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Swift heat transfer by fast-forward driving in open quantum systems
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Typically, time-dependent thermodynamic protocols need to run asymptotically slowly in order to avoid
dissipative losses. By adapting ideas from counterdiabatic driving and Floquet engineering to open systems, we
develop fast-forward protocols for swiftly thermalizing a system oscillator locally coupled to an optical phonon
bath. These protocols control the system frequency and the system-bath coupling to induce a resonant state
exchange between the system and the bath. We apply the fast-forward protocols to realize a fast approximate
Otto engine operating at high power near the Carnot efficiency. Our results suggest design principles for swift
cooling protocols in coupled many-body systems.
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I. INTRODUCTION

Fast and efficient heat transfer using small quantum sys-
tems plays an important role in microscopic heat engines
[1–5], reservoir engineering [6], and many-body state prepara-
tion [7–9]. There are now many experimental platforms, such
as nitrogen vacancy (NV) centers in diamond [10,11], trapped
ions [12–14], and superconducting circuits [15–17], capable
of preparing and coherently manipulating small quantum sys-
tems. An important experimentally relevant question, which
we address in this paper, is how to achieve swift and efficient
heat transfer with limited control of system and system-bath
parameters.

There is generally a tradeoff between control speed and
efficiency [18,19]. Reversible processes attain maximal ef-
ficiency; however, these need to run asymptotically slowly
to remain in instantaneous equilibrium. Slow driving can be
impractical or even prohibitive in real applications which need
to run in finite time to avoid decoherence or generate power.
On the other hand, fast driving typically forces the system out
of instantaneous equilibrium and results in dissipative losses
that reduce efficiency.

In isolated systems, fast reversible processes can be real-
ized using shortcuts to adiabaticity, an umbrella term used
for counterdiabatic (CD) and fast-forward (FF) protocols.
CD protocols suppress transitions between the instantaneous
eigenstates of a target driven Hamiltonian H (t ) by evolving
the system with a modified Hamiltonian HCD(t ) [19–25]. A
similar strategy for suppressing transitions is implemented
in closely related superadiabatic protocols [26]. Usually, the
CD Hamiltonians require access to nonlocal controls not
present in the original Hamiltonian. FF protocols, on the
other hand, only modulate the couplings present in the orig-
inal Hamiltonian to attain the desired adiabatic final state
[19,24,25,27–29]. These FF protocols are related to CD proto-
cols by time-dependent unitary transformations [29]. Several
works have used such CD and FF protocols to speed up the
adiabatic parts of various thermodynamic cycles [30–34].
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In this paper, we extend FF driving to a small open system.
We present FF protocols which realize an efficient energy
exchange between the system and its environment and swiftly
thermalize the system. These protocols are constructed using
a tractable model for an oscillator system locally coupled to
a non-Markovian optical phonon bath (Fig. 1). We use these
protocols to design a fast (high-power) heat engine operating
near the Carnot efficiency. Importantly, these protocols can
be experimentally realized, as they only demand control over
system parameters and the system-bath coupling.

The ideas of shortcuts to adiabaticity were recently gen-
eralized to speed up equilibration and isothermal processes
in open systems [35–42]. Such protocols assume Markovian
baths and are effective when the protocol duration is much
longer than the bath relaxation time. They, however, often
lead to dissipative losses which increase with the driving
speed. Our results are complementary in three respects. First,
the bath in our setup has a narrow bandwidth and is not
Markovian. To capture the non-Markovian effects, we model
the system+bath microscopically as a Hamiltonian system
[43]. Second, our FF protocols are most effective when the
protocol duration is much shorter than the relaxation time of
the bath. Strikingly, the performance of these FF protocols is
a nonmonotonic function of the protocol duration, suggesting
that the Markovian protocols and our FF protocols are not
limiting behaviors of a single general protocol. Finally, unlike
the Markovian protocols, the heat dissipated during our FF
protocols remains bounded at all driving speeds.

