNOT gate duration τ CNOT
p (εm ), ne-

glecting durations of the additional single-qubit operations
(x rotation of the target qubit and z rotation of the control
qubit). We assume perfect fidelity of single-qubit operations;
therefore, the CNOT gate infidelity is 1 − FMU for the pulse
with duration τ CNOT

p (εm ).
In the simulations we fully neglect decoherence. A crude

estimate of the fidelity decrease �F due to energy relaxation
and pure dephasing can be obtained by considering idle
qubits, which decohere during time τ CNOT

p . This gives the
estimate

�F 
 1

5

τ CNOT
p

T (c)
1

+ 1

5

τ CNOT
p

T (t)
1

+ 2

5

τ CNOT
p

T (c)
2

+ 2

5

τ CNOT
p

T (t)
2

, (51)

where T (c)
1 and T (t)

1 are the energy relaxation times for the
control and target qubits and similarly T (c)

2 and T (t)
2 are the
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dephasing times (which include contributions due to the
energy relaxation and pure dephasing 1/T2 = 1/2T1 + 1/Tϕ).
This estimate is obtained by summing the single-qubit Pauli
error rates t/2T1 and t/2Tϕ and then converting the result
into the two-qubit average gate fidelity by using the factor
4
5 . Note, however, that the actual fidelity decrease �F can
be significantly larger than the estimate (51) because the CR
gate operation involves a significant population of the level
|2〉 and even higher levels of the control qubit, which have
poorer coherence than the level |1〉.

One run of the evolution simulation for a given pulse
duration typically takes a few seconds on a desktop or a laptop
computer. Finding τ CNOT

p requires several tens of runs, so a
typical time to produce a line showing dependence of the
CNOT gate operation on εm is a few hours. The simulation time
significantly depends on the number of time steps in the pulse
ramps; we have used 600 time steps for each ramp, which
gives quite good accuracy for the simulations. For quick (and
much less accurate) simulations it is possible to use ∼100 time
steps per ramp.

Let us list the main approximations used in our numer-
ics: (i) neglected decoherence, (ii) a Duffing-oscillator ap-
proximation for the transmon energy levels, (iii) a linear-
oscillator approximation for the transmon matrix elements,
(iv) direct coupling of qubits instead of coupling via resonator,
(v) RWA, (vi) using only 7 × 5 levels (we checked that this is
sufficient), (vii) no microwave crosstalk (except in Fig. 22),
(viii) a simple pulse shape without distortions, and (ix) the
absence of neighboring qubits. In spite of a rather long list
of approximations, we believe our simulation results give a
reasonably accurate description of the intrinsic operation of
the CR gate (neglecting decoherence, which in practice may
give the biggest contribution to infidelity).

V. NUMERICAL CNOT GATE DURATION
AND SINGLE-QUBIT ROTATIONS

In numerical simulations, we use the qubit-qubit coupling
g/2π = 3 MHz (except in Fig. 20) and transmon anhar-
monicity ηc/2π = ηt/2π = 300 MHz. Figure 10 shows the
CNOT gate duration τ CNOT

p as a function of the drive amplitude
εm in the flat middle part of a pulse (with τr = 0.3τp), for
several values of the qubit-qubit detuning: �/2π = −70,
70, 130, and 190 MHz. For numerical results (solid lines)
we choose ωd = ωc0

t , i.e., δ = ωt − ωc0
t . The dashed lines

(almost coinciding with the solid lines) show the result of
the semianalytical method, in which we use Eq. (13) and
integrate over the pulse shape. We see that the semianalytical
method works very well; however, there are (barely) visible
deviations at both small and large amplitudes εm. We guess
the slight deviation at large εm is because for a short pulse
the nonadiabatic evolution during the ramps starts to play a
noticeable role. The deviation at small εm is because here the
zz coupling (10) starts to play a relatively significant role.

For a more detailed analysis of the deviation at small εm,
solid lines in Fig. 11 show the numerical CNOT time τ CNOT

p for
�/2π = 130 MHz and three values of the drive frequency:
ωd = ωc0

t (blue line, drive on-resonance with the target qubit
when the control qubit is |0〉, i.e., δ = ωt − ωc0

t ), ωd = ωc1
t

(orange line, on-resonance when the control qubit is |1〉, i.e.,

FIG. 10. CNOT gate duration τ CNOT
p (neglecting single-qubit rota-

tions) as a function of the midpulse drive amplitude εm for several
detunings: �/2π = −70, 70, 130, and 190 MHz, while g/2π =
3 MHz, ηc/2π = ηt/2π = 300 MHz, τr/τp = 0.3, and ωd = ωc0

t .
Solid lines are calculated numerically; dashed lines (almost coin-
ciding with the solid lines) are calculated using the semianalytical
method.

δ = ωt − ωc1
t ), and exactly in between, ωd = (ωc0

t + ωc1
t )/2

(green line). The dashed line shows the semianalytical result
(actually, there are three dashed lines for the three values of δ,
but they are indistinguishable) and the dotted line shows the
ideal result

τ CNOT
p,ideal = π/2

0.7εm

�(ηc − �)

2gηc
, (52)

which follows from Eqs. (13) and (19) after integration over
the pulse shape (48) with τr/τp = 0.3 (this integration gives
the factor 0.7). We see that the solid lines noticeably deviate

FIG. 11. Solid lines show the dependence of the CNOT gate
duration τ CNOT

p on εm for three drive frequencies: ωd = ωc0
t (exact

resonance for the control-qubit state |0〉, blue line), ωd = ωc1
t (reso-

nance for the control-qubit state |1〉, orange line), and ωd = (ωc0
t +

ωc1
t )/2 (exactly in between, green line). The dashed line shows the

semianalytical results and the straight dotted line corresponds to
Eq. (52). We use �/2π = 130 MHz; the other parameters are the
same as in Fig. 10.
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down from the dashed line for εm/2π less than ∼5 MHz, with
the largest deviation for ωd = ωc0

t (blue line). Note that for
ε/2π = 5 MHz, Eq. (19) gives (ε̃1 − ε̃0)/2π = 0.41 MHz,
while ωzz/2π = 0.15 MHz [see Eq. (11)], so the effect of zz
coupling is expected to be significant.

In more detail, for ωd = ωc0
t (blue line in Fig. 11) the

drive is exactly on-resonance with the target qubit for the
control-qubit state |0〉 and therefore the approximation ϕ0 =
0.7τ CNOT

p × 2ε̃0(εm ) using Eq. (15) should work well (as
confirmed by numerics). In contrast, for the control-qubit
state |1〉, the drive is detuned by ωzz from the target-
qubit frequency, which leads to Rabi oscillations with fre-
quency

√
(2ε̃1)2 + ω2

zz within the plane tilted by an angle
arctan(ωzz/2ε̃1) from the zy plane (the frequency and the
plane are changing in time because of the pulse shape). The
larger Rabi frequency (due to ωzz contribution) leads to a
slightly shorter CNOT gate duration than expected analytically,
explaining the behavior of solid lines in Fig. 11 at small εm.
The same effect (rotation within a tilted plane) leads to a sig-
nificant infidelity of the CNOT gate at small εm (see Sec. VI).

