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We tackle the dynamical description of the quantum measurement process by explicitly addressing the
interaction between the system under investigation and the measurement apparatus, the latter ultimately
considered as a macroscopic quantum object. We consider arbitrary positive-operator-valued measures (POVMs)
such that the orthogonality constraint on the measurement operators is relaxed. We show that, as with the
well-known von Neumann scheme for projective measurements, it is possible to build up a dynamical model
holding a unitary propagator characterized by a single time-independent Hamiltonian. This is achieved by
modifying the standard model so as to compensate for the possible lack of orthogonality among the measurement
operators of arbitrary POVMs.
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I. INTRODUCTION

A distinctive trademark of quantum mechanics is repre-
sented by the quantum measurements and by the randomness
of their outcomes. The postulates of the theory dictate how
to compute the associated statistics for quantum observables
through projective measures, while no mechanism is provided
to predict how the actual finally observed result comes about.
In this respect, the measurement process still represents an
open field of research [1–8]. Actually, from the dawn of quan-
tum theory, two main steps toward complementary directions
have been performed. On the one hand, a clear description of
the measurement process entailing the definition of a time-
independent interaction Hamiltonian between the system and
an ultimately macroscopic apparatus has been provided by
von Neumann [9], and fully characterized by Ozawa [10] sev-
eral years later. On the other hand, the statistical description of
quantum measurements has been extended to non-necessarily
orthonormal measurement operators by the introduction of
the so-called positive-operator-valued measures (POVMs)
[1–3].

In this paper, we unify these two approaches, introducing
a dynamical description of arbitrary quantum measurements.
We show that, in order to achieve a well-defined—i.e., com-
pletely positive trace preserving (CPT) [1,11,12]—dynamical
map, the lack of orthogonality of arbitrary measurement op-
erators needs to be compensated by properly modifying the
von Neumann–Ozawa (vN-O), time-independent Hamiltonian
representation. In our analysis, we rely on the Naimark ex-
tension theorem [13–16], which allows one to describe an
arbitrary POVM performed on the system of interest, in terms
of a projective measurement performed on an external probing
system that was properly coupled with the latter. This provides
a proper generalization of the von Neumann model to arbitrary
measurements. We recall that addressing the actual dynamics
behind the formal description of a quantum measurement

not only helps us to understand fundamental aspects of the
process, but it also gives a relevant indication about the
actual design of quantum-measurement experiments (see, e.g.,
Refs. [17–19]).

The paper is structured as follows: as a premise in Sec. II
we introduce the notation and review a few basic notions
regarding POVMs and the vN-O construction for projective
measurements. Section III contains the original part of the
work. Here we rigorously define the problem we wish to
address and present a solution for it; the fundamental element
of our analysis is the explicit construction of a Naimark
Hamiltonian discussed in Secs. III A and III B. The conclu-
sion and final remarks are given in Sec. IV, while technical
considerations are presented in the Appendixes.

II. QUANTUM MEASUREMENTS

The minimal description of a quantum measurement re-
quires two elements: a set of n� distinguishable outcomes,
{μγ ; γ = 1, . . . , n�}, and the corresponding probability dis-
tribution {pγ }. Herewith, without loss of generality, we will
exclusively consider countable sets of outputs and hence dis-
crete distributions. This process involves at least two players
interacting with each other: the system S, upon which the
measurement is performed, and the apparatus �, from which
one actually obtains the outcomes. Let HS be the Hilbert space
of S. Formally, a quantum measure on a state ρ in

S
is defined

by a bijection from {μγ } into the set of positive operators
{F (γ )

S
} on HS , called elements of the measure or effects, such

that pγ = Tr[ρ in
S

F (γ )
S

], ∀γ . For
∑

γ pγ = 1 to hold, it must
be

∑
γ F (γ )

S
= IS . As a process on S, a single measurement

acts on an input state ρ in
S

, upon which we want to gain some
information, and produces one output μγ̄ with probability
pγ̄ , as defined above. After the interaction with the apparatus
� and before the production of the outcomes, the system is
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described by the so-called postmeasurement state ρout
S

of S,
defined as

ρout
S

=
n�∑

γ=1

M (γ )
S

ρ in
S

M (γ )
S

† =
n�∑

γ=1

pγ ρ (γ )
S

, (1)

ρ (γ )
S

= 1

pγ

M (γ )
S

ρ in
S

M (γ )
S

†
, pγ = Tr

[
M (γ )

S
ρ in

S
M (γ )

S

†]
. (2)

Herewith we focus only on data acquisition operations, with-
out considering any additional dynamical evolution that could
be involved during the whole measurement process. In the ex-
pressions above, the operators M (γ )

S
, dubbed as measurement

or detection operators, are defined by F (γ )
S

= M (γ )†

S
M (γ )

S
, a

decomposition always allowed due to the positiveness of F (γ )
S

.
Actually, the relation between the elements of the POVM
and the measurement operators is not univocal. Indeed, the
former equation admits an infinite amount of solutions that
can be obtained multiplying M (γ )

S
by an arbitrary unitary

transformation W (γ )
S

, i.e., for all γ ’s we can define M̃ (γ )
S

=
W (γ )

S
M (γ )

S
such that F (γ )

S
= M̃ (γ )†

S
M̃ (γ )

S
. We will refer to the

states ρ (γ )
S

as γ -detected states, meaning that a precise choice
for the detection operator M (γ )

S
has been made. In general,

n� is not constrained by the dimension of the Hilbert space
nS = dim HS . This is because neither the elements F (γ )