II. MODEL

We model the small quantum system as a tunable harmonic
oscillator S with Hamiltonian HS (t ) = 1

2 P2 + 1
2 ω̃2

S (t )X 2,
which is connected to an optical phonon bath via the bath
oscillator B (see Fig. 1). The complete Hamiltonian for the
system and bath is given by

H = HS (t ) + Hbath + HSB(t ) (1)

where

Hbath =
N∑

j=1

[
1

2
p2

j + 1

2
ω2

Bx2
j − γBB ω2

B x j x j+1

]
(2)
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FIG. 1. Schematic depiction of a small quantum system coupled
to an optical phonon bath. A system oscillator S with tunable
frequency ω̃S (t ) is coupled to a one-dimensional optical phonon
bath with central frequency ωB via the bath oscillator B. We derive
FF protocols that resonantly exchange the states of the S and B
oscillators by suitably modulating the system frequency ω̃S (t ) and
the system-bath coupling γ̃SB(t ). These protocols swiftly thermalize
S through a rapid heat exchange Q with the bath and far outperform
unassisted protocols.

describes the bath of N optical phonons with central frequency
ωB. The B oscillator is indexed by j = B, and HSB(t ) =
−γ̃SB(t ) ω2

B xB X describes the tunable interaction between S
and B. The bare S-B coupling strength when HSB is not varied
in time is denoted by γSB. The bare coupling γSB can be also
viewed as a boundary condition for γ̃SB(t ) at the beginning and
at the end of a protocol. We work in the regime γBB, γSB � 1,
in which all oscillators interact weakly with one another.

We study different driving protocols of the S oscillator
frequency ω̃S (t ) and S-B coupling strength γ̃SB(t ). In unas-
sisted (UA) driving, the system’s frequency is varied in time
as ωS (t ), while the S-B coupling is time independent γ̃SB(t ) =
γSB. Assisted FF protocols modulate both couplings in time,
targeting the same final state as in an adiabatic UA protocol.

The target ramps of ωS (t ) sweep across the bandwidth of
the bath frequencies. We define the dimensionless detuning
parameter

λ(t ) = ω2
S (t ) − ω2

B

ω2
B

, (3)

so that S is resonant with the central frequency of the bath
at λ = 0. In a target ramp, λ(t ) is initialized with a value
λi at t = ti and driven to a final value λ f at t = t f . For
concreteness, we consider a linear ramp λ(t ) which rounds
off sufficiently smoothly at the ramp boundaries. The ramp
duration is denoted by τp = t f − ti. All FF protocols in this
paper can be parametrized by λ(t ), enabling direct comparison
with UA protocols.

Since H is quadratic, our analysis is valid for both quantum
and classical oscillator systems. For concreteness, we use the
language of quantum mechanics. Thus, symbols such as X or
pB are to be understood as operators. The occupation number
operator of oscillator mode a is denoted by na. Expectation

FIG. 2. Adiabatic driving through resonance switches the instan-
taneous occupations of two coupled oscillators. Schematic plot of the
normal-mode frequencies ω2

± as a function of the detuning λ for the
two oscillator system. Dark red and light blue denote the approxi-
mately unhybridized S and B oscillators, respectively. Far from the
resonance (|λ| � γSB), S and B are approximately distinct normal
modes with occupation numbers nS and nB. Near resonance (|λ| �
γSB), S and B hybridize. An adiabatic or CD protocol suppresses
transitions between the normal modes and induces an occupation
switch (nS ↔ nB) between S and B.

values such as 〈na(t )〉 are with respect to the state at time t .
We set h̄ = 1, kB = 1.

III. TWO OSCILLATOR SUBSYSTEM

When γBB = 0, the S and B oscillators decouple from the
rest of the bath. The dynamics is thus determined by the
Hamiltonian H0 = HS (t ) + HB + HSB for two coupled har-
monic oscillators, where HB = 1

2 p2
B + 1

2 ω2
B x2

B.

A. Unassisted ramp

Figure 2 depicts the frequencies ω± of the instantaneous
normal modes as a function of λ. Far from resonance
|λ(t )/γSB| � 1, the S and B oscillators weakly hybridize and
the normal modes are completely of either S (dark red) or B
(light blue) character. In the resonance region |λ(t )/γSB| � 1,
on the other hand, the normal modes are approximately equal
weight superpositions of the S and B modes. As λ(t ) is
tuned across resonance, the instantaneous normal mode of S
character evolves continuously across the resonance region to
the normal mode with B character, and vice versa.

An adiabatic ramp induces no transitions between the
instantaneous eigenstates of H0(t ). As the normal modes pre-
serve their occupation numbers n±, the occupation numbers of
S and B exchange (nS ↔ nB) across resonance. In particular, if
we prepare B in a thermal distribution at temperature T , then
S will acquire this distribution when driven slowly enough
through resonance. This exchange-induced thermalization is
reversible; that is, the S + B system comes back to its initial
state if the direction of the ramp is reversed.