As discussed above, in order to realize the CNOT operation,
the CR gate with the pulse duration τ CNOT

p should be com-
plemented by single-qubit rotations. The target qubit should
be rotated about x axis by the angle −ϕ0 to compensate the
operator e−i(ϕ0/2)Xt in Eq. (43). Similarly, the control qubit
should be rotated about z axis to compensate the relative
phase θ1 − θ0 and the negative imaginary unit due to the
relation e−i(π/2)Xt = −iXt . Thus, naively, we would expect that
z rotation by the angle π/2 − (θ1 − θ0) is needed. However,
the angle θ1 − θ0 is numerically computed in the rotating
frame of the drive, while experimental z rotation should be
in the rotating frame of the control qubit. For the latter frame
based on frequency ωt0

c = E (lf)
|1,0〉 − E (lf)

|0,0〉 (i.e., when the target
qubit is |0〉, as usually done in experiments), we need to
replace the phase difference θ1 − θ0 with

θ ′
1 − θ ′

0 = θ1 − θ0 + (
ωt0

c − ωd
)
τ CNOT

p , (53)

so in an experiment, the control qubit should be z rotated
by the angle θ ′

0 − θ ′
1 + π/2. Note that ωt0

c − ωd = � + δ +
ωt0

c − ωc.
Figure 12 shows the angle −ϕ0 (normalized by π ) as

a function of εm for two values of the detuning: �/2π =
130 and 190 MHz (we use ωd = ωc0

t ). Solid lines show
the numerical results, dashed lines show the corresponding
semianalytical results (integrating −2ε̃0 over the pulse shape),
and horizontal dotted lines show the ideal result based on
Eqs. (15) and (16): −ϕ0 = π (ηc − �)/2ηc. We see that this
ideal result for −ϕ0 is never applicable. The deviation from it
at large εm is described well by the semianalytics and is due
to the deviations from the ideal straight lines in Fig. 6. The
deviation from the ideal result in Fig. 12 at small εm is due to
ωzz, the same effect as discussed above for Fig. 11.

The upper (blue) solid line in Fig. 13 shows the numeri-
cal result for the control-qubit rotation angle θ ′

0 − θ ′
1 + π/2

(normalized by π ) as a function of εm for �/2π = 130 MHz
and ωd = ωc0

t . We see that it is quite different from the ideally
expected value of π/2 (horizontal brown line). The difference
is mainly due to two effects. First, strong drive ε(t ) causes
the level repulsion (ac Stark shift) in the control qubit, which

FIG. 12. Angle −ϕ0 of the compensating x rotation of the target
qubit to produce the CNOT gate, as a function of the midpulse drive
amplitude εm. Numerical results are shown by solid lines, semian-
alytics are represented by dashed lines, and dotted lines show the
ideal result −ϕ0/π = (ηc − �)/2ηc. Here we use �/2π = 130 and
190 MHz, ωd = ωc0

t , g/2π = 3 MHz, ηc/2π = ηt/2π = 300 MHz,
and τr/τp = 0.3.

slightly changes the control-qubit frequency and produces the
accumulated angle

θrep =
∫ τp

0

(
E |1〉ε − E |0〉ε

)
dt . (54)

(Actually, because the state |1〉 is assumed to be at the bottom
of the Bloch sphere, this produces the z rotation of −θrep, so
we need to apply the rotation of +θrep to compensate it.) The

FIG. 13. The upper (blue) solid line shows the numerical result
for the angle θ ′

0 − θ ′
1 + π/2 of z rotation of the control qubit, needed

to produce the CNOT gate. The horizontal (brown) line shows the ideal
value π/2. Dashed and dotted red lines show the contribution θrep due
to ε-induced level repulsion (54), calculated either semianalytically
(dashed line) or via Eqs. (37) and (40) (dotted line). The lower
(green) solid line shows the contribution θzz given by Eq. (55). The
upper solid and dashed black lines (very close to the solid blue line)
show the sum θrep + θzz + π/2. We use �/2π = 130 MHz and the
parameters from Fig. 12.
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FIG. 14. Infidelity 1 − FMU of the CNOT-equivalent gate as a
function of midpulse drive amplitude εm for several values of
detuning: �/2π = −70 MHz (red line), 70 MHz (brown line),
130 MHz (blue line), and 190 MHz (green line). The other parame-
ters are g/2π = 3 MHz, ηc/2π = ηt/2π = 300 MHz, ωd = ωc0

t , and
τr/τp = 0.3.

angle θrep calculated semianalytically [see Eq. (26)] is shown
by the dashed red line in Fig. 13; the same angle calculated
using analytical results (37) and (40) is shown by the dotted
red line (in both cases we use numerical τ CNOT

p to integrate over
the pulse shape). The second contribution into θ ′

0 − θ ′
1 is due

to zz coupling (10), which produces

θzz = ωzz

2
τp. (55)

This is because the rotating frame here is based on ωt0
c , while

ωt1
c − ωt0

c = ωzz and both states of the target qubit participate
equally (leading to the factor of 1/2). The angle θzz is shown
by the lower (green) solid line in Fig. 13. Adding the three
contributions θrep + θzz + π/2, we obtain the dashed and dot-
ted black lines (corresponding to the dashed and dotted red
lines for θrep), which are quite close to the numerical result
(solid blue line). This confirms the main physical mechanisms
contributing to θ ′

0 − θ ′
1 and also shows that the approximation

based on Eqs. (37) and (40) works quite well.

VI. ERROR BUDGET

In the preceding section we have discussed numerical
results for the parameters of a CR-based CNOT gate: the
duration τ CNOT

p as a function of the midpulse drive amplitude
εm and the compensating single-qubit rotation angles −ϕ0

and θ ′
0 − θ ′

1 + π/2. We have seen that these parameters can
be obtained quite accurately by the semianalytical method.
In this section we discuss numerical results for the infidelity
1 − FMU of the CR-based CNOT gate (also as a function of εm),
neglecting decoherence and infidelity of single-qubit rotations
(see Sec. IV for the definition of FMU and the calculation
method). These results cannot be obtained semianalytically
and necessarily require full numerical simulations.

Figure 14 shows the numerical results for the CNOT gate
infidelity 1 − FMU as a function of the midpulse drive ampli-
tude εm for several values of the detuning: �/2π = −70, 70,

130, and 190 MHz. As in the previous plots, we use g/2π =
3 MHz, ηc = ηt = 300 MHz, ωd = ωc0

t , and τr = 0.3τp. Most
importantly, we see that the infidelity dependence on εm has a
minimum, and at this minimum, the infidelity is crudely 10−3

for all lines. The second observation is that the minimum is
not sharp and is reached for the values of the drive amplitude
εm above which the CNOT gate duration τ CNOT

p does not become
significantly shorter by a further increase of εm (see Figs. 7
and 10). Note that we do not take into account the effect
of decoherence, which can be crudely (ideally) estimated by
Eq. (51). If decoherence were added, then the minima in
Fig. 14 would shift to higher values of εm; however, since the
corresponding decrease of τ CNOT

p is not significant, the benefit
for fidelity is also not significant; moreover, using higher
drive amplitudes could lead to other experimental problems.
Therefore, we think the optimum values of εm in Fig. 14
should be somewhat close to experimental optima.

