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Excitation energy transfer with initial system-bath correlations for coherent initial conditions
in a toy donor-acceptor model
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A theory of coherent resonant energy transfer with initial system-bath correlations [Qin et al., Phys. Rev. A 99,
032111 (2019)] is extended for a coherent initial system condition, which is a linear superposition of donor and
acceptor excitations, and is more general and actual in many respects. The nonequilibrium bath state, containing
initial system-bath correlations, is expanded in powers of coupling strength within the polaron formalism of
second-order time-convolutionless quantum master equation. Detailed expressions for both homogeneous and
inhomogeneous terms are derived and calculations are performed under the assumption of super-Ohmic spectral
densities where the case of common bath modes is also included. Numerical results indicate that, for certain
initial system conditions, the nonequilibrium due to the initial system-bath correlations brings about larger
amplitude of population oscillation. And the initial system condition is of crucial importance in determining
whether the initial system-bath correlations would play a significant role in the transfer dynamics. We identify
a sensitive window in which the transfer dynamics is especially vulnerable to the bath such that there exists a
greatly obvious difference between the dynamics with and without initial correlations. Besides, the system-bath
coupling strength, the evolution time, and the nature of common bath modes are also shown to contribute to these
effects. Rate equations based on Förster-Dexter energy transfer theory are derived for comparison.
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I. INTRODUCTION

In natural photosynthesis, light energy is captured and
transferred to the reaction center with high efficiency of nearly
100%. This feature inspires widespread interest in reveal-
ing the microscopic mechanism of excitation energy transfer
(EET) in light-harvesting complexes, which is a vital step for
photosynthetic organism [1]. Recently, growing experimental
and theoretical explorations indicate that quantum coherence
may have a positive effect on the efficient energy transfer
despite substantial environment of the protein scaffold and
solvent [2–15]. An appropriate and reliable theory that can
provide a precise description of excitation energy transfer
dynamics is thus in urgent need.

With the development of experimental techniques, the
timescales of various reaction processes can now be de-
termined. It is recognized that clear separation of these
timescales is really not easy. Conventional approaches of
incoherent quantum transfer [16–18] and weak system-bath
coupling approximation [19,20] become inaccurate since it
is hard to define a perturbation term. This leads to alterna-
tive approaches to overcome this difficulty, including several
nonperturbative techniques [21–28] as well as sophisticated
stochastic description of system-plus-bath dynamics [29]. Al-
though these methods can give exact dynamics numerically,
they suffer from being computationally demanding with in-
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creasing system size. In this respect, a modified perturbative
method named a polaron-transformed second-order master
equation has been developed to describe the dynamics in the
intermediate or strong coupling regime [30–47]. In terms of
a combined electronic-bath basis, this approach assumes the
electronic excitation moves collectively with its surrounding
bath deformation rather than treats them separately. The elec-
tronic system-plus-phonon bath Hamiltonian is transformed
into the so-called polaron frame in which electronic couplings
are renormalized and fluctuate as a result of interaction with
the bath [30–47]. Although based on a perturbative treat-
ment, it can give reliable results to describe the excitation
energy transfer dynamics beyond weak system-bath coupling
limit, allowing for a consistent exploration of the intermedi-
ate regime where many multichromophoric systems operate,
serving as a bridge between the Förster-Dexter and Redfield
situations, provided that the high-frequency bath modes dom-
inate and the energy scale related to the fluctuations of the
electronic coupling in the polaron frame is the smallest in the
system [32,34]. Meanwhile, it is quite computationally eco-
nomic compared with the numerically exact nonperturbative
techniques [21–29] and therefore has advantages for studying
large systems. In this work, we adopt the polaron quantum
master equation (QME) to study the excitation energy transfer
dynamics.

As far as we know, one common assumption in describ-
ing such open systems as light-harvesting complexes with a
master equation amenable to analytic or numerical solutions
is referred to as “factorized initial condition,” i.e., the system
and its surrounding environment (or bath) are completely
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uncorrelated at the initial moment of the evolution process.
This assumption is justified under the conditions of weak
system-bath coupling and Markovian bath [48–50]. The weak
system-bath coupling condition implies that the system has
a negligible impact on the bath statistics and the initial
system-bath state would not play a significant role in system
dynamics. And if the bath is Markovian, any influence of
initial system-bath correlation is quickly lost. It is not the
case, nevertheless, for natural light-harvesting complexes.
The surrounding solvent and protein scaffold, especially the
quantized vibration modes, serve as the environment (bath),
and couple strongly to the electronic excitations within photo-
synthetic chromophores like a “memory” for the system [45,
51–57]. By the way, a separable initial state generally adopted
in most previous works corresponds to sudden creation of an
excited state in the system originally in the ground electronic
state with the bath in thermal equilibrium, by an impulsive
excitation at time t = 0. This is a good approximation for
the case of excitation pulse less than 100 fs, ensured by
the Franck-Condon principle. However, for natural photosyn-
thesis, most excitation transfer in light-harvesting complexes
is initialized from an excited molecule, rather than direct
absorption of a photon [2,3]. In this case, the validity of
the assumption of initial uncorrelated state should be under
close scrutiny [58–65], and the role of initial system-bath
correlations should be reconsidered seriously to assess its
influence on the excitation energy transfer dynamics.

In a recent work [66], which will be designated as Paper I
hereafter, a theory of coherent resonant energy transfer with
initial system-bath correlations was developed. This theory
combines the weak coupling expansion of the bath state with
the polaron transformation, thus is valid not only in weak
system-bath coupling regime. Model calculations in Paper I
indicated that the nonequilibrium due to the initial system-
bath correlations and the polaron transformation can acceler-
ate or slow down the dynamics depending on different energy
situations. Moreover, it was shown that initial correlations
cause larger amplitude of population oscillation, which may
help to interpret long-lasting quantum phenomenon under nat-
ural conditions. In this work, the theory in Paper I is extended
for a coherent initial system state that means linear superposi-
tion of donor and acceptor excitations since a coherent initial
system condition is more general and actual for excitation
energy transfer in light-harvesting complexes [32,67].

The remainder of the paper is organized as follows: In
Sec. II, a donor-acceptor model for this paper is introduced.
Then, the formalism of polaron master equation is sketched,
including the Hamiltonian, initial system-plus-bath condition,
homogeneous and inhomogeneous terms of the polaron mas-
ter equation, and the spectral densities adopted for the model.
In Sec. III, we focus on the time evolution of the donor pop-
ulation to inspect the influence of nonequilibrium preparation
due to the initial system-bath correlations under two different
energetic situations and a variety of initial system conditions.
The effects of common bath modes are examined in order to
assess how the nature of common bath modes impacts the
transfer dynamics. Rate equations based on Förster-Dexter
energy transfer theory are derived as well for comparison.
At last, Sec. IV is devoted to concluding remarks. More
details of expressions of inhomogeneous terms and necessary

transformation operations in the polaron master equation are
presented in the Appendices.

II. THEORY

Motivated by the possible effects of initial system-bath
correlations on EET dynamics, we focus on the case of single
excitation in a simple donor-acceptor (D-A) pair [31–34]
throughout the paper. First, we introduce the theoretical
framework.

A. Hamiltonian and initial condition

Serving as a toy model to investigate the EET dynamics
subjected to surrounding bath modes, the model of donor-
acceptor pair to be studied in this paper is basically consistent
with that in Paper I, except that a more general initial system
condition is employed. It consists of single chromophoric
energy donor (D) and acceptor (A) together with a phonon
bath linearly coupled to the individual chromophore (site).
The phonon bath can be regarded as an infinite number of
degrees of freedom each described by a quantum harmonic
oscillator. Then, the excitation energy transfer between the
donor and acceptor is governed by a Frenkel exciton model
Hamiltonian expressed as

H = H p
s + Hc

s + Hb + Hsb. (1)

The first term in Eq. (1) is

H p
s =

∑
i=D,A

Ei|i〉〈i|, (2)

denoting population of the system Hamiltonian. |D〉 (|A〉) is
designated as the state where only D (A) is excited. Ei (i =
D, A) is the corresponding energy with respect to |g〉 where
both sites are in the ground electronic state. The second term
in Eq. (1) is given by

Hc
s = J (|D〉〈A| + |A〉〈D|), (3)

with J the resonant electronic coupling between |D〉 and |A〉.
The third term in Eq. (1) represents the bath Hamiltonian

Hb =
∑

k

ωkb†
kbk, (4)

where b†
k (bk) is the creation (annihilation) operator and ωk the

frequency of the kth phonon mode of surrounding bath. The
last term in Eq. (1),

Hsb =
∑

i=D,A

∑
k

gki(b
†
k + bk )|i〉〈i|, (5)

describes the system-bath interaction Hamiltonian with gki the
coupling strength of site i (i = D, A) to the kth mode of bath.

Then, the quantum Liouville equation corresponding to the
total Hamiltonian (1) is as follows:

dρ(t )

dt
= −iLρ(t ) = −i

(
Lp

s + Lc
s + Lb + Lsb

)
ρ(t ), (6)

where the total Liouville operator L is defined as L(·) =
[H, (·)] and the spontaneous decay to the ground electronic
state |g〉 is neglected. Similarly, Lp

s , Lc
s, Lb, and Lsb are
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Liouville operators corresponding to the Hamiltonians (2)–
(5), respectively. ρ(t ) is the total density operator for the
combined system plus bath at time t . Taking trace of ρ(t ) over
the bath degrees of freedom, we obtain the reduced density
operator for the system written as

σ (t ) = Trb{ρ(t )}. (7)

It is generally assumed that the system is originally pre-
pared in the ground electronic state, while the bath in the
canonical equilibrium [2–15]. The two parts as a whole are in
thermal equilibrium. Then, a single excitation is suddenly cre-
ated by a pulse laser with time duration less than that of bath
relaxation as well as the ensuing energy transfer dynamics.
Therefore, the bath remains unchanged due to the timescale
separation, and the initial condition can be approximated as
an uncorrelated state with the following form:

ρ(0) = σ (0) ⊗ ρb, (8)

in which ρb = e−βHb/Zb is the canonical equilibrium state
with β = 1/kbT , Zb = Trb{e−βHb}. Although it neglects the
initial correlations between the single excitation system and
the bath, many works adopt this initial condition of direct
product form since it is a good approximation for a rapid
photoexcitation from the ground state, which is ensured by
the Franck-Condon principle. In addition, the short laser pulse
is widely employed to excite the pigment molecule in the
experiments with light-harvesting complexes [6–8], which
also makes this approximation well grounded.