At finite ramp rates λ̇, there are two classes of excitations
between the instantaneous energy levels of H0(t ). The first
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class consists of number conserving exchanges of energy
quanta between the normal modes of H0(t ). These exchanges
occur near resonance and are important when λ̇ becomes
comparable to the scale ωB γ 2

SB. This is analogous to a two-
level Landau-Zener (LZ) problem where the onset of nona-
diabatic transitions is marked by a speed scale proportional
to the square of the interaction gap [44,45]. The second class
consists of quanta pair creation or annihilation and becomes
important when the ramp speed λ̇ is comparable to the larger
scale of ωB (see Appendix B). Both processes induce diabatic
transitions in the instantaneous eigenbasis of H0(t ) and reduce
the fidelity of the S-B exchange.

B. Counterdiabatic driving

To prevent diabatic transitions at any detuning speed λ̇, we
engineer a CD Hamiltonian:

HCD(t ) = H0[λ(t )] + λ̇A(t ) (4)

where the gauge potential A(t ) is found to be (see Appen-
dices)

A(t ) ≈ − 1

4[1 + λ(t )]

(X P + P X )

2

+ γSB

λ2(t ) + 4γ 2
SB

(X pB − xB P). (5)

The first term in Eq. (5) represents the gauge potential in
the absence of the system-bath coupling (see, e.g., [46]). It is
responsible for suppressing diabatic transitions in the S oscil-
lator. The second term dynamically exchanges the S and B os-
cillator states across resonance, thus preserving normal-mode
occupation numbers (see Appendix C). Near resonance, this
term scales as γ −1

SB � 1. It enhances the interaction between
S and B to speed up the exchange at finite ramp speeds. The
terms neglected in Eq. (5) are suppressed by higher powers
of γSB (see Appendix C) and do not qualitatively change the
following discussion.

The CD protocol given by Eq. (4) realizes transitionless
driving for arbitrary λ(t ). However, it requires new couplings
(X P, P X , X pB, xB P) which are not present in the original
Hamiltonian H0 and which are hard to realize experimentally.

C. Fast-forward driving

FF Hamiltonians can generally be obtained by unitary ro-
tations of CD Hamiltonians [29]: HFF = U † HCDU − i U †∂tU .
Here U is a unitary transformation that enforces that HFF has
the same form as H0, but with different time dependence of
the S frequency ω̃S (t ) and S-B coupling γ̃SB(t ). In addition,
for FF protocols to robustly attain the same target state as CD,
U must coincide with the identity and have vanishing time
derivatives at the protocol boundaries [19,28,47].

When λ̇ � ωB, we construct a simple FF protocol in a ro-
tating wave (RW) approximation which ignores pair creation
and annihilation processes. This approximation is obtained by
writing HCD in (4) in terms of the creation and annihilation
operators

aS ≡
√

ωB

2

(
X + i

P

ωB

)
, aB ≡

√
ωB

2

(
xB + i

pB

ωB

)

and keeping only number conserving terms to obtain

HCD ≈ ωB

[(
1 + λ

2

)
a†

SaS + a†
BaB − γSB

2
(a†

SaB + a†
BaS )

+ λ̇

i ωB

γSB(
λ2 + 4γ 2

SB

) (a†
SaB − a†

BaS )

]
. (6)

A few comments are in order. First, we define aS using
ωB instead of ωS (t ) to avoid introducing additional time-
dependent corrections into the Hamiltonian. This construction
is adequate since the dominant effects occur near resonance.
Next, we have omitted an additive constant which has no
effect on dynamics. Finally, HCD in Eq. (6) has the same form
as in the LZ two-level problem (see Appendices).

We obtain the rotating-wave FF protocol from Eq. (6) by
the simple rotation

aS → aS eiθS , tan(θS ) = λ̇

ωB
(
λ2 + 4 γ 2

SB

) . (7)

The corresponding unitary U = eiθSa†
SaS which generates the

HRW
FF from HCD is analogous to a unitary previously obtained

for the LZ problem [29]. It automatically satisfies the bound-
ary conditions U (ti ) = U (t f ) = I if λ̇ vanishes at the protocol
boundaries.