S
of the

POVM nor the measurement operators M (γ )
S

are required to
satisfy any orthogonality constraint. This is actually the case
for a more specific type of quantum measurement defined by
a projective-valued measure (PVM) or a projective measure.
The latter is characterized by a set of operators �(γ )

S
being

orthonormal projectors on S, which implies that n� � nS . A
PVM {�(γ )

S
} defines self-adjoint operators OS = ∑

γ oγ �(γ )
S

,
with oγ real ∀γ and in one-to-one relation with μγ via
an invertible calibration function f (oγ ) = μγ [4]. In fact,
the usual formulation of the quantum-measurement postulate
refers to the above operators as “observables” and assigns the
probability pγ = Tr[ρ in

S
�(γ )

S
] to the eigenvalue oγ . As for the

γ -detected states, their definition as {ρ (γ )
S

= �(γ )
S

ρ in
S
�(γ )

S
/pγ }

is an integral part of the postulate for PVM in its standard
form, asserting that, after one single measurement with output
μγ̄ , the system is in the state ργ̄

S
with absolute certainty (as for

the case of nonorthogonal POVMs, the mapping between the
output probabilities pγ and the γ -detected state is preserved
even multiplying �(γ )

S
by a unitary transformation). This gives

the state ρout
S

the consistent meaning of a statistical mixture of
the detected states produced in a series of many identical rep-
etitions of the measurement. When rank [�(γ )

S
] = 1,∀γ , i.e.,

�(γ )
S

= |γ 〉S〈γ |, the PVM is called ideal, and n� = dimHS .

A. The Naimark extension theorem

The Naimark extension theorem [13–16] establishes a for-
mal connection between POVMs and PVMs. Specifically, it
states that any given POVM {F (γ )

S
} for S can be represented

as a PVM {�(γ )
A

} for an ancillary system A that has unitarily
interacted with S prior to being tested. Let nA be the dimension
of the Hilbert space HA associated with the ancilla. Formally,
the Naimark theorem requires that nA � n� , allowing the
choice nA = n� that entails an ideal PVM on A, �(γ )

A
=

|γ 〉A〈γ |. It then states that there exist the following: (i) a state

FIG. 1. Scheme of the Naimark representation for a POVM
{F (γ )

S
} on S, F (γ )

S
= TrA[IS ⊗ |0〉A〈0| V †

SA
(IS ⊗ |γ 〉A〈γ |)VSA ].

|ψ0〉A〈ψ0| ∈ L(HA ), (ii) a unitary operator VSA ∈ L(HSA ), and
(iii) an ideal PVM {|γ 〉A〈γ |} for A (see Fig. 1), such that

F (γ )
S

= TrA [(IS ⊗ |ψ0〉A〈ψ0|)V †
SA

(IS ⊗ |γ 〉A〈γ |)VSA ] (3)

and

pγ = Tr
[(

ρ in
S

⊗ |ψ0〉A〈ψ0|
)
(V †

SA
(IS ⊗ |γ 〉A〈γ |)VSA )

]
, (4)

which allows us to consistently write

M (γ )
S

=
A
〈γ |VSA |ψ0〉A . (5)

An explicit example of the above construction is presented
in Sec. III A: it should be stressed, however, that this is by
no means the only possibility, as different choices for the
Naimark operator VSA are typically available for each given
POVM {F (γ )

S
} and the associated choice of measurement

operators {M (γ )
S

}. It should also be noticed that, conversely,
a unitary transformation of the state ρ in

S
⊗ |ψ0〉A〈ψ0| into

VSA (ρ in
S

⊗ |ψ0〉A〈ψ0|)V †
SA

, followed by an ideal PVM {|γ 〉A〈γ |}
on A, defines a proper POVM on S. In this respect, the
entrance of the ancilla is extremely valuable, as it provides
the theoretical scheme with the versatility needed to describe
diverse experimental situations, such as those in which a phys-
ical mediator actually exists, and is ultimately responsible for
the information transfer from S to � [20,21].

B. Dynamical models for PVM

Dynamical models for quantum measurements are meant
to describe how a measurement process takes place in time, in
terms of a (time-independent) Hamiltonian coupling between
the system S and an external environment � playing the role
of the apparatus, which, at the end of the process, will store the
measurement outcomes. More specifically, in its simplest yet
completely general version, the von Neumann–Ozawa (vN-
O) dynamical model for PVMs [9,10,22–25] assumes that the
interaction between S and � reads

HS�
:= OS ⊗ O

�
, (6)

with OS = ∑
γ oγ �(γ )

S
an observable on S, and O

�
a self-

adjoint operator on �, which is canonically conjugated to
what is typically referred to as “the pointer” observable [7].
Hence, the associated unitary evolution reads

US�
(t ) := e−itOS ⊗O

� =
n�∑

γ=1

�(γ )
S

⊗ U γ

�
(t ), (7)

where U γ
�

(t ) = e−itoγ O
� in units h̄ = 1. The model also as-

sumes that � is initially prepared in a pure state |D〉 that is not
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FIG. 2. Schematic representation of the von Neumann–Ozawa
dynamical scheme for projective measures: an observable OS =∑

γ oγ �(γ )
S

is measured on S by letting it interact with the measure-
ment apparatus �, so as to encode the information on the states of
the apparatus |�γ (t )〉

�
.