Nevertheless, we can go further in order to give more
reliable elucidation of excitation energy transfer dynamics in
actual light-harvesting complexes, such as FMO and LH2.
It should be noted that most pigment molecules accept ex-
citation energy from the adjacent excited molecules, rather
than via absorbing photons directly [2,3]. Such intermolec-
ular excitation process of pigment molecules from ground
electronic state essentially equals to the excitation energy
transfer between molecules, and spans the same characteristic
timescale, which is in turn longer than that of bath relaxation.
When the excitation is being transferred into the D-A system
we are interested in, it begins to interact with surrounding bath
[6–8]. Consequently, if we set a particular instant, at which the
excitation energy is totally absorbed into the D-A system, as
the initial moment for the excitation energy transfer evolution
we focus on, the initial system-bath correlations have been
established and then can not be neglected. One may safely
assume that the bath modes have already relaxed and become
equilibrated with the excited donor-acceptor system before
the energy transfer takes place. Consideration of the initial
system-bath correlations thus can be justified for this case
[58–65]. In addition, for the case of actual photosynthetic
energy transfer process, system-bath coupling strength can
be comparable to the electronic couplings among pigment
molecules, and the surrounding solvent and protein scaffold
acts as a “memory” for the system [45,51–57], therefore, from
the point of view of quantum open system theory, the initial
system-bath correlations should be taken into account in this
case. In light of these discussions, it is clearly worthwhile to
investigate how EET dynamics is modified by initial system-
bath correlations. We assume that at time t = 0, the incoming
excitation energy from the antenna creates a superposition of

excited D and A:

|I〉 = ID|D〉 + IA|A〉, (9)

where ID and IA are arbitrary complex numbers satisfying
|ID|2 + |IA|2 = 1. And the initial condition for this situation
is assumed to be of the following form:

ρ(0) = σ (0) ⊗ 〈I|e−βH |I〉
Z

, (10)

where σ (0) = |I〉〈I| is the initial state for the system. Z is the
partition function such that Trs,b[ρ(0)] = 1. One may imagine
other different forms by considering structural characteristics
of specific pigment molecules. Physically, Eq. (10) can be
interpreted as follows: at time t < 0, the single excitation
system is in equilibrium with the bath at a inverse temperature
1/β. The bath state is modified due to the finite system-bath
interaction and the correlations between the system and the
bath have been established. Then, one makes a measurement
operating only on the system at t = 0, such that the system
is prepared in the pure state σ (0) = |I〉〈I|. Based on general
principles of quantum measurement theory, the combined
system plus bath after the measurement can be described by
Eq. (10). The bath now is prepared in a state of ρb(0) =
〈I|e−βH |I〉/Z , which contains the system-bath correlations
that have been established beforehand. From Eq. (10) we see
that, due to the system-bath interaction, the bath state is no
longer a thermal equilibrium state ρb since in Eq. (8) ρb keeps
fixed for any initial states of the system σ (0), which means
the system and the bath are initially uncorrelated. Thus, it is
generally recognized that Eq. (10) contains initial system-bath
correlations though it resembles Eq. (8) in form. It is not equal
to the reduced state of the total equilibrium state Trs{e−βH }/Z
either. As a result, after the system preparation, the bath
evolves under the action of the total Hamiltonian H and finally
approaches the total system-bath equilibrium state. Inaccurate
and even some kind of artificial manipulation as this form
of initial condition might be for actual photosynthetic energy
transfer processes, it contains initial system-bath correlations
that are often neglected in previous works.

By the way, a straightforward extension of the formalism
presented here may be multistate generalization. In this case,
Eq. (1) represents the model Hamiltonian of N sites coupling
to surrounding phonon bath. The initial system state (9) is then
generalized to a superposition of these N excited electronic
states. A minimal model for multistate system, for example,
consists of donor-bridge-acceptor (D-B-A) states coupled to
a phonon bath. Clarification of how such initial system-bath
correlations manifest may help to understand the mecha-
nism underlying the remarkably efficient EET across entire
light-harvesting complexes of 100-nm length scale, which
has attracted a rapidly growing interest from different sci-
entific communities by various experimental and theoretical
approaches [4–30]. Further works will be committed to this
aspect.

It should be made clear that the formalism of polaron
transformation does not refer to actual physical formation of
polaron. Rather, it is just a unitary transformation used to
identify a small term of Hamiltonian beyond weak system-
bath coupling regime such that this term can serve as per-
turbation in deriving a QME even in intermediate and strong
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system-bath coupling regime. It was first used to treat charge
transfer in organic molecular crystals and then developed
to consider population dynamics in EET [37]. It does not
separate the exciton and bath, but assumes that the elec-
tronic excitation moves collectively with its surrounding bath
deformation. With this in mind, we move into the polaron
frame following previous works [30–47] through the ap-
plication of the polaron transformation generated by G =∑

i=D,A

∑
k

gki

ωk
(b†

k − bk )|i〉〈i| to Eq. (6). This results in a quan-
tum Liouville equation for the total density operator ρ̃(t ) in
the polaron frame. The next step is to go into the interaction
picture and derive a time-convolutionless (TCL) quantum
master equation for σ̃I (t ) = Trb[ρ̃I (t )] in the following form:

d

dt
σ̃I (t ) = Trb[K(t )ρ̃I (t )] + Trb[I(t )ρ̃I (0)], (11)

where ρ̃I (t ) denotes the total density operator in the interac-
tion picture. This procedure is the same with Paper I and we
sketch the derivations in Appendix A.

B. Homogeneous terms

The first term on the right-hand side of the TCL master
equation (11) gives the homogeneous contribution

Trb[K(t )ρ̃I (t )] = −α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )σ̃I (t ) ⊗ ρb},

(12)
which gives rise to the standard form of second-order terms in
the master equation. If we insert the interaction Hamiltonian
(A13) into (11) and use the cyclic invariance of the bath
operators within Trb[. . . ], the bath correlation functions can
be decoupled from the commutators of system operators.
These derivations lead to the explicit expressions for the
homogeneous term in (11) (here we set α = 1) as follows:

Trb[K(t )ρ̃I (t )]

= −J2eS(0,0)
∫ t

0
dτ {(eS(0,τ−t ) − 1)[T(t ),T(τ )σ̃I (t )]

+ (e−S(0,τ−t ) − 1)[T†(t ),T(τ )σ̃I (t )]

+ (e−S(0,τ−t ) − 1)[T(t ),T†(τ )σ̃I (t )]

+ (eS(0,τ−t ) − 1)[T†(t ),T†(τ )σ̃I (t )]} + H.c., (13)

in which

S(λ, t )

= −1

2

∑
k

(
δgk

ωk

)2[
coth

(
βωk

2

)
(eλωk−iωkt + e−λωk+iωkt )

− (eλωk−iωkt − e−λωk+iωkt )

]
. (14)

The same convention will be used hereafter. Besides, “H.c.”
denotes the Hermitian conjugates of all the previous terms.

C. Inhomogeneous terms with initial uncorrelated state

The second term on the right-hand side of Eq. (11) repre-
sents inhomogeneous contribution due to the nonequilibrium
preparation of initial bath state in the polaron frame, involving

the influence of the initial system-bath correlations

Trb[I(t )ρ̃I (0)] = −iα Trb{L̃1,I (t )Qρ̃I (0)}

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃I (0)}.

(15)

The expressions for the inhomogeneous term can be obtained
by substituting the initial condition ρ̃I (0) into Eq. (15). These
are much more complicated than those obtained in Paper I and
the details of their derivations are left to the following two
subsections.

For the case of initial uncorrelated state (8), the application
of polaron transformation leads to

ρ̃uncor (0) = eGσ (0) ⊗ ρbe−G

= |ID|2θ†
DρbθD|D〉〈D| + IAI∗

Dθ
†
AρbθD|A〉〈D|

+ IDI∗
Aθ

†
DρbθA|D〉〈A|+|IA|2θ†

AρbθA|A〉〈A|, (16)

from which the corresponding reduced system density opera-
tor can be obtained by taking trace of Eq. (16) over the bath
degrees of freedom as follows:

Trb{ρ̃uncor (0)} = |ID|2|D〉〈D| + wIDI∗
A |D〉〈A|

+wIAI∗
D|A〉〈D| + |IA|2|A〉〈A|. (17)

The subscript in Eqs. (16) and (17) is for the sake of distinc-
tion. With Eq. (17), one can show that

Qρ̃uncor (0) = (1 − P)ρ̃uncor (0)

= |ID|2(θ†
DρbθD − ρb)|D〉〈D|

+ IAI∗
D(θ†

AρbθD − wρb)|A〉〈D|
+ IDI∗

A (θ†
DρbθA − wρb)|D〉〈A|

+ |IA|2(θ†
AρbθA − ρb)|A〉〈A|. (18)

By substituting Eq. (18) into (15), we get the expressions for
the inhomogeneous contribution with the initial uncorrelated
state (8) or (16) as follows:

− iα Trb{L̃1,I (t )Qρ̃(0)}

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃(0)}

= −iαJ
4∑

l=1

Ci(t )[T(τ ), σ̃l (0)]

−α2J2
∫ t

0
dτ

{ 4∑
l=1

F(1),l (t, τ )[T(t ),T(τ )σ̃l (0)]

+F(2),l (t, τ )[T†(t ),T(τ )σ̃l (0)]

+F(3),l (t, τ )[T(t ),T†(τ )σ̃l (0)]

+F(4),l (t, τ )[T†(t ),T†(τ )σ̃l (0)]

}
+ H.c. (19)

Cl (t ) and F(n),l (t, τ ) are the bath correlation functions due
to the nonequilibrium preparation of initial bath state in the
polaron frame. More specifically, from Eqs. (16)–(18), we
see it is a result of the polaron transformation applied to
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thermal equilibrium state ρb and the following projection
operator formalism, different from that induced by initial
system-bath correlations in laboratory frame. The effects of
this transformation-induced nonequilibrium preparation on
the exciton dynamics is the focus issue of many previous
literatures on the polaron theory [30–32,34]. Instead, we will
shed light on the role of the nonequilibrium due to the initial
system-bath correlations in Sec. III. Detail expressions of
these bath correlation functions are presented in Appendix C.

D. Inhomogeneous terms with initial correlated state

Similarly, the initial system-bath correlated density opera-
tor [Eq. (10)] after the application of polaron transformation
becomes

ρ̃(0) = eGρ(0)e−G = |I ′〉〈I ′| ⊗ e−βH̃

Z
⊗ |I ′〉〈I ′|, (20)

with

|I ′〉 = ID|D〉B1/2 + IA|A〉B†1/2
. (21)

For the next, we ought to substitute this initial condition into
Eq. (15) and work out Qρ̃I (0). Observing the form of polaron-
transformed initial state ρ̃(0) in Eq. (20), nevertheless, we
see that this calculation can not be exactly performed in a
straightforward way as shown in Eq. (18), due to the initial
correlations stemming from the finite system-bath interaction
Hamiltonian contained in e−βH̃ . As a consequence, appropri-
ate approximations have to be made. Following the approach
that has been adopted to deriving Eqs. (11) and (15), we
expand Eq. (20) in powers of coupling strength designated by
α. For this purpose, the well-known Kubo identity should be
employed

eβ(X+Y ) = eβX

(
1 +

∫ β

0
dλ e−λXY eλ(X+Y )

)
, (22)

in which X and Y are two arbitrary operators. For the case
of our model, these two operators are, respectively, X =
−(H̃0,s + Hb) and Y = −H̃1. It is obvious that, to the first
order in system-bath coupling strength, e−βH̃ can be per-
formed a perturbative expansion after simple replacement in
the following way:

e−βH̃ ≈ e−β(H̃0,s+Hb)

(
1 −

∫ β

0
dλ eλ(H̃0,s+Hb)αH̃1e−λ(H̃0,s+Hb)

)
.

(23)

Then, the initial condition (20) in the polaron frame can be
expanded as

ρ̃(0) ≈ 1

Z
|I ′〉〈I ′| ⊗ [e−β(H̃0,s+Hb) − αe−βHbE0(β )] ⊗ |I ′〉〈I ′|,

(24)

where E0(β ) represents the first-order modification to the bath
state as a result of the initial system-bath correlations with the
following expression:

E0(β ) =
∫ β

0
dλ(eλHbJB̃e−λHbe−βH̃0,s eλH̃0,s |D〉〈A|e−λH̃0,s

+ eλHbJB̃†e−λHbe−βH̃0,s eλH̃0,s |A〉〈D|e−λH̃0,s ). (25)

Before calculating Qρ̃I (0), we should get the explicit ex-
pression for the partition function Z first. Since it guarantees
the normalization condition Trs,b[ρ(0)] = 1, taking trace of
Eq. (24) over both the system and the bath degrees of freedom,
one can obtain Z in the following form:

Z = Trs,b[ρ̃(0)] = Z ′Zb (26)

to the first order in system-bath coupling strength, where
Zb = Trb{e−βHb}, and

Z ′ = |ID|2|ID|2〈D|e−βH̃0,s |D〉 + |IA|2|IA|2〈A|e−βH̃0,s |A〉 + |ID|2|IA|2〈D|e−βH̃0,s |D〉 + |ID|2|IA|2〈A|e−βH̃0,s |A〉

+w|ID|2IAI∗
D

[
〈D|e−βH̃0,s |A〉 − wJ

∫ β

0
dλ(e−S(λ,0) − 1)[(dax + day)DD − dazDA] + (eS(λ,0) − 1)(adyDD − adzDA)

]

+w|IA|2IDI∗
A

[
〈A|e−βH̃0,s |D〉 − wJ

∫ β

0
dλ(eS(λ,0) − 1)(dazAD − dayAA) + (e−S(λ,0) − 1)[(adx − ady)AA + adzAD]

]

+w|ID|2IDI∗
A

[
〈A|e−βH̃0,s |D〉 − wJ

∫ β

0
dλ(eS(λ,0) − 1)(dazAD − dayAA) + (e−S(λ,0) − 1)[(adx − ady)AA + adzAD]

]

+w|IA|2IAI∗
D

[
〈D|e−βH̃0,s |A〉 − wJ

∫ β

0
dλ(e−S(λ,0) − 1)[(dax + day)DD − dazDA] + (eS(λ,0) − 1)(adyDD − adzDA)

]
.