To understand the reason for the minima in Fig. 14 and
to understand the physical mechanisms contributing to the
infidelity (error budget), we have done the following more
detailed calculations. We recall that we calculate the fidelity
FMU between the nonunitary 4 × 4 matrix M (which is the
projection of the 35 × 35 matrix of actual evolution onto the
computational subspace) and the closest unitary matrix U ,
which belongs to the class (43) with ϕ1 − ϕ0 = π (mod2π )
for a CNOT-equivalent gate. Now let us consider a bigger
class of unitary matrices and define M̃ as the matrix, which
is closest to M out of unitaries satisfying the condition

M̃ = |0〉〈0|cŨ t
0 + |1〉〈1|cŨ t

1, (56)

where Ũ t
0 and Ũ t

1 are any 2 × 2 unitary matrices acting on
the target qubit (here “closest” means that M̃ maximizes the
fidelity FMM̃ ). From this definition, M̃ does not change the
control-qubit states |0〉 and |1〉 (i.e., does not allow any
leakage from them), but its rotation of the target qubit is
arbitrary. The matrix U in Eq. (43) is more restrictive in the
sense that it allows only x rotations of the target qubit.

To clarify the error budget, we calculate additional infi-
delities 1 − FMM̃ (between M and M̃) and 1 − FM̃U (between
M̃ and U ) for the CNOT-equivalent CR operation. The idea
is that the infidelity 1 − FMM̃ is due to leakages (from the
control-qubit states |0〉 and |1〉 to any state and also outside
the computational subspace for the target qubit). In contrast,
the infidelity 1 − FM̃U is due to imperfect unitary rotations
of the target qubit. From the physical approach of separation
of the error into these different mechanisms, we would expect

1 − FMU ≈ (1 − FMM̃ ) + (1 − FM̃U ). (57)

This is not an exact relation mathematically (the exact relation
would require that certain elements of the quantum process
tomography matrix for M have exactly zero real and/or imag-
inary parts). However, numerical results (e.g., Fig. 15) show
that this relation is very accurate.

In Fig. 15 the solid blue line, 1 − FMU , is the same as the
blue line in Fig. 14 (�/2π = 130 MHz). For the same case,
the orange line shows 1 − FMM̃ , the green line shows 1 −
FM̃U , and the dashed blue line (practically indistinguishable
from the solid blue line) shows the sum (1 − FMM̃ ) + (1 −
FM̃U ). We see that the total infidelity 1 − FMU can really be
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FIG. 15. Decomposition of the CNOT gate infidelity 1 − FMU

(solid blue line) into the leakage contribution 1 − FMM̃ (orange line)
and contribution 1 − FM̃U due to imperfect unitaries (green line).
The sum (1 − FMM̃ ) + (1 − FM̃U ) (dashed blue line) is practically
indistinguishable from the solid blue line. We use �/2π = 130 MHz
and the parameters from Fig. 14.

decomposed into the infidelity 1 − FMM̃ due to leakages and
infidelity 1 − FM̃U due to imperfect unitaries acting on the tar-
get qubit. Similar decomposition into leakages and imperfect
unitaries also works well for other lines in Fig. 14 (relative
inaccuracy of the decomposition is typically about 10−3).

Besides introducing the error budget via the decomposition
(57), we also tried a further decomposition by introducing
another 4 × 4 matrix M̃ ′, which is a two-qubit unitary closest
to M. In this case the infidelity 1 − FMM̃ ′ is due to leakages
outside the computational subspace, while the infidelity 1 −
FM̃ ′M̃ is due to unitary transitions between states |0〉 and
|1〉 of the control qubit (which in our terminology are also
leakages for the CR gate). Then the infidelity consists of three
components

1 − FMU ≈ (1 − FMM̃ ′ ) + (1 − FM̃ ′M̃ ) + (1 − FM̃U ). (58)

We have checked that this relation is quite accurate numeri-
cally. However, for the cases we checked, the matrix M̃ ′ was
very close to either M or M̃ (depending on the detuning �,
which determines the strongest leakage process). Therefore,
usually only two terms in Eq. (58) are significant, and this is
why we will continue using the simpler error decomposition
(57) below.

As seen in Fig. 15, at small εm the CNOT gate infidelity
is dominated by the imperfection of the unitaries Ũ t

0 and
Ũ t

1 (contribution 1 − FM̃U ), while at large εm the leakage
contribution 1 − FMM̃ dominates (the same result for other
detunings �). This is because at small εm the effect of zz
coupling is important (as discussed in Sec. V), while at large
εm the ramps of the pulse become short and high, making the
process significantly nonadiabatic and causing leakages.

To clarify the dependence on εm of the imperfect-
unitary contribution 1 − FM̃U (green line in Fig. 15), we
draw this line again in Fig. 16 (now on semilogarithmic
scale). We also show the numerical results for the con-
tributions �FŨ ,c0 and �FŨ ,c1 to this line from imperfec-
tions of the unitaries Ũ t

0 (for the control-qubit state |0〉)

FIG. 16. Further decomposition of the imperfect-unitary infi-
delity contribution 1 − FM̃U (green line) into contributions �FŨ ,c0

(orange line) and �FŨ ,c1 (solid blue line) for the control-qubit states
|0〉 and |1〉, respectively. The dotted blue line shows the analytical
approximation for �FŨ ,c1 by Eq. (59) with ideal values for ϕ1 and
ε̃1, while for the dashed blue line we use semianalytical values for ϕ1

and ε̃1 in Eq. (59). The parameters are the same as in Fig. 15.

and Ũ t
1 (for the control-qubit state |1〉): orange and blue

solid lines in Fig. 16, respectively. [Mathematically, the def-
initions are �FŨ ,c0 = 4/5 − (2/5)|Tr(Ũ t

0U t†
0 )| and �FŨ ,c1 =

4/5 − (2/5)|Tr(Ũ t
1U t†

1 )|, where U t
0 and U t

1 are obtained from
Eq. (43): U t

0 = e−i(ϕ0/2)Xt and U t
1 = e−i(ϕ1/2)Xt .] At small εm

the main contribution comes from imperfect Ũ t
1. This is

because we use the drive frequency resonant with the target
qubit for the control-qubit state |0〉 (ωd = ωc0

t ), so for the
control-qubit state |1〉 the drive is off-resonance by ωzz [see
Eq. (10)]. This detuning produces rotation of the target-qubit
state about a tilted axis, instead of the desired x axis. To check
this explanation, we calculate analytically the corresponding
infidelity

�FŨ ,c1 = 2

5
sin2

(
ϕ1

2

)
ω2

zz
25
40 [2ε̃1(εm )]2 + ω2

zz

, (59)

where the factor 25
40 comes from the integration of ε2(t ) over

the pulse shape (48) with τr/τp = 0.3 (such integration in only
the denominator is an approximation). The dotted blue line in
Fig. 16 shows this result with ϕ1 and ε̃1 calculated analytically,
ϕ1 = (ηc + �)/2ηc, and Eq. (16) for ε̃1. The dashed blue
line shows Eq. (59) with ϕ1 and ε̃1 calculated using the
semianalytical method. We see that both lines fit reasonably
well the numerical result (solid blue line) at small εm, with
a better fit when using the semianalytical values for ϕ1 and
ε̃1. An even better fit (almost perfect, not shown) is when the
Bloch-sphere evolution due to ωzz and semianalytical ε̃[ε(t )]
is integrated over the pulse shape numerically, instead of using
Eq. (59).