an eigenstate of O�. If the system S is initialized at t = 0 in
the state ρ in

S
, the unitary (7) makes the system S + � evolve

into the joint density matrix

ρS�
(t ) :=

n�∑

γ ,γ ′=1

�(γ )
S

ρ in
S
�(γ ′ )

S
⊗ |�γ (t )〉�〈�γ ′

(t )|, (8)

which, upon partial trace with respect to �, corresponds to the
following local mapping:

ρS (t ) =
n�∑

γ ,γ ′=1

�(γ )
S

ρ in
S
�(γ ′ )

S �
〈�γ ′

(t )|�γ (t )〉
�

(9)

for S. In the above expressions, |�γ (t )〉
�

:= U γ
�

(t )|D〉
�

are
pure states of �, which encode the measurement outcomes
γ (see Fig. 2 for a schematic representation of the process).
The more distinguishable such states are, the larger is the
information stored in � that allows one to distinguish between
the different outcomes. In fact, the most favorable situation
in terms of information transfer from S to � corresponds
to having the |�γ (t )〉

�
’s be orthonormal. It is easily seen

that when this condition holds, it follows from Eq. (9) that
the matrix representation of ρS (t ) on the basis of the OS

eigenstates is block-diagonal, and vice versa, i.e., ρS (t ) =∑
γ �(γ )

S
ρ in

S
�(γ )

S
, as required by (1) if M (γ )

S
= �(γ )

S
= F (γ )

S
.

This clarifies why decoherence plays such an important role
in the quantum measurement process [26–30]. Therefore, we
say that the PVM {�(γ )

S
} can be successfully realized on S

only if, in the limit of a macroscopic apparatus [29,30], there
exists a time td, typically referred to as decoherence time [6,7],
such that for t > td one has

�
〈�γ ′

(t )|�γ (t )〉
�

= δγ γ ′ , (10)

or at least such that the above condition is approximately
verified over some nontrivial time interval preceding the data
acquisition event (notice that although these scalar products
are in principle periodic functions of time, in the limit of a
macroscopic measuring device � one can safely take the time
during which they stay approximately null much longer than
the time necessary to perform the measurement).

III. DYNAMICAL MODEL FOR ARBITRARY POVM

In this section, we discuss how to generalize the vN-O con-
struction for PVMs to the case of arbitrary POVMs, removing
the constraint on the orthonormality of the measurement
operators. More precisely, we show how to modify Eqs. (6)
and (7) in such a way that for times t larger than a certain
characteristic threshold time td, the interaction between S and

� will yield a joint density matrix of the form similar to
Eq. (8), i.e.,

ρS�
(t ) =

n�∑

γ ,γ ′=1

M (γ )
S

ρ in
S

M (γ ′ )
S

† ⊗ |�γ (t )〉�〈�γ ′
(t )|, (11)

where {M (γ )
S

; γ = 1, . . . , n�} are the selected measure-
ment operators for the POVM and where the vectors
{|�γ (t )〉�; γ = 1, . . . , n�} form a mutually orthonormal set
as in Eq. (10).

Let us start by observing that at variance with the PVM
scenario discussed in the previous section, we cannot expect
Eq. (11) to apply at those times t < td for which Eq. (10)
does not hold. Indeed, due to the lack of orthogonality of
the operators M (γ )

S
in this regime, the resulting transformation

would not be CPT in general, hence it would be nonphysically
implementable—see Appendix A. This of course does not
imply that dynamical models cannot be found that describe
a generic POVM: simply speaking, we need to replace the
vN-O Hamiltonian coupling (6) with something else. The
key ingredient for this construction is clearly provided by the
Naimark extension theorem [13–16] we reviewed in Sec. II A,
which could be pictorially summarized as in Fig. 1. A tentative
idea would be to work in an S + A + � scenario with a
conventional vN-O couplings linking the apparatus � to A or
to S + A (A being the Naimark ancillary system). However,
this approach, which we briefly review in Appendix B, does
not conclusively work because, although it can reproduce
the correct outcome probability distribution, it cannot yield
a solution capable of approaching Eq. (11). On the contrary,
a simpler and more effective way to construct a dynamical
model for an arbitrary POVM is found by identifying the sys-
tem environment � directly with A. Under this assumption, we
then look for a proper Hamiltonian coupling HSA generating a
unitary evolution USA (t ) := e−itHSA , which for all times t larger
than a certain critical time td fulfills, at least approximately,
the constraint

USA (t ) = VSA, (12)

VSA being the unitary entering Eq. (5). Clearly due to the Stone
theorem [31,32] such a Naimark Hamiltonian can always
be identified. However, our goal is to produce an explicit
construction for such a term, as we show in the following.

To construct our candidate for HSA , we start with a first
example that utilizes a small ancilla A, hence inducing an
S + A dynamics, which is explicitly periodic: accordingly, this
model can produce the same correlations as in Eq. (11) only
for specific values of t , with cyclic recurrence that prohibits
the possibility of maintaining such a configuration indefinitely
or at least for some nonzero time intervals. The second model,
which is actually the central result of this paper, corrects
this drawback adopting a much larger ancilla. A pictorial
representation of the model is presented in Fig. 3, while
the complete analytical derivation is presented in Sec. III B.
We introduce a degeneracy parameter 	 = 1, . . . , nL for the
ancilla Hilbert space HA and define a coupling between S
and A formally equivalent to first neighboring hopping terms,
characterizing models for perfect state transfer [33,34]. There-
fore, by increasing nL it is possible to extend the condition
Eq. (11) over arbitrarily large (ideally infinitely long) time
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FIG. 3. Schematic representation of our dynamical model for
POVMs. The principal system S interacts with an ultimately macro-
scopic ancilla A. The S + A coupling is ruled by a time-independent
generator HSA . In fact, the unitary transformation USA (t ) induces the
transition from an arbitrary initial state ρ in