(27)

In Eq. (27), α is set to be 1, and four inner products, according to Eq. (A8), are given by

〈D|e−βH̃0,s |D〉 = cosh

(
β�ε

2

)
− ẼD − ẼA

�ε
sinh

(
β�ε

2

)
, (28)

〈D|e−βH̃0,s |A〉 = −2Jw

�ε
sinh

(
β�ε

2

)
, (29)

〈A|e−βH̃0,s |D〉 = −2Jw

�ε
sinh

(
β�ε

2

)
, (30)
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〈A|e−βH̃0,s |A〉 = cosh

(
β�ε

2

)
+ ẼD − ẼA

�ε
sinh

(
β�ε

2

)
,

(31)

where

�ε =
√(

ẼD − ẼA

2

)2

+ J2w2. (32)

Besides, the identities

eλH̃0,s |D〉〈A|e−λH̃0,s = dax|D〉〈A| + day(|D〉〈A| − |A〉〈D|)
+ daz(|D〉〈D| − |A〉〈A|) (33)

and

eλH̃0,s |A〉〈D|e−λH̃0,s = adx|A〉〈D| + ady(|D〉〈A| − |A〉〈D|)
+ adz(|D〉〈D| − |A〉〈A|) (34)

can be derived, in which the coefficients are of the following
forms:

dax = (ẼD − ẼA)
2

�ε2
cosh(λ�ε)

+ 4J2w2

�ε2
+ ẼD − ẼA

�ε
sinh(λ�ε), (35)

day = 2J2w2

�ε2
[cosh(λ�ε) − 1], (36)

daz = Jw(ẼD − ẼA)

�ε2
[1 − cosh(λ�ε)] − Jw

�ε
sinh(λ�ε),

(37)

and

adx = (ẼD − ẼA)
2

�ε2
cosh(λ�ε) + 4J2w2

�ε2

− ẼD − ẼA

�ε
sinh(λ�ε), (38)

ady = 2J2w2

�ε2
[1 − cosh(λ�ε)], (39)

adz = Jw(ẼD − ẼA)

�ε2
[1 − cosh(λ�ε)] + Jw

�ε
sinh(λ�ε).

(40)

Thus, the partition function Z is determined.
Now, the explicit expressions for Qρ̃I (0) can be calculated

explicitly. Substituting (21) into (24) gives rise to further
expansion of the initial condition in the polaron frame, which
is rather complicated since it can be decomposed into 16
terms:

ρ̃(0) =
16∑

n=1

ρ̃n(0). (41)

The expressions for these 16 terms are given in Appendix D.
Here, we take only two terms for example to elaborate the
derivation process. Detail expressions for the other terms are
presented in Appendix E. Taking trace of Eq. (24) over ρb, one
can obtain the initial condition for the reduced system density

operator also consisting of 16 terms as follows:

Trb{ρ̃(0)} = σ̃ (0) =
16∑

n=1

σ̃n(0), (42)

where

σ̃3(0) = 1

Z ′ |ID|2IDI∗
A |D〉〈A|

× [〈D|e−βH̃0,s |D〉w−α〈〈D|E0(β )|D〉B〉] (43)

and

σ̃13(0) = 1

Z ′ |ID|2IAI∗
D|A〉〈D|

× [〈D|e−βH̃0,s |D〉w−α〈〈D|E0(β )|D〉B†〉] (44)

are the two terms selected as paradigms as mentioned above. It
corresponds to ρ̃3(0) and ρ̃13(0) contained in the total density
operators for the polaron-transformed initial state ρ̃(0) in
Eq. (24) or (41), the expressions of which are, respectively,

ρ̃3(0) = 1

Z ′ |ID|2IDI∗
A |D〉〈A|

× [〈D|e−βH̃0,s |D〉ρbB − αρb〈D|E0(β )|D〉B] (45)

and

ρ̃13(0) = 1

Z ′ |ID|2IAI∗
D|A〉〈D|

× [〈D|e−βH̃0,s |D〉B†ρb − αB†ρb〈D|E0(β )|D〉]. (46)

In view of the Hermiticity of ρb〈D|E0(β )|D〉 that has been
manifested in Ref. [68], it is easy to conclude that ρ̃3(0) and
ρ̃13(0) are conjugate pairs. We choose such conjugate pairs
as an example just for the convenience of written description.
Then, subtracting Pρ̃3(13)(0) = ρbσ̃3(13)(0) from ρ̃3(13)(0) re-
sults in

Qρ̃3(0) = (1 − P)ρ̃3(0) = |ID|2IDI∗
A

Z ′ |D〉〈A|δρb3 (47)

and

Qρ̃13(0) = (1 − P)ρ̃13(0) = |ID|2IAI∗
D

Z ′ |A〉〈D|δρb13, (48)

where

δρb3 = 〈D|e−βH̃0,s |D〉ρbB̃

−αρb(〈D|E0(β )|D〉B − 〈〈D|E0(β )|D〉B〉) (49)

and

δρb13 = 〈D|e−βH̃0,s |D〉B̃†ρb

−α(B†ρb〈D|E0(β )|D〉 − ρb〈〈D|E0(β )|D〉B†〉) (50)

can be obtained straightforwardly. The first-order term of
inhomogeneous contribution (15) with ρ̃3(0) and ρ̃13(0) can
be written as

− iα Trb{L̃1,I (t )Qρ̃3(0)} − iα Trb{L̃1,I (t )Qρ̃13(0)}
= −iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃3(0)]} + H.c.

(51)
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After substituting Eqs. (47) and (48), and employing the
cyclic symmetry of trace operation, one can decouple the

bath correlation functions from the system operators. Then,
Eq. (51) is shown to be

− iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃3(0)]} + H.c.

= −iα|ID|2IDI∗
A

J

Z ′ Trb{B̃(t )δρb3}[T(t ), |D〉〈A|] + iα|ID|2IDI∗
A

J

Z ′ Trb{B̃†(t )δρb3}[|D〉〈A|,T†(t )] + H.c.

(52)

Next, with the expressions of B, B̃, and 〈D|e−βH̃0,s |D〉 defined in Eqs. (A4), (A10), and (28), respectively, and inserting Eq. (25),
the bath average quantities in Eq. (52) can be calculated as follows:

Trb{B̃(t )δρb3} = w2〈D|e−βH̃0,s |D〉(eS(0,t ) − 1) − αw3J
∫ β

0
dλ(eS(λ,t )+S(λ,0)+S(0,t ) − eS(λ,0) − eS(0,t ) + 1)(dazDD − dayDA)

+ (e−S(λ,t )−S(λ,0)+S(0,t ) − e−S(λ,0) − eS(0,t ) + 1)[adzDD + (adx − ady)DA] (53)

and

Trb{B̃†(t )δρb3} = w2〈D|e−βH̃0,s |D〉(e−S(0,t ) − 1) − αw3J
∫ β

0
dλ(e−S(λ,t )+S(λ,0)−S(0,t ) − eS(λ,0) − e−S(0,t ) + 1)(dazDD − dayDA)

+ (eS(λ,t )−S(λ,0)−S(0,t ) − e−S(λ,0) − e−S(0,t ) + 1)[adzDD + (adx − ady)DA]. (54)

The Hermitian conjugate term in Eq. (51) or (52) can be calculated in a similar way. Now, the first-order term of the
inhomogeneous contribution (15) with ρ̃3(0) and ρ̃13(0) is determined.

The second-order term of the inhomogeneous contribution (15) can be expressed as

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃3(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃13(0)}

= −α2J2
∫ t

0
dτ {Trb([B̃(t )T(t ), [B̃(τ )T(τ ),Qρ̃3(0)]] + [B̃†(t )T†(t ), [B̃(τ )T(τ ),Qρ̃3(0)]]

+ [B̃(t )T(t ), [B̃†(τ )T†(τ ),Qρ̃3(0)]] + [B̃†(t )T†(t ), [B̃†(τ )T†(τ ),Qρ̃3(0)]])} + H.c. (55)

Substituting Eqs. (47)–(50) into (55), one can obtain the explicit expression for the second-order term (55) of the inhomogeneous
contribution denoted by Eq. (15) with ρ̃3(0) and ρ̃13(0) as follows:

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃3(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃13(0)}

= −α2J2
∫ t

0
dτ

⎧⎨
⎩

∑
l=3,13

K(1),l (t, τ )[T(t ),T(τ )σ̃ (0)
l (0)] + K(2),l (t, τ )[T†(t ),T(τ )σ̃ (0)

l (0)]

+K(3),l (t, τ )[T(t ),T†(τ )σ̃ (0)
l (0)] +K(4),l (t, τ )[T†(t ),T†(τ )σ̃ (0)

l (0)]

⎫⎬
⎭ + H.c., (56)

where σ̃
(0)
3(13)(0) is the zeroth-order term of σ̃3(13)(0). It should

be noted that Eq. (15) or (55) is of the second order in coupling
strength designated by the dimensionless parameter α2. As
a consequence, the zeroth-order term in coupling strength of
Eq. (49) or (50) is preserved while the first-order term can be
ignored when we derive Eq. (56). Under this circumstance,
the partition function Z that guarantees the normalization
condition Trs,b[ρ(0)] = 1 is rewritten as

Z = Trs,b[ρ̃(0)] = Z ′′Zb, (57)

where Zb = Trb{e−βHb}, and

Z ′′ = w[|ID|2IAI∗
D〈D|e−βH̃0,s |A〉 + |IA|2IDI∗

A〈A|e−βH̃0,s |D〉
+ |ID|2IDI∗

A〈A|e−βH̃0,s |D〉 + |IA|2IAI∗
D〈D|e−βH̃0,s |A〉]

+ |ID|2|ID|2〈D|e−βH̃0,s |D〉 + |IA|2|IA|2〈A|e−βH̃0,s |A〉
+ |ID|2|IA|2〈D|e−βH̃0,s |D〉 + |ID|2|IA|2〈A|e−βH̃0,s |A〉.