In the original phase-space variables, we obtain

HRW
FF = P2

2
+ ω̃2

S (t )

2
X 2 + p2

B

2
+ ω2

B

2
x2

B − γ̃SB(t )ω2
B xBX, (8)

where

ω̃2
S (t ) = ω2

B[1 + λ(t )] + 2 ωB
d

dt
tan−1

[
λ̇(t ) ω−1

B

λ2(t ) + 4 γ 2
SB

]
,

(9)

γ̃SB(t ) = γSB

√
1 +

[
2 λ̇(t ) ω−1

B

λ2(t ) + 4 γ 2
SB

]2

. (10)

In a real setup, ω̃2
S (t ) and γ̃SB(t ) are physical control knobs.

Contrary to UA and CD protocols, λ(t ) is no longer the
physical detuning, except at the protocol boundaries. Rather,
λ(t ) should be understood as a free function parametrizing
a family of FF protocols, with boundary conditions: λ(ti) =
λi, λ(t f ) = λ f , and λ̇(ti, f ) = 0. The latter condition ensures
that FF achieves the target adiabatic state. We also impose
λ̈(ti, f ) = 0 to ensure HRW

FF = H0 at the boundaries and stabi-
lize the final state after the ramp. Given a target UA protocol
λ(t ) satisfying these conditions, Eqs. (9) and (10) show how
it must be modulated to realize the RW-FF protocol.

Figure 3(b) shows the time modulations (9) and (10) for a
ramp across resonance (only the linear part of the ramp near
resonance is shown). To achieve the S-B state exchange, the
RW-FF protocol nonmonotonically modulates ω̃2

S (t ) to keep S
resonant with B for a longer time span than UA, while simul-
taneously enhancing γ̃SB(t ) in the resonance region (|λ(t )| �
γSB). The maximum value of γ̃SB(t ) can be much larger than
γSB.

In practice, experimental constraints limit γ̃SB(t ), and thus
the maximum allowed λ̇. In [48], optimal control was used
to exchange the state of two coupled oscillators with a
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FIG. 3. FF protocols suppress diabatic transitions by controlling
ω̃S (t ) and γ̃SB(t ). (a) The energy infidelity W [see Eq. (14)] vs nor-
malized ramp speed λ̇/[ωB γ 2

SB] for several protocols. The rotating-
wave (RW-FF) protocol outperforms UA when λ̇ � ωB, while the
Floquet-engineered (FE-FF) protocol outperforms UA and RW-FF
at all speeds. The exact CD drive reproduces an adiabatic protocol
to within numerical accuracy. (b) Time modulations of ω̃S (t ) (left)
and γ̃SB(t ) (right) over the ramp period τp in FF driving. Simulation
parameters: (a), (b) λi = −0.67, λ f = 0.67, ωB = 3, γSB = 0.02,
|n−(λi ), n+(λi )〉 = |3, 1〉; (a) � = 480; (b) � = 1.

bounded time-dependent coupling for optomechanical cool-
ing. In comparison with the shortcut protocols presented here,
such optimal control protocols are found numerically and are
approximately of bang-bang form.

One can improve upon the RW-FF approximation and
design an exact local FF protocol which can be implemented
to arbitrary precision by a high-frequency Floquet drive of
γ̃SB(t ). The precision error is set by the period 2π/� of the
drive. In the resulting Floquet-engineered (FE) FF Hamilto-
nian HFE

FF , ω̃S (t ) and γ̃SB(t ) become complicated functions of
time in comparison to their bare counterparts, as shown in
Fig. 3(b). Similar to Eqs. (9) and (10), ω̃S (t ) is nonmonotonic,
while the new γ̃SB(t ) enhances the S-B interaction to effect
the S-B state exchange. Now, however, γ̃SB(t ) has an added
high-frequency periodic modulation ∝ � cos(� t ) needed to
indirectly control the bath frequency ωB and suppress tran-
sitions at any speed λ̇. We outline the construction of this
protocol next, and give a thorough treatment in Appendix D.

A Hamiltonian can be obtained from HCD by a sequence of
unitary transformations which mix the degrees of freedom of

both S and B:

H ′
FF = P2

2
+ 
′(t )

2
X 2 + p2

B

2
+ K ′(t )

2
x2

B − C′(t ) X xB

where now 
′(t ), K ′(t ), and C′(t ) are nontrivial functions of
time (see Appendix D). The need to modulate K ′(t ) makes
H ′

FF not an experimentally viable protocol because it requires
additional control of an inaccessible bath parameter.