Thus, the contribution �FŨ ,c1 to the gate infidelity due
to imperfect unitary Ũ c1

t is well explained quantitatively. In
contrast, we do not have a simple analytical way to find the
contribution �FŨ ,c0 due to imperfect Ũ c0

t (solid orange line
in Fig. 16). Qualitatively, this contribution appears at large εm

because the interplay between the level repulsions due to g and
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FIG. 17. Numerical results for the leakage. The thick orange
line shows the infidelity contribution 1 − FMM̃ . Four thin solid lines
(labeled 1, 2, 3, and 4) show multiplied by the factor 1

4 probabili-
ties of the main leakage channels: |0, 0〉 → |2, 0〉, |0, 1〉 → |2, 1〉,
|0, 0〉 → |2, 1〉, and |0, 1〉 → |2, 0〉. The sum of these four lines is
shown by the dotted brown line; its closeness to the thick orange line
verifies that the infidelity 1 − FMM̃ is mainly due to these leakage
channels. The dashed black line is the leakage probability estimate
given by Eq. (61). The parameters are the same as in Fig. 15.

ε in Fig. 3 slightly changes the frequency ωc0
t , so there is no

longer exact resonance with the drive, and the Bloch-sphere
evolution also becomes tilted, thus producing the infidelity.
Note that small oscillations of the solid orange and blue lines
in Fig. 16 at large εm are apparently related to the oscillations
of the orange line in Fig. 15, which are discussed below.

The second contribution to the overall gate infidelity 1 −
FMU (Fig. 15), which becomes dominating at large εm, is the
contribution 1 − FMM̃ due to leakage produced by nonadia-
baticity during the pulse ramps (orange line in Fig. 15). From
the fidelity definition (42), we expect an approximate relation

1 − FMM̃ ≈ Pout
leak + 4

5 Pcomp
leak , (60)

where Pout
leak is the probability of leakage to outside the compu-

tational subspace, averaged over the initial two-qubit states,
and Pcomp

leak is the averaged probability of leakage inside the
computational subspace, which for our definition (56) means
transitions between states |0〉 and |1〉 of the control qubit.
Note that to average the leakage probability over all initial
two-qubit states, it is sufficient to average it over the four
basis states |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. We have checked
the relation (60) numerically and it works very well; however,
usually either the first or the second term in Eq. (60) strongly
dominates over the other term (depending on the dominating
leakage channel).

Figure 17 shows again the orange line 1 − FMM̃ from
Fig. 15 (now it is the thick orange line and the scale is
semilogarithmic) and also shows the numerical leakage prob-
abilities (multiplied by the factor 1

4 as in the averaging) for
the processes |0, 0〉 → |2, 0〉, |0, 1〉 → |2, 1〉, |0, 0〉 → |2, 1〉,
and |0, 1〉 → |2, 0〉 (thin solid lines). The sum of the thin solid
lines is shown as the dotted brown line. It is very close to the
thick orange line [as expected from Eq. (60)], indicating that

these are the four dominating leakage channels. A minor dif-
ference between the thick orange line and dotted brown line at
εm close to 80 MHz is due to the significance of the additional
leakage channels |0, 1〉 → |1, 2〉 and |0, 0〉 → |1, 2〉 (at this
frequency the states |2, 1〉 and |1, 2〉 become on-resonance);
similarly, a visible difference at about 40 MHz is because the
transitions |0〉 ↔ |1〉 in the control qubit become relatively
important.

The main leakage channels in Fig. 17 involve the transition
|0〉 → |2〉 in the control qubit. This is expected because in the
rotating frame E (c)

0 − E (c)
2 = η − 2� is only 40 MHz for the

parameters of Fig. 17. The matrix element of this transition
via virtual state |1〉 is −√

2ε2/�. Therefore, the nonadiabatic
transition |0〉ε → |2〉ε during the front ramp with duration τr

of the pulse (48) has an amplitude proportional to the Fourier
transform of d (ε2)/dt at the frequency η − 2�. The standard
calculations give an estimate of the leakage probability in the
control qubit during the front ramp:

P|0〉ε→|2〉ε = 2π4ε4
m

�2(η − 2�)6τ 4
r

. (61)

This probability is shown in Fig. 17 by the dashed black line.
We see that it gives a reasonable (crude) approximation of the
infidelity 1 − FMM̃ due to leakage (if also multiplied by the
factor of 1

4 , it goes close to the top of oscillating blue and green
solid lines). Such a good fit is somewhat surprising because
in deriving Eq. (61) we assumed a fixed energy difference
E (c)

0 − E (c)
2 = η − 2�, while for large ε the difference of

eigenenergies E |0〉ε − E |2〉ε becomes significantly larger, e.g.,
60.7 MHz for ε/2π = 60 MHz and 84.3 MHz for ε/2π =
80 MHz. Therefore, we would expect that Eq. (61) should
significantly overestimate the actual leakage [note the sixth
power of (η − 2�) in the denominator]. As we checked,
Eq. (61) still works well because the nonadiabatic transition
mainly accumulates during the lower half of the ramp, when
ε(t ) is not too large.

The oscillations of the solid lines in Fig. 17 (leakage prob-
abilities multiplied by 1

4 ) are easily understandable. The nona-
diabatic leakage occurs during both front and rear ramps, and
the transition amplitudes are added with a nonzero phase due
to the energy difference E |0〉ε − E |2〉ε , accumulated between
the ramps. Thus, the oscillations are due to constructive or
destructive interference of the leakage contributions from the
two ramps. We have checked that the εm difference between
the peaks in Fig. 17 is consistent with estimates based on the
numerical increase of E |0〉ε − E |2〉ε with ε. The oscillations
in the probabilities of individual leakage channels lead to
the oscillations of their sum, thus explaining oscillations of
1 − FMM̃ in Fig. 15 and oscillations of the overall CNOT gate
infidelity 1 − FMU in Fig. 14 at large εm.

Note that in Fig. 17 the leakage channels |0, 0〉 → |2, 0〉
and |0, 1〉 → |2, 1〉 (with a nonchanging state of the target
qubit) have higher probabilities than for the leakage channels
with a changing state of the target qubit. This is because
|ϕ0| � π in the interesting range of εm (see Fig. 12), so
the target-qubit state does not change much during the pulse
when the control-qubit state is |0〉. In the opposite limit
|π − ϕ0| � π , we would expect all four leakage channels
to have approximately the same strength and also would not
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FIG. 18. Parametric plot for the CNOT gate infidelity 1 − FMU

versus the CNOT gate duration τ CNOT
p (the running parameter is εm)

for the detunings �/2π = −70, 70, 130, and 190 MHz. We as-
sume g/2π = 3 MHz, ηc/2π = ηt/2π = 300 MHz, ωd = ωc0

t , and
τr/τp = 0.3.

expect significant oscillations (because the two ramps would
mainly contribute to different channels).