(58)

The zeroth-order term of σ̃3(0) and σ̃13(0) represented by
σ̃

(0)
3 (0) and σ̃

(0)
13 (0), respectively, then can be shown to be

σ̃
(0)
3 (0) = 1

Z ′′ |ID|2IDI∗
A |D〉〈A|〈D|e−βH̃0,s |D〉w (59)

and

σ̃
(0)
13 (0) = 1

Z ′′ |ID|2IAI∗
D|A〉〈D|〈D|e−βH̃0,s |D〉w. (60)
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In Eq. (56), K(n),l is the bath correlation function accounting for bath relaxation with the following expressions:

K(1),3(t, τ ) = K ∗
(8),13(t, τ ) = Trb[B̃(t )B̃(τ )ρbB̃] = w2[eS(0,τ−t )(eS(0,t )+S(0,τ ) + 1) − eS(0,τ ) − eS(0,t ) + 2], (61)

K(2),3(t, τ ) = K ∗
(7),13(t, τ ) = Trb[B̃†(t )B̃(τ )ρbB̃] = w2[e−S(0,τ−t )(e−S(0,t )+S(0,τ ) + 1) − eS(0,τ ) − e−S(0,t ) + 2], (62)

K(3),3(t, τ ) = K ∗
(6),13(t, τ ) = Trb[B̃(t )B̃†(τ )ρbB̃] = w2[e−S(0,τ−t )(eS(0,t )−S(0,τ ) + 1) − e−S(0,τ ) − eS(0,t ) + 2], (63)

K(4),3(t, τ ) = K ∗
(5),13(t, τ ) = Trb[B̃†(t )B̃†(τ )ρbB̃] = w2[eS(0,τ−t )(e−S(0,t )−S(0,τ ) + 1) − e−S(0,τ ) − e−S(0,t ) + 2], (64)

K(5),3(t, τ ) = K ∗
(4),13(t, τ ) = Trb[ρbB̃B̃(τ )B̃(t )] = w2[eS(0,t−τ )(eS(0,t )+S(0,τ ) + 1) − eS(0,τ ) − eS(0,t ) + 2], (65)

K(6),3(t, τ ) = K ∗
(3),13(t, τ ) = Trb[ρbB̃B̃(τ )B̃†(t )] = w2[e−S(0,t−τ )(e−S(0,t )+S(0,τ ) + 1) − eS(0,τ ) − e−S(0,t ) + 2], (66)

K(7),3(t, τ ) = K ∗
(2),13(t, τ ) = Trb[ρbB̃B̃†(τ )B̃(t )] = w2[e−S(0,t−τ )(eS(0,t )−S(0,τ ) + 1) − e−S(0,τ ) − eS(0,t ) + 2], (67)

K(8),3(t, τ ) = K ∗
(1),13(t, τ ) = Trb[ρbB̃B̃†(τ )B̃†(t )] = w2[eS(0,t−τ )(e−S(0,t )−S(0,τ ) + 1) − e−S(0,τ ) − e−S(0,t ) + 2]. (68)

Up to now, the derivations of the inhomogeneous term (15)
with ρ̃3(0) and ρ̃13(0) have been expounded. Results for the
other terms contained in the the polaron-transformed initial
state ρ̃(0) in Eq. (24) or (42) are presented in Appendix E.

E. Expressions of the system operators in the exciton basis

For numerical calculation, it is convenient to express the
system operators by the eigenstates of the zeroth-order Hamil-
tonian H̃s,0, i.e., the renormalized exciton basis, which is
defined by

H̃s,0|±〉 = ε±|±〉, (69)

with the eigenvalues of H̃s,0 being

ε± = 1
2 [(ẼD + ẼA) ±

√
4J2w2 + (ẼD − ẼA)

2
]. (70)

The corresponding eigenstates are related with local excitation
states |D〉 and |A〉 through

|+〉 = cos
θ

2
|D〉 + sin

θ

2
|A〉, (71)

|−〉 = sin
θ

2
|D〉 − cos

θ

2
|A〉, (72)

where tan θ = 2Jw/(ẼD − ẼA). Inserting Eqs. (71) and (72)
into the homogeneous and inhomogeneous terms (11) and
(15), respectively, the explicit form of these terms now can be
obtained by expressing the commutators in the exciton basis.
Then, we get the matrix elements of the QME (11).

F. Definition of spectral densities

We assume the following form for the spectral density to
treat system-bath couplings:

JD(ω) =
∑

k

g2
kDδ(ω − ωk ), (73)

JA(ω) =
∑

k

g2
kAδ(ω − ωk ), (74)

Jc(ω) = −
∑

k

gkDgkAδ(ω − ωk ), (75)

where JD and JA describe diagonal couplings of bath modes
to the |D〉 and |A〉, respectively, while Jc is for the common

modes shared between |D〉 and |A〉. Thus, cross correlations
between energy fluctuations on different sites can be included
in this formalism. All the bath correlation functions appearing
in the master equation derived in Secs. II B, II C, and II D can
be expressed with linear combinations of the spectral densities
defined above. For example, Eq. (14) can be rewritten as

S (λ, t ) = −1

2

∫ ∞

0

Js(ω)

ω2

[
coth

(
βω

2

)
(eλω−iωt + e−λω+iωt )

− (eλω−iωt − e−λω+iωt )

]
, (76)

where Js, according to Eq. (14), can be given by

Js(ω) = JD(ω) +JA(ω) + 2Jc(ω). (77)

III. RESULTS AND DISCUSSIONS

With the preliminary derivations, we proceed to investi-
gate the dynamics of donor population σDD(t ) in our donor-
acceptor system with the arbitrary coherent initial system
condition (9). Two cases will be considered in this paper: the
dynamics of σDD(t ) (i) with initial correlated state (10) or
(24), i.e., with initial system-bath correlations, (ii) with initial
uncorrelated state (8) or (16), i.e., without initial system-
bath correlations but the inhomogeneous term (15) due to
nonequilibrium preparation of initial bath state in the polaron
frame exist. Since the population elements of the reduced
system density operator are invariant under the polaron trans-
formation, σDD(t ) can be obtained directly from the master
equation for σ̃I (t ) given by Eq. (11). Besides, the effects of
common bath modes on the dynamics are also studied.

A. Model spectral density

We perform numerical calculations for the following three
super-Ohmic spectral densities with the same exponential
cutoff frequency:

JD(ω) = ηA

3!

ω3

ω2
c

e−ω/ωc , (78)

JA(ω) = ηD

3!

ω3

ω2
c

e−ω/ωc , (79)
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Jc(ω) = ηc

3!

ω3

ω2
c

e−ω/ωc , (80)

Js(ω) = ηs

3!

ω3

ω2
c

e−ω/ωc , (81)

where ηD, ηA are the dimensionless system-bath coupling
strength. ηc is called cross coupling that is bounded by
Schwarz inequality ηc � √|ηDηA|. According to Eq. (75),
positive ηc indicates the common bath modes couple to the
exciton differently while negative ηc similarly. The effective
system-bath coupling ηs is then given by

ηs = ηD + ηA + 2ηc. (82)

The reciprocal of the cutoff frequency ωc represents the
relaxation time of the bath. This form of spectral density takes
no account of subsistent localized vibration modes described
by a delta function, which also contribute significantly to
the exciton dynamics. Further work will be devoted to this
issue. In addition, in realistic photosynthesis-related EET,
the continuous part of spectral densities typically consists of
more spectral weight at lower frequencies than a super-Ohmic
density [69]. An Ohmic form thus seems more appropriate to
account for the influence of these lower frequencies. However,
a notable question of the Ohmic spectral density is that the
renormalization factors exhibit a well-known infrared diver-
gence [36] that may lead to electronic couplings being renor-
malized to zero for arbitrary values of system-bath coupling
strength. By contrast, the super-Ohmic form gets rid of this
problem and one can obtain analytical expressions for corre-
lation functions within the polaron formalism [30–34,41–47]
in terms of the spectral densities introduced in Eqs. (78)–(81),
such that a simple picture for describing the system-bath
coupling is available. For each of the two cases described
above, two different energetic situations are under consider-
ation in the following calculation: �E = ẼD − ẼA = ±1. For
numerical calculations throughout the paper, units are chosen
such that h̄ = ωc = 1. This is equivalent to assuming that the
unit of time is 1/(2πωc) and the unit of energy is h̄ωc. It is also
assumed that β = 1 and J = 1. With these choices, if h̄ωc =
200 cm−1, J = 200 cm−1, T ≈ 290 K, and the unit of time is
about 1 ps [30–34,39–46]. With these parameters, in the entire
regime of system-bath coupling strength, the measure of the
electronic coupling fluctuations as introduced in Eq. (A12)
remains smaller than the onsite energy gap |�E | and the
cutoff frequency ωc of spectral densities, which guarantees the
validity of the present polaron treatment [32,34].

In this work, calculations of time-dependent evolution
based on the theory of Förster-Dexter energy transfer (FDET)
are also performed for comparison:

d

dt
σDD(t ) = −kDA(t )σDD(t ) + kAD(t )[1 − σDD(t )], (83)

where kDA(t ) is the time-dependent Förster-Dexter rate
[16–18] from D to A given by

kDA(t ) = 2J2

h̄2 eS(0,0)Re
∫ t

0
dτ [ei(ED−EA )τ/h̄ f (t )

× f (τ − t )(e−S(0,−τ ) − 1)], (84)

(
)

D
D
t

Time

(a)

1 3

1, 0D AI I

1/2 1/22 , 2D AI I

1/2 1/22 , 2D AI I

(c)

(e)

(b) 1, 0D AI I

1/2 1/22 , 2D AI I(f)

1/2 1/22 , 2D AI I(d)

FIG. 1. Time evolution of donor population σDD(t ) in the units
where J = 1, ωc = 1, β = 1 and �E = ẼD − ẼA = 1 for different
initial system conditions and system-bath coupling strength η (1 or
3). Black solid curves correspond to the results for initial correlated
state (10) or (24), i.e., with initial system-bath correlations. Red
dashed curves correspond to the results for initial uncorrelated state
(8) or (16), i.e., without the initial correlations but the inhomoge-
neous term (15) exists. Blue dotted curves are based on the results
from the theory of Förster-Dexter energy transfer (FDET).

while kAD(t ) is the same as kDA(t ) except for the replacement
ED − EA → EA − ED. The expression for f (t ) is presented in
Appendix E. The validity of this theory relies on the smallness
of the electronic coupling J . The resulting Förster-Dexter
rate equations give account of purely incoherent hopping
processes and are successfully applied in wide varieties of
situations.

B. Effects of initial system condition and system-bath
coupling strength

Figure 1 depicts the time-dependent donor population
σDD(t ) for specific classes of parameters: ηD + ηc = ηA +
ηc = η where η = 1 or 3. These settings represent both the
case of no common mode ηc= 0 and the case with finite
ηc given that ηD = ηA= η − ηc. Three initial system states
including that localized on the donor site are compared to
examine the effects of initial system-bath correlations as
well as system-bath coupling strength on the dynamics. It
can be observed that the nonequilibrium, contained in the
inhomogeneous terms (15) as a result of the initial system-
bath correlations, have an obvious effect on enlarging the
amplitude of population oscillation, especially for favorable
initial condition like |I〉 = 1√

2
(|D〉 + |A〉). When the excita-

tion is localized on the donor site or in an unfavorable initial
condition like |I〉 = 1√

2
(|D〉 − |A〉), however, this effect is not

obvious for the parameters adopted here. Thus, we see that the
effects of quantum coherence involved in the initial system
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state |I〉 and nonequilibrium due to the initial system-bath
correlations, depend on the relative phase of |D〉 and |A〉.
It can be expected that the relative magnitudes of |D〉 and
|A〉 also have an important influence on the role of initial
system-bath correlation, as we will see in a later section.
This nonequilibrium-induced oscillation provides a positive
theoretical instance accounting for the origin of quantum
coherence that might be observed under the influence of
ambient protein scaffold and solvent environment that are
often defined as hot and wet [2–5]. Whereas for the dynamics
based on FDET theory, all of these effects disappear, and in
a weak system-bath coupling regime (η = 1) the stationary
limit is distinct from the results obtained by the polaron
master equation. This is because the electronic coupling J
is not small enough (for the parameter J = 1 we choose
here) to guarantee the validity of FDET theory, which breaks
the detailed balance based on the Golden rule type transfer
rate equation (83). When η = 3, the system-bath coupling
becomes strong enough to damp the oscillation amplitude.
Distinctions between the dynamics with and without initial
correlation seem more pronounced than those of the cases
when ηD + ηc = ηA + ηc = 1 as shown in Figs. 1(a), 1(c),
and 1(e). Therefore, it can be pointed out that the initial
system-bath correlations play an increasingly significant role
in the strong coupling regime. From the point of view of
quantum open system theory, the systematically increasing
error due to the neglect of initial system-bath correlations
as in Eq. (8) is introduced when increasing the system-bath
coupling strength. Physically, this is for the reason that strong
system-bath couplings greatly modify the bath and meanwhile
make the modified bath have more access to take effect on
the system evolution. In addition, the time-dependent donor
population predicted by the two theories gradually approaches
in the primary stage as well as stationary regime owing to the
successful application of FDET theory in describing energy
transfer when the system-bath coupling strength is strong
enough compared to the electronic resonance interactions J .