S
⊗ |ψ0〉A 〈ψ0| to the final

state (13). The information about the possible outputs μγ is encoded
in the orthonormal states of ancilla |Aγ (t )〉A .

intervals, as shown in Fig. 4. Actually, our model allows us
to translate (11) into

ρSA (t ) =
n�∑

γ ,γ ′=1

M (γ )
S

ρ in
S

M (γ ′ )
S

† ⊗ |Aγ (t )〉A〈Aγ ′
(t )|, (13)

where we have explicitly identified the state |�γ (t )〉
�

with
the state of the enlarged ancilla |Aγ (t )〉A . A crucial difference
between {|�γ (t )〉

�
} and {|Aγ (t )〉A} is that the latter are orthog-

onal to each other for all times t . This compensates for the
possible lack of orthogonality of the measurement operators
M (γ )

S
, guaranteeing a posteriori the complete positivity of the

unitary transformation USA (t ).

A. First implementation: Periodic dynamics

Our first step to tackle the problem is to explicitly write
down a suitable candidate for the Naimark unitary VSA . We
observe that Eq. (5) can be satisfied, e.g., by requiring that for
all |ψ〉S of S the following condition holds:

VSA |ψ〉S ⊗ |ψ0〉A = eiα
n�∑

γ=1

M (γ )
S

|ψ〉S ⊗ |γ 〉
A
, (14)

with {|γ 〉A ; γ = 1, 2, . . . , n�} being the orthonormal set of
vectors of A entering Eq. (5), the phase α being absolutely
irrelevant but being inserted for future reference (notice that
the above requirement is fully consistent with the dimension
nA of A being larger than the total number of measurements
outcomes n�). This transformation does not completely char-
acterize VSA on the full Hilbert space of S + A, but does it only
on a proper subspace of the latter—specifically the subspace
associated with vectors having A into the input state |ψ0〉. By
construction, at least on these vectors, it preserves the scalar
product: hence it can be generalized to a global unitary acting
on the full space of the system and of the ancilla. What we are
going to do next is to explicitly construct such an extension
using a simplifying trick. Specifically, we assume the input
vector |ψ0〉A of A to be orthogonal to all the elements of the
orthonormal set {|γ 〉A ; γ = 1, . . . , n�}, i.e.,

A〈ψ0|γ 〉A = 0, ∀γ = 1, 2, . . . , n�. (15)

This, of course, automatically implies that the dimension of A
we are considering has to be at least larger than or equal to

FIG. 4. Plot of the probability function P0(t ) := |β0(t )|2 entering
Eq. (46) obtained by solving Eq. (41) for nL = 20 [panel (a)] and
nL = 70 [panel (b)] for the case in which the frequency parameters
ω	 of Eq. (35) are taken to be uniform and equal to ω0. In both
cases, P0(t ) drops from 1 to almost zero around t ∼ 2/ω0. Then small
revivals appear quite periodically after a time interval approximately
given by nL . Therefore, in the limit of nL → ∞, and after a given
lapse of time (see the insets), the state of the S + A can be safely
approximated by (48).

n� + 1, i.e., slightly larger than the minimum value required
by the Naimark theorem (i.e., n�). Such small overhead
turns out to be extremely useful as we now can decompose
the matrix VSA of (12) into a collection of 2 × 2 indepen-
dent blocks. Indeed, let us introduce an orthonormal basis
{| j〉S ; j = 1, . . . , nS } for HS . Expanding |ψ〉S in such a basis,
we can then observe that the identity (14) gets replaced by

VSA

∣∣ξ (0)
j

〉
SA

= eiα
∣∣ξ (1)

j

〉
SA

, (16)

where for all j = 1, . . . , nS we defined the pure states
∣∣ξ (0)

j

〉
SA

:= | j〉S ⊗ |ψ0〉A , (17)

∣∣ξ (1)
j

〉
SA

:=
n�∑

γ=1

M (γ )
S

| j〉S ⊗ |γ 〉A, (18)

which by construction are all mutually orthonormal, i.e.,

SA

〈
ξ

(	)
j

∣∣ξ (	′ )
j′

〉
SA

= δ j, j′δ	,	′ , (19)
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with 	, 	′ = 0, 1. They can be grouped in a collection of nS

mutually orthogonal, two-dimensional subspaces

H( j)
SA

:= Span
{∣∣ξ (0)

j

〉
SA

,
∣∣ξ (1)

j

〉
SA

}
, (20)

labeled by j and spanned by the couple |ξ (0)
j 〉SA and |ξ (1)

j 〉SA .
According to (16), the unitary VSA operates separately on each
one of the H( j)

SA
where, up to the global phase factor eiα , it acts

as the following effective Pauli transformations:

σ ( j)
SA

= [
σ ( j)

SA

]†
:= ∣∣ξ (0)

j

〉
SA

〈
ξ

(1)
j

∣∣ + ∣∣ξ (1)
j

〉
SA

〈
ξ

(0)
j

∣∣, (21)

leading to the identification

VSA = eiα ⊕ j σ ( j)
SA

, (22)

the direct sum being performed over all j = 1, . . . , nS . Our
first choice for the Naimark Hamiltonian is hence provided by
the self-adjoint operator

HSA := ω

nS∑

j=1

σ ( j)
SA

, (23)

with ω > 0 an arbitrary positive constant, which, using (17)
and (18), can be equivalently expressed as

HSA = ω

n�∑

γ=1

(
M (γ )

S
⊗ |γ 〉A〈ψ0| + H.c.