Besides the detailed analysis of the leakage contribution
1 − FMM̃ for the detuning �/2π = 130 MHz, we have also
analyzed the leakage for other values of the detuning in
Fig. 14. The case of �/2π = 190 MHz is similar (the same
dominating leakage channels) and Eq. (61) still works well;
however, |η − 2�| is larger (80 MHz instead of 40 MHz), so
the leakage becomes significant only at larger values of εm.
Also, a very large value of the green line in Fig. 14 at εm/2π 

70 MHz is due to an additional leakage channel |0, 1〉 →
|1, 2〉, which is due to a resonance between these states. For
the detuning �/2π of 70 MHz and −70 MHz (brown and red
lines in Fig. 14), the main leakage is between states |0〉ε and
|1〉ε of the control qubit (also due to nonadiabaticity during
the ramps).

Thus, in this section we have shown that in our model
the error budget of the CR gate consists of two main con-
tributions: the imperfection of the unitary operation at small
drive amplitudes and the leakage at large drive amplitudes.
At the optimal drive amplitude, the infidelity is on the order
of 10−3. However, we did not take into account contributions
from decoherence and also from possible problems caused by
a strong drive of the control qubit (e.g., due to a resonance
between an impurity and E |0〉ε − E |n〉ε or E |1〉ε − E |n〉ε ). Note
that a strong leakage makes the CR gate operation impractical
for the detuning � close to 0, ηc/2, ηc, 3ηc/2, etc.

VII. DEPENDENCE ON PARAMETERS

A convenient way to present numerical results [35] is to
parametrically plot the infidelity 1 − FMU versus CNOT gate
duration τ CNOT

p , with both quantities being functions of the
drive amplitude εm. Figure 18 presents such a plot for the
results shown in Figs. 10 and 14 for the detuning values
�/2π = −70, 70, 130, and 190 MHz, while the other pa-
rameters are g/2π = 3 MHz, ηc/2π = ηt/2π = 300 MHz,
ωd = ωc0

t , and τr/τp = 0.3. An increase of εm corresponds to

FIG. 19. CNOT gate infidelity 1 − FMU versus duration τ CNOT
p

(both are functions of εm) for �/2π = 70 and 190 MHz and the
drive frequency on-resonance with the target qubit for the control
qubit either in the state |0〉 (solid lines, ωd = ωc0

t ) or in the state |1〉
(dotted lines, ωd = ωc1

t ) or exactly in between [dashed lines, ωd =
(ωc0

t + ωc1
t )/2]. The other parameters are the same as in Fig. 18.

moving from right to left along the lines. The main observa-
tion is that for each � the line is very steep at the left, which
naturally corresponds to a limit on decreasing the duration
of the CNOT gate. Among the plotted lines, the line for the
detuning of 190 MHz gives the shortest duration (consistent
with our discussion in Sec. III C); however, it does not give
the best fidelity.

In Fig. 19 we show the results for three slightly different
drive frequencies for the qubit detunings of 70 MHz (brown
lines) and 190 MHz (green lines). Besides using the drive fre-
quency resonant with the target qubit when the control-qubit
state is |0〉 (solid lines, ωd = ωc0

t and δ = ωt − ωc0
t ), we also

use the drive resonant with the target qubit when the control-
qubit state is |1〉 (dotted lines, ωd = ωc1

t ) and also show the
case of the drive frequency exactly in between [dashed lines,
ωd = (ωc0

t + ωc1
t )/2]. Note that ωc1

t − ωc0
t = ωzz is 127 and

200 kHz for detunings of 70 and 190 MHz, respectively [see
Eq. (11)]. We see that this small change of the drive frequency
practically does not affect the natural limit for the duration
τ CNOT

p ; however, it may very significantly affect the infidelity.
For example, for �/2π = 70 MHz the minimum infidelity is
1.7 × 10−4 for ωd = (ωc0

t + ωc1
t )/2, while it is 7.7 × 10−4 for

ωd = ωc0
t . We have checked that this small change of the drive

frequency practically does not affect the leakage 1 − FMM̃ , but
affects significantly the infidelity contribution 1 − FM̃U due to
the imperfection of the unitary operation. This is exactly what
is expected from the analysis in Sec. VI, since the unitary
imperfection is due to imperfect resonance between the drive
and the target qubit. As we see from the numerical results, the
drive frequency ωd = (ωc0

t + ωc1
t )/2 typically gives a better

optimized fidelity than for ωd = ωc0
t or ωd = ωc1

t .
In all previous numerical plots, we assumed the qubit-qubit

coupling g/2π = 3 MHz. Figure 20 shows the CNOT gate
infidelity for g/2π = 1.5, 3, and 6 MHz, while �/2π =
190 MHz and the other parameters are as in Fig. 18. As
expected, for minima of the lines in Fig. 20, the CNOT gate

012301-15



TRIPATHI, KHEZRI, AND KOROTKOV PHYSICAL REVIEW A 100, 012301 (2019)

FIG. 20. CNOT gate infidelity 1 − FMU versus duration τ CNOT
p for

�/2π = 190 MHz and several values of the qubit-qubit coupling:
g/2π = 1.5, 3, and 6 MHz. The other parameters are the same as in
Fig. 18.

duration decreases with increasing g as τ CNOT
p ∝ g−1; however,

we see that the infidelity increases crudely as g2 (consistent
with the scaling ωzz ∝ g2, so that ωzzτ

CNOT
p ∝ g). An increase

of g also increases undesired zz interaction of idling qubits
[43] and therefore cannot be used as a simple way to reduce
the CNOT gate duration in an experiment.

In Fig. 21 we numerically analyze the dependence on the
relative duration of the pulse ramp by changing the ratio τr/τp

in the pulse shape (48): τr/τp = 0.1, 0.2, 0.3, 0.4, and 0.5 (the
other parameters are as in Fig. 18 with �/2π = 190 MHz).
For clarity, we do not show all oscillations on the left, cutting
the lines at some maxima of the oscillations. We see that at
the right side of the graph (long τ CNOT

p ) it is better to have the
longest possible ramp, τr/τp = 0.5. However, in the optimal
range of short τ CNOT

p with still small infidelity, the line with

FIG. 21. CNOT gate infidelity 1 − FMU versus duration τ CNOT
p for

�/2π = 190 MHz and several values of the relative duration of the
pulse ramps: τr/τp = 0.1 (dotted line), 0.2 (dashed line), 0.3 (solid
line), 0.4 (dash-dotted line), and 0.5 (long-dashed line). The other
parameters are the same as in Fig. 18. The lines are cut at the left for
clarity.

FIG. 22. CNOT gate infidelity 1 − FMU versus duration τ CNOT
p for

�/2π = 190 MHz and several values of the microwave crosstalk
coefficient: cct = 0 (solid line), 0.05 (dotted line), 0.1 (dashed line),
and 0.2 (dash-dotted line). The other parameters are the same as in
Fig. 18. The lines are cut at the left for clarity.