From Fig. 1, the difference between the dynamics with and
without initial correlations can only be observed in primary
evolution stages. As time goes on, the two curves of polaron
dynamics gradually overlap, indicating that the system will
gradually “forget” the influence of nonequilibrium caused by
initial system-bath correlations in the long-time limit. Math-
ematically, the transfer dynamics with both the uncorrelated
initial condition (8) and correlated initial condition (10) goes
to the Markovian limit. To be specific, it can be proved
numerically that in the QME (11), the inhomogeneous term
(15) arising from Eq. (8) or (10) decays to zero in the long-
time limit as the upper integration limit becomes ∞ instead
of t and, as a consequence, has a negligible contribution
to system evolution. Therefore, it can be inferred that the
effects of initial system-bath correlations become irrelevant
in Markovian bath.

Figure 2 displays the case for the energetic situation
�E = −1. Similarly, behavior of dynamical evolution but
with opposite trends can be observed. For certain initial
system condition |I〉 = 1√

2
(|D〉 + |A〉), the initial system-bath

correlations induced nonequilibrium lead to larger amplitude
of population oscillation, and more obvious distinctions can

(
)

D
D
t

Time

1 3

(a) 1, 0D AI I (b) 1, 0D AI I

1/2 1/22 , 2D AI I(c) 1/2 1/22 , 2D AI I(d)

1/2 1/22 , 2D AI I(e) 1/2 1/22 , 2D AI I(f)

FIG. 2. Time evolution of donor population ρDD(t ) in the units
where J = 1, ωc = 1, β = 1, and �E = ẼD − ẼA = −1 for differ-
ent initial system states and system-bath coupling strength η (1 or 3).
Other conventions are the same as in Fig. 1.

be seen for larger system-bath coupling strength η. Likewise,
the difference is obvious only in primary stages. At longer
times, the nonequilibrium due to the initial system-bath cor-
relations becomes much less important. So, the two curves
of polaron dynamics overlap as well in the long-time limit.
Besides, stronger system-bath coupling damps the oscillative
population and makes the time-dependent evolution overlap
with those obtained by the rate equation (83), for the same
reason as the case of �E = 1.

C. Effects of common bath modes

The effects of common bath modes are illustrated in Fig. 3
with fixed values of ηD = ηA = 1, and three different values
of ηc (±0.5 or 0) are examined. From Fig. 3, the duration
of population oscillation gets shorter, i.e., the quantum co-
herence is gradually damped with increasing cross-coupling
strength ηc for both the initial system conditions tested: |I〉 =

1√
2
(|D〉 ± |A〉). This can be understood easily since larger

ηc gives rise to increased effective system-bath coupling ηs

that is directly relevant to the evolution dynamics. Thus, we
see that even when the donor and acceptor couple to the
bath modes with the same strength ηD = ηA = 1, how the
common bath modes respond to the excitations, differently
(positive ηc) or similarly (negative ηc), plays an important role
in influencing the duration of population oscillation. That is
to say, the nature of common bath modes determines whether
the quantum coherence is protected or destroyed during the
evolution process. Besides, the nonequilibrium induced by
the initial system-bath correlations makes more contribution
to change the population evolution especially for the initial
condition |I〉 = 1√

2
(|D〉 + |A〉), which implies that the relative
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(
)

D
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FIG. 3. Time evolution of donor population σDD(t ) in the units
where J = 1, ωc = 1, β = 1, and �E = ẼD − ẼA = 1 for different
initial system states and cross-coupling strength ηc (±0.5 or 0). Other
conventions are the same as in Fig. 1.

phase of |D〉 and |A〉 also determines whether the initial
system-bath correlations have more access to influence the
dynamics for certain bath modes. For |I〉 = 1√

2
(|D〉 − |A〉),

the difference between the two curves of polaron dynamics
is insignificant in both the primary stages and stationary
limits. Thus, |I〉 = 1√

2
(|D〉 − |A〉) is unfavorable for the initial

system-bath correlations to take effect.

D. Effects of the relative phase and magnitude of |D〉 and |A〉
Based on the preceding discussions, the role of ini-

tial correlations on the dynamics is quite sensitive to the
initial system condition, i.e., the values of ID and IA. In
this section, we shed light on this issue by examining
a sample of initial system conditions with equal interval
of |ID|2. The difference between the dynamics with and
without initial correlations, i.e., the effects of initial cor-
relations for different initial system conditions, is mea-
sured by the cumulative trace distance [63] which is de-
fined as DS (σ̃ c(t ), σ̃ unc(t )) = ∫ ∞

0 D[σ̃ c(t ), σ̃ unc(t )]dt where

D[A, B] = 1
2 Tr

√
(A − B)†(A − B) represents the usual trace

distance [70]. σ̃ c(t ) and σ̃ unc(t ) correspond to the time evo-
lution of the reduced system state in the polaron frame with
initial uncorrelated state (8) or (16) and correlated state (10)
or (24), respectively. Figure 4 illustrates the result for the
energetic situation �E = 1 with the parameter ηD + ηc =
ηA + ηc = η where η = 1.5.

It should be noted that the cumulative trace distance DS in
Fig. 4 is plotted in the polaron frame. One may also attempt to
inquire into DS in the laboratory frame. Then, the off-diagonal
elements σAD(t ) or σDA(t ) of system density operator σ (t )
in the laboratory frame have to be calculated. Because they

( ( ), ( ))c uc
SD t t

2sgn( )D DI I

sensitive window

FIG. 4. Cumulative trace distance DS with respect to different
initial system states characterized by |ID|2 in the units where J =
1, ωc = 1, β = 1, η = 1.5, and �E = ẼD − ẼA = 1. The “sensi-
tive window” is centered around |ID|2 ∼ 0.85 with ID and IA being
the same sign.

do not commute with the polaron-transformation operator
G, calculating σAD(t ) or σDA(t ) in the laboratory frame is
much more involved. In addition, it would not offer a new
result of the trend of cumulative trace distance DS over
|ID|2, compared with DS (σ̃ c(t ), σ̃ unc(t )) in the polaron frame.
DS (σ̃ c(t ), σ̃ unc(t )) serves as a good measure to examine the
role of initial system-bath correlations, and therefore we di-
rectly adopt DS (σ̃ c(t ), σ̃ unc(t )) without transforming back to
the laboratory frame for simplicity.

As one can see from Fig. 4, the change of cumulative
trace distance DS over |ID|2 is not symmetry about the axis of
|ID|2 = 0. Basically, the nonequilibrium caused by the initial
correlations plays an apparent role when ID and IA are of
the same sign. When ID and IA are of the opposite sign,
however, DS is much depressed, which can also be confirmed
from Fig. 1 since the difference is of little consequence for
|I〉 = 1√

2
(|D〉 − |A〉). Thus, the effect of initial correlations is

not manifested in the dynamical evolution under this circum-
stance. So, we confirm the crucial importance of the sign of
the coefficients ID and IA, or the relative phase of |D〉 and
|A〉 in determining whether the initial system-bath correlations
would take effect.

The cumulative trace distance DS also depends to a great
degree on the magnitude of ID and IA as depicted in Fig. 4.
Specifically, Fig. 4 clearly identifies a parameter range (be-
tween the two vertical black-dashed lines) in which DS ex-
hibits a dramatic increase. This means there exists a highly
significant difference between the dynamics with and without
initial correlations. The parameter range is centered around
|ID|2 ∼ 0.85 with ID and IA being the same sign. We plot the
time evolution of donor population σDD(t ) under this corre-
sponding condition within the specific parameter range |I〉 =√

0.85|D〉 + √
0.15|A〉, and the results are shown in Fig. 5.

The population dynamics with and without initial correlations
does show great difference for this initial system condition.
The initial correlations cause large population oscillation,
while for the case of initial uncorrelated state, oscillatory
population is scarcely observed even in weak coupling regime
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FIG. 5. Time evolution of donor population σDD(t ) in the units
where J = 1, ωc = 1, β = 1, and �E = ẼD − ẼA = 1 for different
cross-coupling strength η (1 or 3) with initial system state |I〉 =√

0.85|D〉 + √
0.15|A〉. Other conventions are the same as in Fig. 1.

(η = 1). This may be comprehended as follows: when the
values of ID and IA lie within this range as specified in
Fig. 4, excitation energy transfer in the donor-acceptor system
is quite sensitive to the nature of the bath. Without initial
correlations, population oscillation or quantum coherence is
easily destroyed by the interaction with the bath compared
to the results for other initial system conditions as shown in
Fig. 1, even though the system-bath coupling strength remains
small. By contrast, the initial correlations contained in the bath
state give rise to long-lasting and greatly enhanced amplitude
of population oscillation. So, this parameter range may be
called as the “sensitive window” of the system. According
to Fig. 4, one can say that when ID and IA are of the same
sign, transfer dynamics in the donor-acceptor system is more
sensitive to the bath compared to that of the case when ID

and IA are of the opposite sign. Consequently, DS is larger
for the initial condition of the same sign of ID and IA. So, as
previously mentioned, the relative sign of ID and IA is quite
relevant.

In order to reveal the mechanisms underlying this phe-
nomenon, one may observe the TCL master equation (11).
The inhomogeneous term Trb[I(t )ρ̃I (0)] is nonzero only
when the initial bath state within the polaron frame differs
from thermal equilibrium bath state. It represents the contri-
bution due to the nonequilibrium preparation of initial bath
state in the polaron frame, involving the influence of the
initial system-bath correlations. Look at the explicit expres-
sions for the homogeneous term, like for example Eq. (56),
one can see that each term in Eq. (56) is the multiplication
of system operator (e.g., [T(t ),T(τ )σ̃ (0)

l (0)]) and bath cor-
relation function [e.g., K(1),l (t, τ )]. As is known, the bath
correlation functions always decay to zero in the long-time
limit, which leads the inhomogeneous terms also to decay
to zero in the long-time limit. Then, the initial values of
system operators are crucial to determine to what extent the
inhomogeneous terms can modify the dynamics. For instance,
if the initial preparation of σ̃

(0)
3 (0) denoted by IA and ID

satisfies [T(t ),T(τ )σ̃ (0)
l (0)]|t=0 = 0, the effect of this term is

zero at time t = 0. By the time the system evolves to a state
σ̃ (t ) such that [T(t ),T(τ )σ̃ (0)

l (0)] is appreciably different
from zero, K(1),l (t, τ ) has decayed to almost zero. There-
fore, in this case, this term K(1),l (t, τ )[T(t ),T(τ )σ̃ (0)

l (0)]
plays a negligible role. For general initial system state
that does not satisfy [T(t ),T(τ )σ̃ (0)

l (0)]|t=0 = 0, how the

( ( ), ( ))c uc
SD t t

2sgn( )D DI I

sensitive window

FIG. 6. Cumulative trace distance DS with respect to different
initial system states characterized by |ID|2 in the units where J =
1, ωc = 1, β = 1, η = 1.5, and �E = ẼD − ẼA = −1. The “sen-
sitive window” is centered around |ID|2 ∼ 0.15 with ID and IA being
the same sign.

initial system state is prepared determines the values of
[T(t ),T(τ )σ̃ (0)

l (0)] at time t = 0, which in turn influences
the effects of K(1),l (t, τ )[T(t ),T(τ )σ̃ (0)

l (0)]. Consequently,
the initial state preparation denoted by ID and IA determines
the initial values of various inhomogeneous terms shown in
Eqs. (20), (52), (56), and the equations as listed in Appendix
E, and obviously also determines the values of total inho-
mogeneous term Trb[I(t )ρ̃I (0)] at time t = 0, which in turn
influences the effects of total inhomogeneous term on the
dynamics. Then, the difference between the total inhomoge-
neous term with and without initial system-bath correlations
is decided by ID and IA. In this sense, one can say that the
effects of initial system-bath correlations depend sensitively
on the initial system state.