)
. (24)

Its associated unitary evolution is periodic of period 2π/ω and
reads

USA (t ) := e−iHSA t = ⊕ je
−iωtσ ( j)

SA

= ⊕ j
[
1( j)

SA
cos(ωt ) − iσ ( j)

SA
sin(ωt )

]
, (25)

where we used the property

σ ( j)
SA

σ ( j′ )
SA

= δ j, j′1
( j)
SA

, (26)

with

1( j)
SA

:= ∣∣ξ (0)
j

〉
SA

〈
ξ

(0)
j

∣∣ + ∣∣ξ (1)
j

〉
SA

〈
ξ

(1)
j

∣∣ (27)

being the projection operator on H( j)
SA

. From Eq. (25) it then
follows that

USA (t )|ψ〉S ⊗ |ψ0〉A = cos(ωt )|ψ〉S ⊗ |ψ0〉A

− i sin(ωt )
n�∑

γ=1

M (γ )
S

|ψ〉S ⊗ |γ 〉A, (28)

which yields Eq. (14) for t = td = π/(2ω) upon identifying
the phase term α with −π/2. We remark that USA (t ) is
explicitly tailored for the selected detection operators M (γ )

S
,

and in this sense it can be actually dubbed as a dynamical
model for instruments.

B. Second implementation: Nonperiodic dynamics

The main drawback of the previous example is that it
exhibits a definite period 2π/ω, so that Eq. (28) reproduces
Eq. (14) only at the precise instants tn = (2n + 1)td, where n
is an integer number. Hence it does not exactly fit into our
requirement to enforce Eq. (11) for an extended time interval
after a given premeasurement time td. Here we show, however,
how one can easily modify the construction to explicitly fulfill

this requirement, too. The idea is to increase the dimension of
the subspaces H( j)

SA
of Eq. (20) and to equip the associated

Hamiltonian with a reacher frequency spectrum. For this pur-
pose, we replace the orthonormal set {|γ 〉A ; γ = 1, . . . , n�}
entering the previous construction with a larger set of or-
thonormal vectors {|γ , 	〉A ; γ = 1, . . . , n�; 	 = 1, . . . , nL},
where 	 is a degeneracy parameter that can take up to nL

different values, i.e.,

A〈γ ′, 	′|γ , 	〉A = δγ ,γ ′δ	,	′, A〈ψ0|γ , 	〉A = 0 ∀γ , 	, (29)

which implicitly dictates that now A must have a dimension nA

that is larger than or equal to n�nL + 1. With that in mind, we
then replace Eq. (20) with the (nL + 1)-dimensional spaces

H( j)
SA

:= Span
{∣∣ξ (0)

j

〉
SA

,
∣∣ξ (1)

j

〉
SA

, . . . ,
∣∣ξ (nL )

j

〉
SA

}
, (30)

with |ξ (0)
j 〉SA still defined as in Eq. (17) and where, for 	 =

1, . . . , nL, |ξ (	)
j 〉SA are instead given by

|ξ (	)
j 〉SA :=

n�∑

γ=1

M (γ )
S

| j〉S ⊗ |γ , 	〉A , (31)

which still fulfills the orthogonality conditions (19). Define
hence the new self-adjoint operators

H ( j)
SA

:=
nL−1∑

	=0

ω	σ
( j,	)

SA
, (32)

with ω	 > 0 being frequency terms that play the role of free
parameters in the model, and where, for 	 = 0, . . . , nL − 1,
the new Pauli operators σ ( j,	)

SA
are given by

σ ( j,	)
SA

= [
σ ( j,	)

SA

]†
:= ∣∣ξ (	)

j

〉
SA

〈
ξ

(	+1)
j

∣∣ + ∣∣ξ (	+1)
j

〉
SA

〈
ξ

(	)
j

∣∣. (33)

Notice that from the orthonormality conditions (19) it follows
that, irrespective of the values of 	 and 	′, the product of any
two operators σ ( j,	)

SA
and σ ( j′,	′ )

SA
with j �= j′ vanishes, i.e.,

σ ( j,	)
SA

σ ( j′,	′ )
SA

= 0. (34)

Furthermore, the various H ( j)
SA

terms have exactly the same
matrix form with respect to the associated canonical basis of
the associated spaces H( j)

SA
, i.e.,

SA

〈
ξ

(	′ )
j

∣∣H ( j)
SA

∣∣ξ (	)
j

〉
SA

= ω	(δ	,	′+1 + δ	+1,	′ ). (35)

Finally, we observe that H ( j)
SA

formally corresponds to the
1-excitation sector of a spin-1/2 chain Hamiltonian, with
open boundary conditions, characterized by first-neighboring
hopping terms, whose coupling terms are gauged by the
frequencies ω	’s.

We hence introduce as the new Hamiltonian of the S + A
system the operator

HSA :=
nS∑

j=1

H ( j)
SA

, (36)

which, making use of Eqs. (31) and (17), can be equivalently
recast in the following compact form:

HSA =
n�∑

γ=1

M (γ )
S

⊗ �(γ )
A

+
n�∑

γ ,γ ′=1

M (γ )
S

M (γ ′ )
S

† ⊗ �(γ ,γ ′ )
A

+ H.c.