τr/τp = 0.3 shows the best performance, which can be un-
derstood as the following trade-off. For longer ramps and the
same τ CNOT

p , we need to use larger εm that increases the leakage
(even though the ramp is smoother), while for shorter ramps
and the same τ CNOT

p , the leakage is also increased because the
ramp is too short and consequently nonadiabatic (even though
εm is smaller). Thus, the ramps should be sufficiently smooth,
but it is still beneficial to have a flat part of the pulse.

Finally, let us discuss the effect of the microwave crosstalk,
which is always present in experiments [20,22,25]. To include
it, we need to add the crosstalk Hamiltonian

Hct =
∑
n,m

cctε(t )
√

m|n, m〉〈n, m − 1| + H.c., (62)

which describes the microwave field applied directly to the
target qubit. The crosstalk coefficient cct can in general be
complex, and experimental results seem to indicate a complex
cct [20,33]. However, for simplicity, here we assume a real
cct. In the ideal and semianalytical theory, the crosstalk with
real cct does not affect the results, except adding the phase
ϕct = ∫ τ p

0 2cctε(t )dt to both ϕ0 and ϕ1. However, it affects
the numerical results because the crosstalk changes the Bloch-
sphere angle of tilt caused by the effect of ωzz.

Figure 22 shows numerical results for several values of
the (real) crosstalk coefficient cct (the parameters are as in
Fig. 18 with �/2π = 190 MHz). We see that the crosstalk
improves fidelity. This improvement can be easily under-
stood. The crosstalk does not affect leakage, but it decreases
the imperfect-unitary contribution 1 − FMM̃ because now the
drive detuning ωd − ωc1

t should be compared with a larger
Rabi frequency ε̃1 + cctε instead of ε̃1, and therefore the
resulting tilt of the Bloch-sphere evolution is smaller (the
same effect for the control-qubit state |0〉 if the signs of
ε̃0 and cctε coincide). Thus, somewhat unexpectedly, the
microwave crosstalk can improve the gate fidelity. However,
this improvement is significant only if the effect of ωzz is
significant. For example, if in an experiment the infidelity
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is mainly determined by leakage and decoherence, then the
crosstalk will not improve fidelity. Also, we recall that here
we considered only real crosstalk coefficients, and the results
for a complex cct may be significantly different.

The effect of the echo sequence is analyzed numerically in
the Appendix. The main observation is that the echo-CR gate
is typically longer than the basic CR gate for the same level of
infidelity (even assuming instantaneous single-qubit gates).

VIII. CONCLUSION

In this paper we have analyzed analytically, semianalyti-
cally, and numerically the operation of the cross-resonance
gate for superconducting qubits, focusing on using the CR
gate to realize the CNOT gate operation [20,22,27]. Our model
has been based on the Hamiltonian (1)–(8) and simple pulse
shape (no echo sequence).

The analytical theory gives Eq. (18) for the effective drive
amplitude ε̃n of the target qubit, which depends on the control-
qubit state |n〉. However, the analytics can be used only for
sufficiently small (and not too small) physical drive amplitude
ε. The next-order analytics (Sec. III B) slightly widens the
applicability range; however, it is still inapplicable in the
practically interesting range of ε.

We have found that the speed of the CR gate and the
compensating single-qubit rotations can be obtained very
accurately by a sufficiently simple semianalytical theory, dis-
cussed in Sec. III C. This theory [Eqs. (26)–(29)] is based on
solving a one-qubit time-independent Schrödinger equation.
The semianalytical theory depends on only two parameters:
dimensionless qubit-qubit detuning �/ηc (normalization is
the control-qubit anharmonicity ηc) and dimensionless drive
amplitude ε/ηc. The dimensionless speed of the CR gate as a
function of these two parameters is shown in Fig. 7. The CR
gate speed cannot be increased indefinitely by increasing the
drive amplitude ε; the maximum speed (as a function of �/ηc)
and the corresponding drive amplitude are shown in Fig. 8. As
follows from Figs. 7 and 8, the best operation of the CR gate
is expected for the detuning within the range 0.5ηc < � < ηc.

The full numerical approach (discussed in Sec. IV) is
mainly needed to calculate intrinsic fidelity of the CNOT-
equivalent CR gate. The numerical results depend on the pulse
shape, for which we use the simple cosine-ramp model (48).
Most importantly, the infidelity 1 − FMU has a minimum as a
function of the midpulse drive amplitude εm. The minimum
value depends on the detuning � (Figs. 14 and 18), and for
typical parameters used in this paper the optimal infidelity is
on the order of 10−3 (though it approaches 10−4 for some
parameters and in principle the theoretical infidelity can be
arbitrarily small for complicated pulse shapes [35]).

Our model does not include decoherence, so the error
budget of the gate consists of two contributions: due to
imperfect unitary operations and due to leakage [Eq. (57)].
The imperfect unitary dominates at small εm. The mechanism
of this imperfection is related to the zz interaction of the
qubits [Eq. (10)], which makes the target-qubit frequency
dependent on the control-qubit state (ωc1

t − ωc0
t = ωzz) and

therefore makes it impossible to use a drive frequency exactly
on-resonance with the target qubit in both cases (for the
control-qubit states |0〉 and |1〉). Because of this contribution

into the error budget, at small εm the gate infidelity is very
sensitive to small changes of the drive frequency (Fig. 19) and
the microwave crosstalk can improve fidelity (Fig. 22).

The other contribution to the error budget, which domi-
nates at large drive amplitudes εm, is due to leakages. The
main leakage is in the strongly driven control qubit and is
caused by nonadiabaticity during the ramps of the pulse.
Depending on the ratio �/ηc between the detuning and
control-qubit anharmonicity, the main leakage mechanism can
be either |0〉 ↔ |1〉 (between the control-qubit states |0〉 and
|1〉) or |0〉 → |2〉 or some other leakage channel. In particular,
for |�| � ηc there is a strong leakage |0〉 ↔ |1〉 because the
drive frequency is near-resonance with the control qubit. Sim-
ilarly, for |� − ηc/2| � ηc there is a strong leakage |0〉 → |2〉
because in this case the energy difference between states |2〉
and |0〉 of the control qubit is near-resonance with doubled
frequency of the drive. In some cases we also observed a
significant leakage for the channel |0, 1〉 → |1, 2〉 (when it
becomes near-resonance with the doubled drive frequency).

Strong leakage makes the CR gate operation impractical
when detuning � is close to 0, ηc/2, ηc, 3ηc/2, etc. Therefore,
we would expect the best operation of the CR gate for the
detuning within the range 0.6ηc < � < 0.8ηc (see Figs. 7 and
8). Another reasonable range (which requires smaller drive
amplitudes) is 0.2ηc < � < 0.3ηc.

Crudely, the CNOT-equivalent gate duration τ CNOT
p (opti-

mized over εm) is comparable to π/g, with a coefficient
somewhat larger or smaller than 1, depending on �/ηc (see
Fig. 18). The optimized intrinsic infidelity for a simple pulse
shape (48) is crudely comparable to (g/ηc)2 (as follows from
scaling of ωzz and τ CNOT

p ), with a coefficient typically about
100–101.5, depending on the drive frequency, �/ηc, crosstalk,
etc. We have found that to reduce the nonadiabatic leakage,
the ramps of the pulse should occupy a significant fraction of
the pulse duration; however, the flat part in the middle of the
pulse should not be shortened to zero.