Figure 6 is plotted for the cumulative trace distance DS in
the polaron frame with respect to |ID|2 for the other energetic
situation �E = −1. It is notable that similarly behavior of
the change of cumulative trace distance DS over |ID|2 but with
opposite trends can be observed. Likewise, the effect of the
initial correlations is largely eliminated when ID and IA are
of the opposite sign, which is also manifested as shown in
Fig. 2. The sensitive window of the system appears within the
parameter range centered around |ID|2 ∼ 0.15 with ID and IA

being the same sign. Time evolution of donor population for
the initial system condition located in the sensitive window,
|I〉 = √

0.15|D〉 + √
0.85|A〉, is plotted in Fig. 7, from which

the same conclusion as that from Fig. 5 can be obtained. Thus,
one can infer that the location of the sensitive window, i.e.,
the initial condition corresponding to the sensitive window
appears to be closely related to the donor-acceptor energy
difference, that is the intrinsic character of the system. For
the parameter settings adopted in this work, when ID and IA

share the same sign and the squared modulus of the higher-
energy site is about 0.85, the transfer dynamics is especially
vulnerable to the bath, and therefore the effects of the initial
correlations become much more obvious.
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FIG. 7. Time evolution of donor population σDD(t ) in the units
where J = 1, ωc = 1, β = 1, and �E = ẼD − ẼA = −1 for dif-
ferent cross-coupling strength η (1 or 3) with initial system state
|I〉 = √

0.15|D〉 + √
0.85|A〉. Other conventions are the same as in

Fig. 1.

IV. CONCLUSION

In this work, we extend the resonance energy transfer
theory developed in Paper I for an initial coherent system
state to account for the influence of the nonequilibrium bath
containing the initial system-bath correlations. To this end,
a quantum master equation with an initially direct product
of the coherent system state and thermal equilibrium bath
state is also derived. The inhomogeneous terms are much
more complicated than those in Paper I because of the initial
coherent system state. The explicit expressions for all of these
terms are given in details within the model of super-Ohmic
spectral densities. In addition, rate equations based on Förster-
Dexter energy transfer theory are derived for comparison.

For a favorable initial system condition, the nonequilib-
rium which stems from the initial system-bath correlations
is capable of giving rise to a larger amplitude of population
oscillation. This may be a positive theoretical instance ac-
counting for the long-lived quantum coherence that may be
observed under the influence of “hot and wet” surrounding
environment of the protein scaffold and solvent. The initial
system condition, characterized by the relative phase and
magnitude of the coefficients of |D〉 and |A〉, is shown to be
of crucial importance in determining whether the effects of
the initial system-bath correlations would be relevant in the
transfer dynamics. We identify a parameter range in which
the cumulative trace distance exhibits a dramatic increase.
This implies the dynamics is especially vulnerable to the bath
such that there exists a greatly obvious difference between the
dynamics with initial correlated state and uncorrelated state.
So, this parameter range is called the “sensitive window” of
the system in which the role of initial correlations on the
transfer dynamics is of critical significance.

Besides, the initial system-bath correlations play an in-
creasingly significant role in the strong coupling regime since
the modified bath has more access to take effect on the system
evolution. Stronger coupling makes the time-dependent evo-
lution overlap with those obtained by the rate equation based
on FDET theory. At longer times, the influence of nonequi-
librium as a result of initial system-bath correlations will
gradually become of no consequence. Assuming super-Ohmic
spectral densities, the effects of common bath modes are ex-
amined. The results show that smaller values of cross coupling
ηc lead to long-lasting quantum coherence. It is because small
ηc gives rise to reduced effective system-bath coupling ηs that
is directly relevant to the evolution dynamics. Whether the

common bath modes respond differently or similarly to the ex-
citations can influence the duration of population oscillation.

This work is an extension of the theory in Paper I, yet
some important issues are not taken into account. In fact, we
may expect a more significant effect of the initial system-bath
correlations for the case of slow bath (J < ωc). However, if
the bath is slow, there exists the problem of not being precise
enough when utilizing the polaron master equation. We hope
to make further improvement by employing more precise
approaches, like a variational polaron master equation [71,72]
and numerical methods such as the quasiadiabatic propagator
path integral [21,22], the hierarchy equations of motion
[23–25], and the multiconfiguration time-dependent Hartree
approach [26–28]. In addition, a straightforward extension
of this work is multistate generalization. A minimal model
for the multistate system, for example, consists of donor-
bridge-acceptor (D-B-A) states coupled to a phonon bath,
which may help to understand the mechanism underlying
the remarkably efficient EET across a 100-nm length scale.
Then, the off-diagonal elements of reduced system density
matrix, which are relevant to the calculation of the two-
dimensional electronic spectroscopy in room temperature, are
not included in this work. Since they do not commute with
the polaron-transformation operator defined above, calcula-
tion of these elements in the laboratory frame is therefore
more involved. For calculating the two-dimensional spec-
troscopy, coherent mixture of electronic ground state should
also be included. The next one is the spectral density as-
sumed. Here, as mentioned in the main text, with the use
of super-Ohmic form spectral density, we ignore subsistent
localized vibration modes which also contribute significantly
to the exciton dynamics, and overestimate the contribution of
the spectral weight at high frequencies of surrounding bath,
though analytical expressions for correlation functions can
be obtained in terms of this form. Accurately identifying the
influence of quantized vibrations in energy transfer within
in a variety of actual photosynthetic organisms is of critical
importance. We hope to gain a thorough comprehension of
the microscopic mechanism of excitation energy transfer in
natural light-harvesting complexes by further exploration of
these important issues.
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APPENDIX A: DERIVATIONS OF
TIME-CONVOLUTIONLESS QUANTUM MASTER

EQUATION IN THE POLARON FRAME

The application of the polaron transformation generated
by G = ∑

i=D,A

∑
k

gki

ωk
(b†

k − bk )|i〉〈i| to Eq. (6) results in the
following quantum Liouville equation for the total density
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operator in the polaron frame ρ̃(t ) = eGρ(t )e−G:

dρ̃(t )

dt
= −iL̃ρ̃(t ) = −i

(
L̃p

s + L̃c
s +Lb

)
ρ̃(t ), (A1)

where L̃ is the quantum Liouville operator for the
polaron-transformed system Hamiltonian H̃ = eGHe−G =
H̃ p

s + H̃c
s + Hb with L̃p

s and L̃c
s corresponding, respectively, to

H̃ p
s =

∑
i=D,A

Ẽi|i〉〈i| (A2)

and

H̃c
s = J (B|D〉〈A| + B†|A〉〈D|), (A3)

while Hb remains unchanged. In Eq. (A2), ẼD = ED − ∑
k

g2
kD
ωk

and ẼA = EA − ∑
k

g2
kA

ωk
. λi = ∑

k
g2

ki
ωk

is the site-dependent re-
organization energy. In Eq. (A3), the bath operators B and B†

are, respectively,

B = θ
†
DθA = e

∑
k

δgk
ωk

(b†
k−bk ) (A4)

and

B† = θ
†
AθD = e− ∑

k
δgk
ωk

(b†
k−bk )

, (A5)

where δgk = gkD − gkA, and the displacement operators are

defined by θD = e− ∑
k

gkD
ωk

(b†
k−bk ) and θA = e− ∑

k
gkA
ωk

(b†
k−bk ) with

θ
†
D and θ

†
A being their Hermitian conjugates.

The transformed Hamiltonian H̃ can then be divided into
two parts in order to identify a small term:

H̃ = H̃0 + H̃1. (A6)

In Eq. (A6), the zeroth-order Hamiltonian is defined as

H̃0 = H̃ p
s + 〈

H̃c
s

〉 + Hb = H̃0,s + Hb, (A7)

where the zeroth-order system Hamiltonian term H̃0,s = H̃ p
s +

〈H̃c
s 〉 is given by

H̃0,s =
∑

i=D,A

Ẽi|i〉〈i| + Jw(|D〉〈A| + |A〉〈D|). (A8)

〈B〉 (〈B†〉) represents the average value taken over ther-
mal equilibrium bath state ρb = e−βHb/Zb. The bath-induced
renormalization factor w is defined as w = 〈θ†

DθA〉 =
〈θ†

AθD〉 = e
− 1

2

∑
k

δg2
k

ω2
k

coth(
βωk

2 )
, which is also called the Franck-

Condon factor. The explicit expression for w and λi in terms
of spectral densities is presented in Appendix B.

The remaining first-order term of H̃ in Eq. (A6) is the
interaction Hamiltonian given by

H̃1 = H̃c
s − 〈

H̃c
s

〉 = J (B̃|D〉〈A| + B̃†|A〉〈D|). (A9)

Here,

B̃ = θ
†
DθA − w = e

∑
k

δgk
ωk

(b†
k−bk ) − w (A10)

and

B̃† = θ
†
AθD − w = e− ∑

k
δgk
ωk

(b†
k−bk ) − w. (A11)

Therefore, H̃1 denotes the fluctuations of the electronic cou-
pling. It is easy to prove 〈B̃〉 = 〈B̃†〉 = 0, such that H̃1 remains
small for both weak and strong system-bath couplings In

fact, it is noteworthy that the energy scale related to these
fluctuations of the electronic coupling should be the smallest
in the system in order to guarantee the validity of second-order
QME. As a measure of the magnitude of such fluctuations, one
can consider the following parameter [32,34]:

γ = J〈|B̃|2〉1/2 = J (1 − w2)1/2. (A12)

Therefore, in the weak system-bath coupling limit the renor-
malized system-bath interaction Hamiltonian H̃1 vanishes,
while it remains bounded by J in the strong coupling limit.
Small γ guarantees the smallness of H̃1, and as long as γ

is small in comparison to the onsite energy gap |�E | and
the cutoff frequency ωc of spectral densities, truncating the
exact quantum master equation to the second order of H̃1 is
appropriate in theoretical treatment for the entire regime of
system-bath couplings.

With the explicit expressions of H̃0 and H̃1, we move
into the interaction picture with respect to H̃0. The first-order
Hamiltonian in the interaction picture is easily obtained as
follows:

H̃1,I (t ) = J[B̃(t )T(t ) + B̃†(t )T†(t )], (A13)

where B̃(t ) = eiHbt B̃e−iHbt andT(t ) = eiH̃0,st |D〉〈A|e−iH̃0,st . Ac-
cordingly, the time evolution of polaron-transformed total
density operator ρ̃I (t ) = eiL̃0t ρ̃(t ) in the interaction picture is
governed by

d ρ̃I (t )

dt
= −iL̃1,I ρ̃I (t ). (A14)

The next step is to obtain the QME for the reduced
system density operator σ̃I (t ) = Trb[ρ̃I (t )]. For this purpose,
we apply the standard projection operator technique [50] to
Eq. (A14). The projection operator P and its complement Q
are defined as usual: P(·) = ρbTrb{·} and Q = 1 − P. With
these definitions in mind, we write a formally exact time-
convolutionless (TCL) quantum master equation for Pρ̃I (t )
as follows:

d

dt
Pρ̃I (t ) = K(t )ρ̃I (t ) + I(t )ρ̃I (0), (A15)

with the TCL generator given by

K(t ) = αPL̃1,I (t )[1 − �(t )]−1P (A16)

and

I(t ) = αPL̃1,I (t )[1 − �(t )]−1G(t )Q. (A17)

In Eqs. (A16) and (A17), α is a dimensionless parameter that
keeps track of the order of system-bath coupling strength.
Then, a second-order approximation with respect to H̃1,I (t ) is
made. Note that [1 − �(t )]−1 and G(t ) in the TCL generators
can be expanded in powers of α, therefore, we can truncate
the exact expression to second order in H̃1,I (t ). In addition,
the inhomogeneous terms in this lowest-order approximation
are nonvanishing, so they should be included in deriving the
master equation. After taking trace over the bath degrees of
freedom, we obtain the TCL quantum master equation for
σ̃I (t ) = Trb[ρ̃I (t )] in the following form:

d

dt
σ̃I (t ) = Trb[K(t )ρ̃I (t )] + Trb[I(t )ρ̃I (0)]. (A18)

This is Eq. (11) of the main text.
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APPENDIX B: REORGANIZATION ENERGY AND THE FRANCK-CONDON FACTOR

The bath-induced reorganization energy λi = ∑
k

g2
ki

ωk
can be evaluated in terms of the spectral densities defined by Eqs. (73)–

(75) and (78)–(81). Then, it reads as

λi =
∑

k

g2
ki

ωk
=

∫ ∞

0

Ji(ω)

2ω
dω. (B1)

In the same way, the Franck-Condon factor that renormalizes the electronic couplings in the polaron frame are shown to be

w = 〈θ†
DθA〉 = 〈θ†

AθD〉 = e
− 1

2

∑
k

δg2
k

ω2
k

coth
(

βωk
2

)
= exp

{
−1

2

∫ ∞

0

Js(ω)

ω2
coth

(
βω

2

)
dω

}
. (B2)

This factor captures the influence of the bath modes via incorporating temperature dependence into H̃0,s.