(37)
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after defining the operators

�(γ )
A

:= ω0|γ , 1〉A〈ψ0|,

�(γ ,γ ′ )
A

:=
nL−1∑

	=1

ω	|γ , 	〉A〈γ ′, 	 + 1|. (38)

From Eqs. (34) and (35) we notice that, as in the case of
Sec. III A, HSA is block-diagonal, with respect to the extended
subspaces H( j)

SA
, with isospectral blocks. Hence it acts inde-

pendently on each one of such subspaces, inducing on each of
them the same local unitary rotation, i.e.,

USA (t ) = e−iHSA t = ⊕ je
−itH ( j)

SA . (39)

If we now consider the evolution it induces on an input state
of the form |ψ〉S ⊗ |ψ0〉A , where |ψ〉S is a generic vector of
S, expanding the input state as a linear combination of the
vectors |ξ (0)

j 〉SA , we can write

USA (t )|ψ〉S ⊗ |ψ0〉A =
nS∑

j=1

α j

∣∣ξ (0)
j (t )

〉
SA

, (40)

α j being the expansion coefficients of |ψ〉S with respect to the
basis {| j〉S ; j = 1, . . . , nS } and where the vector

∣∣ξ (0)
j (t )

〉
SA

:= e−itH ( j)
SA

∣∣ξ (0)
j

〉
SA

(41)

is the evolution of |ξ (0)
j (t )〉SA induced by the Hamiltonian

component H ( j)
SA

that is active on the subspace H( j)
S,A. By

construction |ξ (0)
j (t )〉SA ∈ H( j)

S,A so that we can write it as

∣∣ξ (0)
j (t )

〉
SA

=
nL∑

	=0

β	(t )
∣∣ξ (	)

j

〉
SA

. (42)

In this expression, the quantities β	(t ) are (properly nor-
malized) amplitude probabilities associated with the canon-
ical orthonormal basis |ξ (0)

j 〉SA , |ξ (1)
j 〉SA , . . . , |ξ (nL )

j 〉SA , whose
explicit functional dependence on t can be freely tailored
by properly choosing the frequencies ω1, ω2, . . . , ωnL of the
model. The relevant observation here is the fact that due to the
isospectral property (35), such coefficients do not bear any
functional dependence upon the index j. Exploiting this fact
and replacing Eq. (42) into (40), we can hence write

USA (t )|ψ〉S ⊗ |ψ0〉A

= β0(t )|ψ〉S ⊗ |ψ0〉A +
√

1 − |β0(t )|2
n�∑

γ=1

M (γ )
S

|ψ〉S

⊗ |Aγ (t )〉A , (43)

where for γ = 1, . . . , n� ,

|Aγ (t )〉A := 1√
1 − |β0(t )|2

nL∑

	=1

β	(t )|γ , 	〉A (44)

form an orthonormal set of vectors of A, which are also
orthogonal to |ψ0〉A , i.e., they fulfill the conditions

A〈Aγ ′
(t )|Aγ (t )〉A = δγ ,γ ′ , A〈ψ0|Aγ (t )〉A = 0. (45)

As a consequence of Eq. (40), it follows that the evolved
density matrix ρSA (t ) := USA (t )(ρ in

S
⊗ |ψ0〉A〈ψ0|)U †

SA
(t ) of

S + A at time t can be written as

ρSA (t ) = |β0(t )|2ρ in
S

⊗ |ψ0〉A〈ψ0| + |β0(t )|�SA(t )

+ [1 − |β0(t )|2]
n�∑

γ ,γ ′=1

M (γ )
S

ρ in
S

M (γ ′ )
S

†

⊗ |Aγ (t )〉A〈Aγ ′
(t )|, (46)

where we have define the bounded operator on S + A,

�SA (t ) = e−iξ0(t )
√

1 − |β0(t )|2
n�∑

γ=1

M (γ )
S

ρ in
S

⊗ |Aγ (t )〉A〈ψ0|

+ H.c., (47)

eiξ0(t ) being the phase of β0(t ).
The relevant quantity in Eq. (46) is the probability am-

plitude function β0(t ): for t = 0 it is equal to 1, in agree-
ment with the requirement that ρSA (0) = ρ in

S
⊗ |ψ0〉A〈ψ0|, but

β0(t ) → 0 in an extended time interval for large enough nL,
as shown in Fig. 4. Accordingly, in such a time interval the
above expression reduces to

ρSA (t ) 
n�∑

γ ,γ ′=1

M (γ )
S

ρ in
S

M (γ ′ )
S

† ⊗ |Aγ (t )〉A〈Aγ ′
(t )|, (48)

which effectively achieves our target (11) by identifying
|Aγ (t )〉A with |�γ (t )〉

�
.