In this paper we have not focused on analyzing the echo
sequence. However, some numerical results for the echo-CR
gate are presented in the Appendix. In the echo sequence,
there are four ramps instead of two; therefore, for the same
total pulse duration, the ramps are shorter. This increases
nonadiabatic leakages, so for the same infidelity, the echo-CR
gate duration is typically longer than for the basic CR gate
(Fig. 24).

A crude estimate of the CR gate infidelity contribution
due to decoherence (within the computational subspace only)
is given by Eq. (51). However, for large drive amplitudes,
the bare state |2〉 and higher states of the control qubit are
significantly occupied; their decoherence is typically much
faster than in the computational subspace and therefore can
significantly increase the gate infidelity. Another potential
mechanism for experimental CR gate infidelity is due to
two-level systems (TLSs) produced by impurities. A strong
drive changes the effective energy levels in the control qubit
by about 102 MHz and therefore the TLSs can become on-
resonance with the control qubit during the ramp of the pulse.
Moreover, large drive amplitude makes multiphoton processes
easily possible and therefore TLSs can become resonant with
combinational frequencies for many channels (similar to the
situation for fast measurement of a qubit).
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Note that in this paper we did not explicitly take into
account the resonator, providing coupling between the qubits;
instead we replaced it with an equivalent direct coupling.
It would be interesting to repeat our numerical simulations,
taking into account the resonator levels explicitly. However,
we do not expect a significant modification of the results
because the additional nonadiabatic effects should be sup-
pressed by typically large detuning between the resonator and
qubits. It would also be interesting to include decoherence
in the simulations; however, it is not obvious what a proper
model is for decoherence of higher levels, relevant to actual
experimental situations.

We hope that some experimental group will carry out
detailed measurements of the CNOT gate duration and error
budget of the CR gate as functions of the drive amplitude,
drive frequency, detuning, and pulse shape. It will be inter-
esting (and important for the CR gate application in quantum
computing) to compare experimental results with our theoret-
ical findings.
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APPENDIX: EFFECT OF THE ECHO SEQUENCE

In the main text we focused on analysis of the basic CR
gate. Here we analyze the echo-CR gate [20,26,28].

The echo-CR gate [26] is essentially a sequence of two
same-shape basic CR gates with halved rotation angles |ϕ1 −
ϕ0| = π/2, with the control qubit state flipped (|0〉 ↔ |1〉) in
between the two halves of the procedure and with the flipped
phase (ε → −ε) of the applied microwave drive for the sec-
ond half of the procedure. In this case the x-rotation angles for
the target qubit become ϕ1 = ϕ

(1)
1 + ϕ

(2)
0 = ϕ

(1)
1 − ϕ

(1)
0 and

ϕ0 = ϕ
(1)
0 + ϕ

(2)
1 = ϕ

(1)
0 − ϕ

(1)
1 , where the superscripts refer

to the first or second half of the procedure. Consequently,
ϕ1 = −ϕ0 and also ϕ1 − ϕ0 = π when ϕ

(1)
1 − ϕ

(1)
0 = π/2.

This is what is often called a ZXπ/2 gate [20,22,26]. Note
that the relations ϕ

(2)
0 = −ϕ

(1)
0 and ϕ

(2)
1 = −ϕ

(1)
1 are because

of the symmetry of the procedure and the phase shift by π

for the drive ε(t + τp/2) = −ε(t ), where τp/2 is the time
difference between the two halves of the procedure. Also note
that the control qubit should be flipped back after the second
pulse (though this flip can sometimes be compiled into the
overall sequence of an algorithm).

Because of the symmetry, the echo sequence eliminates
the need to apply the compensating x rotation of the target
qubit (by −ϕ0, as assumed in the main text). It also eliminates
the need to apply compensating z rotation of the control
qubit (by θ0 − θ1 + π/2, as assumed in the main text). This
significantly reduces experimental complexity. Nevertheless,
if we want to produce CNOT gate from the echo-CR gate
ZXπ/2, we still need to apply additional x rotation by π/2 for
the target qubit and z rotation by π/2 for the control qubit.

The analytical (Sec. III A) and semianalytical theories
(Sec. III C) for the echo-CR gate do not change compared
with the basic CR gate because of the symmetry: We can

FIG. 23. CNOT gate infidelity 1 − FMU versus duration τ CNOT
p for

the echo-CR gate (solid lines) and the basic CR gate (dashed lines).
The detunings �/2π are 190 MHz (green lines), 130 MHz (blue
lines), 70 MHz (brown lines), and −70 MHz (magenta lines). The
parameters are the same as in Fig. 18, except we use ωd = (ωc0

t +
ωc1

t )/2. The lines are cut at the left for clarity.

just use the total gate duration with the same drive amplitude.
In particular, Figs. 7 and 8 are still applicable without any
change. However, numerical results are different because the
ramps for the echo-CR gate of the same duration are shorter
and correspondingly the leakage is typically bigger.

In the numerical simulations, for the first half of the
procedure (0 � t � τp/2) we use the pulse shape (48) with
substitutions τp → τp/2 and τr → τr/2, while for the second
half (τp/2 � t � τp) we use the inverted shape ε(t ) = −ε(t −
τp/2). Therefore, τp is the total pulse duration and τr is the
total duration of the two front ramps (or two rear ramps).
We assume ideal instantaneous π rotations of the control
qubit (about x axis) at time moments τp/2 and τp, and also
ideal instantaneous rotations converting the ZXπ/2 gate into
a CNOT gate: x rotation by π/2 for the target qubit and z
rotation by π/2 for the control qubit. The fidelity is calculated
using Eq. (42), which compares the actual gate with the ideal
ZXπ/2 gate, i.e., Eq. (43) with θ0 − θ1 = 0 and |ϕ1| = π/2
(the relation |ϕ1 − ϕ0| = π is achieved by varying τp).

Figure 23 shows a comparison between the CR gate per-
formances with and without echo sequence. The dashed lines
(without echo) are the same as lines in Fig. 18, except now
we use the drive frequency ωd = (ωc0

t + ωc1
t )/2. The solid

lines show the results for the echo-CR gate with the same
parameters (colors correspond to particular detunings �).
Most importantly, we see that the steep increase at the left
for the solid lines occurs at larger τ CNOT

p . This means that for
the same infidelity 1 − FMU , the echo-CR gate is longer than
the basic CR gate (even not including the durations of the
additional π pulses). As mentioned above, this is because the
leakage is a more severe problem for the echo-CR gate: Four
ramps instead of two make their durations shorter, and this
significantly increases nonadiabaticity during ramps.

Figure 24 summarizes our semianalytical and numerical re-
sults for the basic CR gate and the echo-CR gate. It shows the
duration of the CNOT-equivalent gate τ CNOT

p versus the detuning
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FIG. 24. Symbols show the numerical results for the CNOT gate
duration τ CNOT

p for the infidelity levels of 0.003 (crosses), 0.01
(triangles), and 0.03 (circles), for several values of the detuning �

(horizontal axis): −200, −170, −130, −70, −40, 40, 70, 100, 130,
170, 190, 210, 230, and 250 MHz. Green (thicker) symbols are for
the echo-CR gate; orange (thinner) symbols are for the basic CR gate.
We use the parameters g/2π = 3 MHz, ηc/2π = ηt/2π = 300 MHz,
and τr/τp = 0.3 (results on the dimensionless scales should not
depend much on these parameters, except for τr/τp). The solid line
shows the results of the semianalytical theory (optimized over the
drive amplitude) for the same pulse shape. The dashed line shows
the semianalytical results for a rectangular pulse (the same as in
Fig. 8, but the vertical scale is inverted). Both dimensionless and
dimensional scales are given for the axes.