APPENDIX C: BATH CORRELATION FUNCTIONS OF INHOMOGENEOUS TERMS WITH INITIAL
UNCORRELATED STATE

For initial uncorrelated state (8) or (16), the bath correlation functions Cl (t ) and F(n),l (t, τ ) due to the nonequilibrium
preparation of the initial bath state in the polaron frame are listed below:

C1(t ) = w{ fD(t ) − 1}, (C1)

C2(t ) = w{eS(0,−t ) fA(t ) − 1}, (C2)

C3(t ) = w{e−S(0,−t ) fD(t ) − 1}, (C3)

C4(t ) = w{ fA(t ) − 1}, (C4)

F(1),1(t, τ ) = w2{[ fD(t ) fD(τ ) − 1]eS(0,τ−t ) − fD(t ) − fD(τ ) + 2}, (C5)

F(2),1(t, τ ) = w2{[ fD(−t ) fD(τ ) − 1]e−S(0,τ−t ) − fD(−t ) − fD(τ ) + 2}, (C6)

F(3),1(t, τ ) = w2{[ fD(t ) fD(−τ ) − 1]e−S(0,τ−t ) − fD(t ) − fD(−τ ) + 2}, (C7)

F(4),1(t, τ ) = w2{[ fD(−t ) fD(−τ ) − 1]eS(0,τ−t ) − fD(−t ) − fD(−τ ) + 2}, (C8)

F(1),2(t, τ ) = w2{eS(0,τ−t )[eS(0,−t )+S(0,−τ ) fA(t ) fA(τ ) − 1] − fA(t )eS(0,−t ) − fA(τ )eS(0,−τ ) + 2}, (C9)

F(2),2(t, τ ) = w2{e−S(0,τ−t )[e−S(0,−t )+S(0,−τ ) fA(−t ) fA(τ ) − 1] − fA(−t )e−S(0,−t ) − fA(τ )eS(0,−τ ) + 2}, (C10)

F(3),2(t, τ ) = w2{e−S(0,τ−t )[eS(0,−t )−S(0,−τ ) fA(t ) fA(−τ ) − 1] − fA(t )eS(0,−t ) − fA(−τ )e−S(0,−τ ) + 2}, (C11)

F(4),2(t, τ ) = w2{eS(0,τ−t )[e−S(0,−t )−S(0,−τ ) fA(−t ) fA(−τ ) − 1] − fA(−t )e−S(0,−t ) − fA(−τ )e−S(0,−τ ) + 2}, (C12)

F(1),3(t, τ ) = w2{eS(0,τ−t )[e−S(0,−t )−S(0,−τ ) fD(t ) fD(τ ) − 1] − fD(t )e−S(0,−t ) − fD(τ )e−S(0,−τ ) + 2}, (C13)

F(2),3(t, τ ) = w2{e−S(0,τ−t )[eS(0,−t )−S(0,−τ ) fD(−t ) fD(τ ) − 1] − fD(−t )eS(0,−t ) − fD(τ )e−S(0,−τ ) + 2}, (C14)

F(3),3(t, τ ) = w2{e−S(0,τ−t )[e−S(0,−t )+S(0,−τ ) fD(t ) fD(−τ ) − 1] − fD(t )e−S(0,−t ) − fD(−τ )eS(0,−τ ) + 2}, (C15)

F(4),3(t, τ ) = w2{eS(0,τ−t )[eS(0,−t )+S(0,−τ ) fD(−t ) fD(−τ ) − 1] − fD(−t )eS(0,−t ) − fD(−τ )eS(0,−τ ) + 2}, (C16)

F(1),4(t, τ ) = w2{[ fA(t ) fA(τ ) − 1]eS(0,τ−t ) − fA(t ) − fA(τ ) + 2}, (C17)

F(2),4(t, τ ) = w2{[ fA(−t ) fA(τ ) − 1]e−S(0,τ−t ) − fA(−t ) − fA(τ ) + 2}, (C18)

F(3),4(t, τ ) = w2{[ fA(t ) fA(−τ ) − 1]e−S(0,τ−t ) − fA(t ) − fA(−τ ) + 2}, (C19)

F(4),4(t, τ ) = w2{[ fA(−t ) fA(−τ ) − 1]eS(0,τ−t ) − fA(−t ) − fA(−τ ) + 2}, (C20)
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where fD(t ) and fA(t ) are introduced:

fD(t ) = e2i
∑

k gkDδgk sin(ωkt )/ω2
k , (C21)

fA(t ) = e2i
∑

k gkDδgk sin(ωkt )/ω2
k . (C22)

Combining the definition of spectral densities (73)–(75), fD(t ) and fA(t ) can be expressed as

fD(t ) = e2i
∫ ∞

0 dω(JiD (ω)/ω2 ) sin(ωt ), (C23)

fA(t ) = e−2i
∫ ∞

0 dω(JiA(ω)/ω2 ) sin(ωt ), (C24)

with

JiD(ω) = JD(ω) +Jc(ω), (C25)

JiA(ω) = JA(ω) +Jc(ω). (C26)

It is easy to prove that fD(−t ) = fA(t ) for the case of ηD = ηA that is chosen for numerical calculations in the main text.

APPENDIX D: EXPRESSIONS FOR THE POLARON-TRANSFORMED INITIAL STATE (24)

Substituting (21) into (24), the polaron-transformed initial state (24) can be decomposed into 16 terms as listed below:

ρ̃1(0) = 1

Z ′ |ID|2|ID|2|D〉〈D|[〈D|e−βH̃0,s |D〉ρb − αρb〈D|E0(β )|D〉], (D1)

ρ̃2(0) = 1

Z ′ |ID|2|IA|2|D〉〈A|[〈D|e−βH̃0,s |A〉ρb − αρb〈D|E0(β )|A〉], (D2)

ρ̃3(0) = 1

Z ′ |ID|2IDI∗
A |D〉〈A|[〈D|e−βH̃0,s |D〉ρbB − αρb〈D|E0(β )|D〉B], (D3)

ρ̃4(0) = 1

Z ′ |ID|2IAI∗
D|D〉〈D|[〈D|e−βH̃0,s |A〉ρbB† − αρb〈D|E0(β )|A〉B†], (D4)

ρ̃5(0) = 1

Z ′ |IA|2|ID|2|A〉〈D|[〈A|e−βH̃0,s |D〉ρb − αρb〈A|E0(β )|D〉], (D5)

ρ̃6(0) = 1

Z ′ |IA|2|IA|2|A〉〈A|[〈A|e−βH̃0,s |A〉ρb − αρb〈A|E0(β )|A〉], (D6)

ρ̃7(0) = 1

Z ′ |IA|2IDI∗
A |A〉〈A|[〈A|e−βH̃0,s |D〉ρbB − αρb〈A|E0(β )|D〉B], (D7)

ρ̃8(0) = 1

Z ′ |IA|2IAI∗
D|A〉〈D|[〈A|e−βH̃0,s |A〉ρbB† − αρb〈A|E0(β )|A〉B†], (D8)

ρ̃9(0) = 1

Z ′ IDI∗
A |ID|2|D〉〈D| [〈A|e−βH̃0,s |D〉Bρb − αBρb〈A|E0(β )|D〉], (D9)

ρ̃10(0) = 1

Z ′ IDI∗
A |IA|2|D〉〈A| [〈A|e−βH̃0,s |A〉Bρb − αBρb〈A|E0(β )|A〉], (D10)

ρ̃11(0) = 1

Z ′ IDI∗
AIDI∗

A |D〉〈A| [〈A|e−βH̃0,s |D〉BρbB − αBρb〈A|E0(β )|D〉B], (D11)

ρ̃12(0) = 1

Z ′ IDI∗
AIAI∗

D|D〉〈D| [〈A|e−βH̃0,s |A〉BρbB† − αBρb〈A|E0(β )|A〉B†], (D12)

ρ̃13(0) = 1

Z ′ IAI∗
D|ID|2|A〉〈D| [〈D|e−βH̃0,s |D〉B†ρb − αB†ρb〈D|E0(β )|D〉], (D13)

ρ̃14(0) = 1

Z ′ IAI∗
D|IA|2|A〉〈A| [〈D|e−βH̃0,s |A〉B†ρb − αB†ρb〈D|E0(β )|A〉], (D14)

ρ̃15(0) = 1

Z ′ IAI∗
DIDI∗

A |A〉〈A| [〈D|e−βH̃0,s |D〉B†ρbB − αB†ρb〈D|E0(β )|D〉B], (D15)

and

ρ̃16(0) = 1

Z ′ IAI∗
DIAI∗

D|A〉〈D| [〈D|e−βH̃0,s |A〉B†ρbB† − αBρb〈D|E0(β )|A〉B†]. (D16)
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Combining the Hermiticity of ρb〈D|E0(β )|D〉 that has been proved in Ref. [68], it is easy to pick out conjugate pairs: ρ̃2(0)
and ρ̃5(0), ρ̃3(0) and ρ̃13(0), ρ̃4(0) and ρ̃9(0), ρ̃7(0) and ρ̃14(0), ρ̃8(0) and ρ̃10(0), ρ̃11(0) and ρ̃16(0). The remaining terms
ρ̃1(0), ρ̃6(0), ρ̃12(0), and ρ̃15(0), are Hermitian operators themselves.