IV. CONCLUSIONS

In this paper, we discussed how to provide a comprehensive
dynamical description for the quantum measurement process.
For the case of projective measures, an exhaustive well-
established answer is provided by the von Neumann–Ozawa
model hinging upon the decoherence induced by an ultimately
macroscopic apparatus on the system under investigation. As
the decoherence process takes place, the states of the appa-
ratus, on which the information about measurement outputs
is encoded, progressively become orthogonal to each other.
Once the decoherence process has taken place, such states
turn out to be perfectly distinguishable, thus allowing for an
optimal encoding of the measurement results. We proved that
this model cannot be directly applied to tackle the case of
nonorthogonal measurements, as it could induce a violation
of the complete positivity requirement for such dynamical
process before the decoherence is completed. We showed
different strategies in order to overcome this hindrance. On the
one hand, it turns out that it is possible to retrieve the correct
probability distribution prescribed by an arbitrary POVM by
extending the von Neumann description to an ancillary system
and performing a joint projective measure on the system and
the ancilla (Appendix B). However, this solution does not
return the expression for the postmeasurement state of the
system prescribed by the definition of POVMs. In Sec. III
we show that a possible solution to this problem can be
realized by getting rid of such a net separation between the
ancilla and the apparatus, and finally identifying the latter with
a macroscopic ancilla. The key mechanism underlying our
model consists in engineering a coupling between the system
and the ancilla in terms of state transfer Hamiltonians acting
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on orthogonal eigenspaces of the global Hilbert space. By
construction, this allows us to encode the information about
the output results of an arbitrary POVM into the states of
the ancilla that, contrary to the standard decoherence model,
constitute an orthonormal set at all times. This allows us to
retrieve not only the correct probability distribution for the
output results, but also the correct expression for the post-
measurement state of POVMs for an assigned set of detector
operators. In this sense, we have determined a dynamical
model for instruments.
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APPENDIX A: CPT CONDITIONS FOR THE MAPPING (8)

If we force the mapping (8) to apply also when the projec-
tors �(γ )

S
’s are replaced by the element M (γ )

S
associated with

a generic POVM, at the local level on S this would induce the
following transformation:

ρ in
S

−→
n�∑

γ ,γ ′=1

M (γ )
S

ρ in
S

M (γ ′ )
S

†

�
〈�γ ′

(t )|�γ (t )〉
�
. (A1)

Notice that the scalar product
�
〈�γ ′

(t )|�γ (t )〉
�

can be seen as
the element γ , γ ′ of a positive-semidefinite matrix Q(t ) in a
given orthonormal basis {|φγ 〉}γ=1,...,n�

of an n�-dimensional
Hilbert space. Let then Q(t ) = ∑n�

j=1 q j (t )|u j (t )〉〈u j (t )| be the
spectral decomposition of Q(t ), with qj (t ) � 0 and

n�∑

j=1

q j (t ) = Tr[Q] =
n�∑

γ=1
�
〈�γ (t )|�γ (t )〉

�
= n�. (A2)

Writing
�
〈�γ ′

(t )|�γ (t )〉
�

in the eigenbasis of Q(t ), we can
then recast the mapping (A1) as

ρ in
S

−→
n�∑

j=1

q j (t )L( j)
S

(t )ρ in
S

L( j)
S

(t )
†
, (A3)

where L( j)
S

(t ) = ∑n�

γ=1〈u j (t )|φγ 〉M (γ )
S

are operators fulfilling
the constraint

n�∑

j=1

L( j)
S

(t )
†
L( j)

S
(t ) =

n�∑

γ=1

M (γ )†

S
M (γ )

S = 1S . (A4)

It is then easy to verify that Eq. (A3) is CPT if and only if the
following condition holds:

n�∑

j=1

q j (t )L( j)
S

(t )
†
L( j)

S
(t )

=
n�∑

γ ,γ ′=1
�
〈�γ ′

(t )|�γ (t )〉
�

M (γ ′ )
S

†
M (γ )

S
= 1S . (A5)

The identity is trivially attained when the M (γ )
S

form a com-
plete set of orthogonal projectors, as in the case of PVMs.
On the contrary, if this condition is not met, then Eq. (A5) is

in general in conflict with (A4) with the exception of the case
when the q j (t ) are all equal to 1, forcing Q(t ) to be the identity
operator, and forcing the vectors |�γ (t )〉

�
to be orthonormal,

i.e.,
�
〈�γ ′

(t )|�γ (t )〉
�

= δγ ,γ ′ .

APPENDIX B: S + A + � APPROACH
TO DYNAMICAL MAPPING

A reasonable, yet not completely satisfying, approach to
produce a generic dynamical model for describing an arbitrary
POVM follows by considering the extended S + A system
of the Naimark representation as the system of interest, and
introducing an external environment � that performs a PVM
on it. First, we notice that any PVM {�(γ )

SA
} on S + A to-

gether with an arbitrary state |ψ0〉A〈ψ0| defines a POVM on
S with measurement operators {F (γ )

S
=

A
〈ψ0|�(γ )

SA
|ψ0〉A }. Actu-

ally, thanks to the Naimark theorem, the reverse statement is
also true. Indeed, if we take an arbitrary POVM {F (γ )

S
} on S,

from Eqs. (3) and (4) we can define the projectors

P(γ )
SA

:= V †
SA
IS ⊗ |γ 〉A〈γ |VSA, (B1)

which form a complete orthonormal set in the space L(HSA )
of linear operators of S + A. Let us now construct the vN-
O dynamical model for such PVM introducing the interac-
tion OSA ⊗ O

�
, with OSA = ∑

γ oγ P(γ )
SA

, oγ ∈ R, and O
�

self-
adjoint; the corresponding propagator reads

USA�
(t ) := e−itOSA ⊗O

� =
n�∑

γ=1

P(γ )
SA

⊗ U (γ )
�

(t ), (B2)

with U (γ )
�

(t ) = e−itoγ O
� . Subject to such a unitary, an initial

state ρ in
S

⊗ |ψ0〉A〈ψ0| ⊗ |D〉
�
〈D| evolves into

ρSA�
(t ) =

n�∑

γ ,γ ′=1

P(γ )
SA

ρ in
S

⊗ |ψ0〉A〈ψ0|P(γ ′ )
SA

⊗ |�γ (t )〉
�
〈�γ ′

(t )|

at a later time t , and for t > td the density operator of the joint
system S + A will have a block-diagonal form with respect
to the basis of the PVM {P(γ )