� between the control and target qubits, using both the
dimensionless and dimensional scales. We use the coupling
g/2π = 3 MHz, anharmonicity ηc = ηt = 300 MHz, relative
ramp duration τr/τp = 0.3, and drive frequency ωd = (ωc0

t +
ωc1

t )/2. For different values of g, ηc, and ηt , the numerical
results on the dimensionless scale are not expected to change
significantly (semianalytical results would remain exactly the
same).

The dashed line in Fig. 24 shows the CNOT gate duration
(minimized over the drive amplitude ε) as follows from the
semianalytical theory with a rectangular pulse shape. This
line is the same as the solid line in Fig. 8 on the inverted scale
(duration instead of speed). The solid line in Fig. 24 shows the
optimized CNOT gate duration for the smooth pulse shape (48)
with τr/τp = 0.3, also obtained semianalytically. We see that
this duration is longer than for the rectangular pulse, but not by
the naive factor 1/(1 − τr/τp) = 1.43 (the ratio is significantly
less than this factor because of the pulse-shape integration
over the lines in Fig. 7, for which the region near maximum
is most important). The semianalytical solid and dashed lines
are the same for the echo-CR and basic CR gates.

The symbols in Fig. 24 show numerical durations of
the CNOT-equivalent gates for three levels of the infidelity
1 − FMU , 0.3% (crosses), 1% (triangles), and 3% (circles),
using the pulse shape (48) with τr/τp = 0.3. Green (thicker)
symbols are for the echo-CR gate, while orange (thinner)
symbols are for the basic CR gate. The symbols are presented
for detunings �/2π of −200, −170, −130, −70, −40, 40,
70, 100, 130, 170, 190, 210, 230, and 250 MHz. As expected,

all symbols are above the solid line. For detunings of −130
and 100 MHz, the symbols are quite close to the solid line.
This means that at these detunings, the leakage is not yet
too strong for the near-optimal values of the drive amplitudes
(e.g., compare lines in Figs. 10 and 14 for −70 MHz); the
reason for a weak leakage is discussed later. In contrast,
for some detunings, the symbols in Fig. 24 are much above
the solid line. For example, for a detuning of 170 MHz,
the semianalytics predicts a duration of 70 ns, while for 1%
infidelity, the numerical results give 115 ns for the basic CR
gate and 141 ns for the echo-CR gate. Such a big difference
indicates a very significant leakage for the near-optimum
drive amplitudes. As expected, in this case the echo-CR gate
requires a significantly longer duration than the basic CR gate
for the same level of infidelity.

Figure 24 can be used to estimate the range of best de-
tunings, which provide close-to-shortest CNOT gate durations.
For the basic CR gate with 1% infidelity, the best detuning
range is crudely 0.6 < �/ηc < 0.65, which for our parame-
ters provides the fastest CNOT gate duration of around 90 ns
(excluding single-qubit pulses). For the echo-CR gate with 1%
infidelity, the best range is the same, and it provides the fastest
duration of about 110 ns. Another reasonably well performing
range of detunings is around �/ηc 
 0.25; for our parameters
it gives a CNOT gate duration of about 120 ns for the basic
CR gate and 130 ns for the echo-CR gate (for 1% infidelity).
One more reasonable range is around �/ηc 
 −0.25; the
corresponding CNOT gate durations are 130 ns (without echo)
and 150 ns (with echo).

The CNOT gate duration is typically longer if we require
a smaller infidelity. Correspondingly, the crosses in Fig. 24
typically are significantly higher than triangles or circles.
Moreover, in some cases (e.g., no echo, 250 MHz, and
−200 MHz) there are no crosses because the infidelity level
of 0.3% is never reached. However, for some detunings (e.g.,
100 and −130 MHz) the duration is almost the same for the
three considered levels of infidelity; as mentioned above, this
indicates low leakage for relatively large drive amplitudes.
There is even one weird case (no echo, 70 MHz), where the
order of the symbols is reversed (this is because of the unusual
behavior of the dashed brown line in Fig. 23 at the left,
which relates to the increasing behavior of the orange line in
Fig. 10).

As mentioned above, the difference between the symbols
and the solid line in Fig. 24 is mainly determined by the
leakage. We have checked that the main leakage channel for
the detuning within the range 1

3 � �/ηc � 2
3 is the transition

|0〉 → |2〉 in the control qubit. This leakage channel is very
strong when �/ηc is close to 0.5 (because of the resonance
in the rotating frame), thus making impossible the practical
operation of the CR gate at �/ηc 
 0.5. The leakage |0〉 →
|2〉 becomes weaker for detunings farther away from this res-
onance point. For �/ηc � 2

3 , the leakage channel |1〉 → |2〉
in the control qubit becomes more important (exact resonance
at �/ηc = 1). Similarly, for �/ηc � 1

3 , the leakage channel
|0〉 ↔ |1〉 in the control qubit becomes more important (exact
resonance at �/ηc = 0). Thus, the leakage is relatively low
for the detuning � near 1

3ηc or 2
3ηc. The trade-off between the

lower leakage and shorter semianalytical durations determines
the best detuning ranges in Fig. 24.
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Note that besides the leakage channels |0〉 → |2〉, |1〉 →
|2〉, and |0〉 ↔ |1〉 for the control qubit, there are also impor-
tant leakage channels which involve level |2〉 of the target
qubit. For example, for detunings of 210 and 230 MHz,
the leakage is dominated by a near-resonance between lev-
els |01〉 and |12〉. Also, for detunings of −200, −170, and
−130 MHz, the main leakage is due to a near-resonance
between levels |11〉 and |02〉. Overall, the interplay between
different leakage channels is rather complicated, leading
to a rather complicated behavior of numerical results in
Fig. 24.

Since the echo-CR gate is more affected by the leakage
than the basic CR gate, a natural hypothesis is that its opera-

tion can be improved by using smoother ramps, in particular,
by changing the relative duration of the front (and rear) ramps
from the value τr/τp = 0.3 (used in Fig. 24) to the maximum
possible value τr/τp = 0.5. To check this hypothesis, we have
also simulated the echo-CR gate operation with τr/τp = 0.5,
but the results were inconclusive: Sometimes this makes CNOT

time slightly shorter, sometimes slightly longer. For example,
for the detuning of 190 MHz (our shortest-duration point),
changing τr/τp from 0.3 to 0.5 increases the CNOT time by
4 ns for 0.3% infidelity and by 1 ns for 1% infidelity, but
decreases it by 12 ns for 3% infidelity. Thus, crudely, we think
that the pulse shape ratio τr/τp = 0.3 is still reasonable for the
echo-CR gate.
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