APPENDIX E: EXPRESSIONS FOR INHOMOGENEOUS TERMS WITH INITIAL CORRELATED STATE

Following the procedure as shown in the main text, one can obtain explicit expressions for the inhomogeneous contribution
(15) with the remaining terms contained in the the polaron-transformed initial state ρ̃(0) in Eq. (24) or (42). Results for the
first-order term of Eq. (15) are shown in the following. Each conjugate pair of ρ̃i(0) are given together for the convenience of
written description, except that ρ̃1(0), ρ̃6(0), ρ̃12(0), and ρ̃15(0) are calculated individually:

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃1(0)]} = −iα|ID|4 J2w2

Z ′

∫ β

0
dλ{(1 − eS(λ,t ) )(dazDD − dayDA)

+ (1 − e−S(λ,t ) )[(adx − ady)DA + adzDD]}[T(t ), |D〉〈D|] + H.c., (E1)

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃2(0)]} − iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃5(0)]}

= −iα|ID|2|IA|2 J2w2

Z ′

∫ β

0
dλ{(1 − eS(λ,t ) )[(dax + day)DD − dazDA] + (1 − e−S(λ,t ) )(adyDD − adzDA)}[T(t ), |D〉〈A|]

+ iα|ID|2|IA|2 J2w2

Z ′

∫ β

0
dλ{(1−e−S(λ,t ) )[(dax+day)DD − dazDA] + (1−eS(λ,t ) )(adyDD − adzDA)}[|D〉〈A|,T†(t )] + H.c.,

(E2)

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃4(0)]} − iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃9(0)]}

= iα|ID|2IAI∗
D

Jw2

Z ′

{
〈D|e−βH̃0,s |A〉(1 − e−S(0,t ) ) + αwJ

∫ β

0
dλ(a4(λ, t )[(dax + day)DD − dazDA]

+ a3(λ, t )(adyDD − adzDA))

}
[T(t ), |D〉〈D|] − iα|ID|2IAI∗

D

Jw2

Z ′

{
〈D|e−βH̃0,s |A〉(1 − eS(0,t ) )

+ αwJ
∫ β

0
dλ(a2(λ, t )[(dax + day)DD − dazDA] + a1(λ, t )(adyDD − adzDA))

}
[|D〉〈D|,T†(t )] + H.c., (E3)

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃6(0)]} = −iα|IA|4 J2w2

Z ′

∫ β

0
dλ{(1 − eS(λ,t ) )[(dax + day)AD − dazAA]

+ (1 − e−S(λ,t ) )(adyAD − adzAA)}[T(t ), |A〉〈A|] + H.c., (E4)

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃7(0)]} − iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃14(0)]}

= iα|IA|2IDI∗
A

Jw2

Z ′

{
〈A|e−βH̃0,s |D〉(1 − eS(0,t ) ) + αwJ

∫ β

0
dλ[a1(λ, t )(dazAD − dayAA) + a2(λ, t )(adzAD

+ (adx − ady)AA)]

}
[T(t ), |A〉〈A|] − iα|IA|2IDI∗

A

Jw2

Z ′

{
〈A|e−βH̃0,s |D〉(1 − e−S(0,t ) ) + αwJ

∫ β

0
dλ[a3(λ, t )(dazAD

− dayAA) + a4(λ, t )(adzAD + (adx − ady)AA)]

}
[|A〉〈A|,T†(t )] + H.c., (E5)

− iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃8(0)]} − iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃10(0)]}

= iα|IA|2IAI∗
D

Jw2

Z ′

{
〈A|e−βH̃0,s |A〉(1 − e−S(0,t ) ) + αwJ

∫ β

0
dλ(a4(λ, t )[(dax + day)AD − dazAA]

+ a3(λ, t )(adyAD − adzAA))

}
[T(t ), |A〉〈D|] − iα|IA|2IAI∗

D

Jw2

Z ′

{
〈A|e−βH̃0,s |A〉(1 − eS(0,t ) )

+αwJ
∫ β

0
dλ[a2(λ, t )(dax + day)AD − dazAA] + a1(λ, t )(adyAD − adzAA)]

}
[|A〉〈D|,T†(t )] + H.c., (E6)
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−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃11(0)]} − iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃16(0)]}

= iαIDI∗
AIDI∗

A

Jw5

Z ′

{
〈A|e−βH̃0,s |D〉(1 − e2S(0,t ) f 2(t ))

+αwJ
∫ β

0
dλ[c1(λ, t )(dazAD − dayAA) + c2(λ, t )(adzAD + (adx − ady)AA)]

}
[T(t ), |D〉〈A|]

− iαIDI∗
AIDI∗

A

Jw5

Z ′

{
〈A|e−βH̃0,s |D〉(1 − e−2S(0,t ) f 2(−t )) + αwJ

∫ β

0
dλ[c3(λ, t )(dazAD − dayAA)

+ c4(λ, t )(adzAD + (adx − ady)AA)]

}
[|D〉〈A|,T†(t )] + H.c., (E7)

−iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃12(0)]}

= iαIDI∗
AIAI∗

D

Jw

Z ′

{
〈A|e−βH̃0,s |A〉(1 − f 2(t )) − αwJ f 2(t )

∫ β

0
dλ[(1 − eS(λ,t ) )[(dax + day)AD − dazAA]

+ (1 − e−S(λ,t ) )(adyAD − adzAA)]

}
[T(t ), |D〉〈D|] + H.c., (E8)

and
− iα Trb{J[B̃(t )T(t ) + B̃†(t )T†(t ),Qρ̃15(0)]}

= iαIAI∗
DIDI∗

A

Jw

Z ′

{
〈D|e−βH̃0,s |D〉(1 − f 2(−t )) − αwJ f 2(−t )

∫ β

0
dλ[(1 − eS(λ,t ) )(dazDD − dayDA)

+ (1 − e−S(λ,t ) )(adzDD + (adx − ady)DA)]

}
[T(t ), |A〉〈A|] + H.c., (E9)

where

a1(λ, t ) = (eS(λ,t )+S(λ,0)+S(0,t ) − eS(λ,0) − eS(0,t ) + 1), (E10)

a2(λ, t ) = (e−S(λ,t )−S(λ,0)+S(0,t ) − e−S(λ,0) − eS(0,t ) + 1), (E11)

a3(λ, t ) = (e−S(λ,t )+S(λ,0)−S(0,t ) − eS(λ,0) − e−S(0,t ) + 1), (E12)

a4(λ, t ) = (eS(λ,t )−S(λ,0)−S(0,t ) − e−S(λ,0) − e−S(0,t ) + 1), (E13)
and

c1(λ, t ) = eS(λ,t )+2S(λ,0)+2S(0,t ) f 2(t ) − e2S(λ,0) − e2S(0,t ) f 2(t ) + 1, (E14)

c2(λ, t ) = e−S(λ,t )−2S(λ,0)+2S(0,t ) f 2(t ) − e−2S(λ,0) − e2S(0,t ) f 2(t ) + 1, (E15)

c3(λ, t ) = e−S(λ,t )+2S(λ,0)−2S(0,t ) f 2(−t ) − e2S(λ,0) − e−2S(0,t ) f 2(−t ) + 1, (E16)

c4(λ, t ) = eS(λ,t )−2S(λ,0)−2S(0,t ) f 2(−t ) − e−2S(λ,0) − e−2S(0,t ) f 2(−t ) + 1. (E17)

Then, the second-order terms of inhomogeneous contribution (15) are shown to be

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃4(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃9(0)}

= −α2J2
∫ t

0
dτ

⎧⎨
⎩

∑
l=4,9

K(4),l (t, τ )
[
T(t ),T(τ )σ̃ (0)

l (0)
] +K(3),l (t, τ )

[
T†(t ),T(τ )σ̃ (0)

l (0)
]

+K(2),l (t, τ )
[
T(t ),T†(τ )σ̃ (0)

l (0)
] +K(1),l (t, τ )

[
T†(t ),T†(τ )σ̃ (0)

l (0)
]⎫⎬⎭ + H.c., (E18)

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃7(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃14(0)}

= −α2J2
∫ t

0
dτ

⎧⎨
⎩

∑
l=7,14

K(1),l (t, τ )
[
T(t ),T(τ )σ̃ (0)

l (0)
] +K(2),l (t, τ )

[
T†(t ),T(τ )σ̃ (0)

l (0)
]

+K(3),l (t, τ )
[
T(t ),T†(τ )σ̃ (0)

l (0)
] +K(4),l (t, τ )

[
T†(t ),T†(τ )σ̃ (0)

l (0)
]⎫⎬⎭ + H.c., (E19)
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−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃8(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃10(0)}

= −α2J2
∫ t

0
dτ

⎧⎨
⎩

∑
l=8,10

K(4),l (t, τ )
[
T(t ),T(τ )σ̃ (0)

l (0)
] +K(3),l (t, τ )

[
T†(t ),T(τ )σ̃ (0)

l (0)
]

+K(2),l (t, τ )
[
T(t ),T†(τ )σ̃ (0)

l (0)
] +K(1),l (t, τ )

[
T†(t ),T†(τ )σ̃ (0)

l (0)
]⎫⎬⎭ + H.c., (E20)

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃11(0)} − α2

∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃16(0)}

= −α2J2
∫ t

0
dτ

⎧⎨
⎩

∑
l=11,16

M(1),l (t, τ )
[
T(t ),T(τ )σ̃ (0)

l (0)
] +M(2),l (t, τ )

[
T†(t ),T(τ )σ̃ (0)

l (0)
]

+M(3),l (t, τ )
[
T(t ),T†(τ )σ̃ (0)

l (0)
] +M(4),l (t, τ )

[
T†(t ),T†(τ )σ̃ (0)

l (0)
]⎫⎬⎭ + H.c., (E21)

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃12(0)} = −α2J2

∫ t

0
dτ

{
N(1)(t, τ )

[
T(t ),T(τ )σ̃ (0)

12 (0)
] +N(2)(t, τ )

[
T†(t ),T(τ )σ̃ (0)

12 (0)
]

+N(3)(t, τ )
[
T(t ),T†(τ )σ̃ (0)

12 (0)
] +N(4)(t, τ )

[
T†(t ),T†(τ )σ̃ (0)

12 (0)
]} + H.c., (E22)

−α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )Qρ̃15(0)} = −α2J2

∫ t

0
dτ

{
N(4)(t, τ )

[
T(t ),T(τ )σ̃ (0)

15 (0)
] +N(3)(t, τ )

[
T†(t ),T(τ )σ̃ (0)

15 (0)
]

+N(2)(t, τ )
[
T(t ),T†(τ )σ̃ (0)

15 (0)
] +N(1)(t, τ )

[
T†(t ),T†(τ )σ̃ (0)

15 (0)
]} + H.c., (E23)

where σ̃
(0)
i (0) represents the zeroth-order term of σ̃i(0) in which the first-order term in α is ignored. One can easily obtain the

expressions for in the same way as shown in Eqs. (59) and (60). The bath correlation functions K(n),l (t, τ ) have been calculated
in Eqs. (61)–(68).M(n),l (t, τ ) and N(n) are determined as follows:

M(1),11(t, τ ) =M(4),16(t, τ ) = w2{eS(0,τ−t )[e2S(0,t )+2S(0,τ ) f 2(t ) f 2(τ ) − 1] − e2S(0,t ) f 2(t ) − e2S(0,τ ) f 2(τ ) + 2}, (E24)

M(2),11(t, τ ) =M(3),16(t, τ ) = w2{e−S(0,τ−t )[e−2S(0,t )+2S(0,τ ) f 2(−t ) f 2(τ ) − 1] − e−2S(0,t ) f 2(−t ) − e2S(0,τ ) f 2(τ ) + 2}, (E25)

M(3),11(t, τ ) =M(2),16(t, τ ) = w2{e−S(0,τ−t )[e2S(0,t )−2S(0,τ ) f 2(t ) f 2(−τ ) − 1] − e2S(0,t ) f 2(t ) − e−2S(0,τ ) f 2(−τ ) + 2}, (E26)

M(4),11(t, τ ) =M(1),16(t, τ ) = w2{eS(0,τ−t )[e−2S(0,t )−2S(0,τ ) f 2(−t ) f 2(−τ ) − 1] − e−2S(0,t ) f 2(−t )−e−2S(0,τ ) f 2(−τ ) + 2}, (E27)

N(1)(t, τ ) = w2{eS(0,τ−t )( f 2(t ) f 2(τ ) − 1) − f 2(t ) − f 2(τ ) + 2}, (E28)

N(2)(t, τ ) = w2{e−S(0,τ−t )( f 2(−t ) f 2(τ ) − 1)− f 2(−t ) − f 2(τ ) + 2}, (E29)

N(3)(t, τ ) = w2{e−S(0,τ−t )( f 2(t ) f 2(−τ ) − 1)− f 2(t ) − f 2(−τ ) + 2}, (E30)

N(4)(t, τ ) = w2{eS(0,τ−t )( f 2(−t ) f 2(−τ ) − 1)− f 2(−t ) − f 2(−τ ) + 2}, (E31)

where f (t ) is defined as

f (t ) = ei
∑

k (δgk/ωk )2 sin(ωkt ). (E32)

Combining the definitions of spectral densities [Eqs. (73)–(75) and (78)–(81)], f (t ) can be expressed as

f (t ) = ei
∫ ∞

0 dω[Js (ω)/ω2] sin(ωt ). (E33)

Then, the relevant coefficients involved in the above expressions are finally determined.
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