SA
}. From the viewpoint of the

principal system S, the composite system A + � is, however,
seen as a single measurement apparatus. In this perspective,
if we expand ρSA�

(t ) into an arbitrary basis {|ek〉A
} of HA , we

have

ρSA�
(t ) =

nA∑

k,k′=1

n�∑

γ ,γ ′=1
A
〈ek|P(γ )

SA
|ψ0〉A ρ in

S A〈ψ0|P(γ ′ )
SA

|ek′ 〉
A

× |ek〉A
〈ek′ | ⊗ |�γ (t )〉

�
〈�γ ′

(t )| (B3)

and

ρSA (t ) =
n�∑

γ=1

P(γ )
SA

ρ in
S

⊗ |ψ0〉A〈ψ0|P(γ )
SA

=
n�∑

γ=1

pγ ρ (γ )
SA

= ρout
SA

.

(B4)

Therefore, the system experiences a decoherence process that
takes place in n� (nA -dimensional) subspaces spanned by
{|ek〉A |�γ (t )〉

�
}k=1,...,nA

of HA�
. Indeed, since just the vectors

{|�γ (t )〉
�
} evolve in time, where � is the actual macroscopic

part of the apparatus, the effective decoherence process will
emerge only with respect to the label γ . As we are aiming at
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FIG. 5. Correspondence between the statistics {pγ } yielded by
the POVM {F (γ )

S
} = {A 〈ψ0|P(γ )

SA
|ψ0〉A } and the one resulting from

{F (γ k)
S

}.

a dynamical model for the original POVM on S, a relevant
question is as follows: what happens at the level of the
principal system S? Clearly, no matter which subsystem we
are going to identify as the apparatus (say � or � + A),
Eq. (B3) does not have the form we are aiming to, not yielding
to something like (11) even after the orthogonalization of
the |�γ (t )〉

�
’s. As for the probability distribution {pγ }, the

outcomes statistics generated by {F (γ )
S

} via pγ = Tr[ρ in
S

F (γ )
S

]
is nevertheless the same as that entering Eq. (B4), as can be
easily seen by Eqs. (3) and (B1). As for the state of S, by
inserting the explicit expression for P(γ )

SA
into (B1) and tracing

over the ancilla, we get

ρS (t ) =
n�∑

γ=1

nA∑

k=1

N (k)γ
S

(
M (γ )

S
ρ in

S
M (γ )

S

†)
N (k)γ

S

†

=
n�∑

γ=1

pγ

nA∑

k=1

N (k)γ
S

ρS
(γ )N (k)γ

S

†
, (B5)

where N (k)γ
S

:= A〈ek|V †
SA
|γ 〉

A
. Therefore, ρS (t ) does not coin-

cide with the postmeasurement state ρout
S

defined in Eq. (1).
The only exception is represented by the case in which

dim HS = n� = nA and VSA coincides with the swap operator
SSA := ∑

γ ,γ ′ |γ 〉
S
〈γ ′| ⊗ |γ ′〉

A
〈γ |: in this case, it results in

P(γ )
SA

= |γ 〉S 〈γ | ⊗ IA , which pulls back to the vN-O model for
the ideal PVM {|γ 〉

S
〈γ |} on S. [The operator SSA is a unitary

self-adjoint transformation such that for all operators, �S ∈
L(HS ) and ϒA ∈ L(HA ) gives SSA (�S ⊗ ϒA )SSA = �A ⊗ ϒS .]

However, we can push forward. Let us observe that for any
fixed γ the set of operators {N (k)γ †

S
N (k)γ

S
} returns a resolution

of the identity, i.e.,
∑

k N (k)γ †
S

N (k)γ
S

= IS . From this, two facts
follow: The first is that ρS (t ) reads as the postmeasurement
state of a double-labeled POVM {F (γ ,k)

S
}, with measurement

operators {M (γ k)
S

:= N (k)γ
S

M (γ )
S

}. Such a POVM accounts for
n�nA possible outcomes, and the associated probability dis-
tribution pγ k = Tr[ρ in

S
F (γ k)

S
] is related to that of the original

POVM {F (γ )
S

} via

nA∑

k=1

pγ k = pγ . (B6)

This means that, if we gather the n�nA outcomes μγ k of the
POVM {F (γ k)

S
} in n� sets Oγ , each bearing nA elements, Oγ =

{μγ 1, μγ 2, . . . , μγ nA
} (see Fig. 5), the probability for each set

is the sum of the probabilities for the outcomes it collects. This
is consistent with the fact that, as observed through Eq. (B3),
from the viewpoint of the principal system, the decoherence
process emerges in the form of n� subspaces (one for each γ )
in HA�.

The second fact following from the condition∑
k N (k)γ †

S
N (k)γ

S
= IS is that for all γ ’s, the set {N (k)γ †

S
N (k)γ

S
}

itself defines a POVM on HS . This represents a meaningful
result, as it tells us that the state (B5) prior to the output
production is the statistical mixture, with the original
POVM’s probability distribution {pγ } of the n� output states
of a set of nonselective measurements, each labeled by γ

and defined by the set of measurement operators {N (k)γ
S

},
performed upon the respective γ -detected state ρ (γ )

S
resulting

from the action of the original POVM on ρ in
S

.
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