To realize H ′
FF, we construct a Floquet-engineered Hamil-

tonian:

HFE
FF = P2

2
+ ω̃2

S (t )

2
X 2 + p2

B

2
+ ω2

B

2
x2

B − γ̃SB(t )ω2
B xBX, (11)

where

ω̃2
S (t ) = 
′(t ) + ω2

B − K ′(t ), (12)

γ̃SB(t ) ω2
B = C′(t ) −

√
2
(
K ′(t ) − ω2

B

)
� cos(� t ). (13)

Figure 3(b) illustrates Eqs. (12) and (13). When �−1 is the
smallest timescale in the problem, the dynamics under HFE

FF
can be treated perturbatively in 1/� using a high-frequency
Magnus expansion [49]. To leading order, the effective Flo-
quet Hamiltonian coincides with H ′

FF. In the Appendices, we
detail the stroboscopic equivalence of HFE

FF and H ′
FF and show

that HFE
FF is a FF protocol which implements the complete CD

protocol as � → ∞.
It was shown in [50–52] that approximate FF protocols can

be designed using high-frequency periodic driving in specific
setups. Recently, a high-frequency FE-FF protocol was also
realized in an experiment with NV centers in diamond to
achieve high-fidelity state preparation in a qubit [50]. The
advantages of this kind of approach range from experimental
viability to robustness against environmental noise [53].

D. Protocol comparison

We compare the performance of the UA, RW-FF, and
FE-FF protocols by measuring the energy infidelity, W . This
quantity is a proxy for diabatic transitions, depending only
on measurable quantities such as mean energy and energy
variance:

W = 1

ω2
B

[
(E − Ead)2 + σ 2

E

]
. (14)

Here, E = 〈H0〉 and σ 2
E = 〈H2

0 〉 − E2 are the mean total en-
ergy and energy variance of the S + B subsystem at the end
of the protocol. Ead is the mean total energy in the final state
for an adiabatic UA protocol. All protocols are initialized in
an eigenstate of H0(λi ).

Figure 3(a) shows the energy infidelity W as a function of
the normalized ramp speed λ̇/[ωB γ 2

SB] for various protocols.
The exact CD protocol realizing a perfect adiabatic process is
shown for reference. For this protocol, W = 0 within numeri-
cal accuracy. In contrast, W dramatically rises for λ̇ > ωB γ 2

SB
in the UA protocol. The RW-FF protocol shows a substantial
improvement over UA, suppressing W by several orders of
magnitude in the regime ωB γ 2

SB � λ̇ � ωB. At sufficiently
large speeds, RW-FF is not effective because the rotating wave
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FIG. 4. FF driving induces swift thermalization with a phonon
bath. Plot of the system’s normalized average energy 〈HS (λ f )〉/T
at the end of a ramp across the bath’s bandwidth as a function of
normalized ramp speed λ̇/[ωB γ 2

SB]. Here T is the temperature of the
bath. S is prepared at λi = −2 γBB in a “hot” state and ramped to
λ f = 2γBB. The “hot” state is chosen to yield a final temperature 2 T
(black dashed line) if S does not interact with the bath. Although
the UA and FF protocols thermalize S at slow speeds, only the
FF protocols thermalize S to temperatures near T at fast speeds.
Simulation parameters: N = 100, ωB = √

2, γSB = 0.025.

approximation breaks down when ωB becomes a relevant
time scale. The FE-FF protocol outperforms the UA and
RW-FF protocols at all speeds. We observe such improvement
whenever � is the largest frequency scale. In this regime W ∼
�−1, so that FE-FF approaches a perfect adiabatic protocol as
� → ∞ (see Appendix D).

IV. MANY OSCILLATOR ENVIRONMENT

When all the oscillators in the phonon bath are coupled
(γBB > 0), the normal modes of the bath have frequencies
within the bandwidth [ωB(1 − γBB), ωB(1 + γBB)] around the
central frequency ωB. Then γBB sets the internal relaxation rate
of the bath. For the UA protocol, this scale competes with the
timescale set by γSB for the S-B interaction. When γBB � γSB,
the dynamics are qualitatively similar to the γBB = 0 case
described above. When γBB � γSB, S interacts with multiple
bath normal modes when ωS (t ) lies within the bandwidth.
These interactions thermalize S and give rise to a reversible
isothermal process when ωS (t ) is slowly ramped across the
bandwidth. Fast unassisted ramps, however, fail to thermalize
S because they leave no time to exchange sufficient energy
with the bath.

The FF protocols developed in the last section thermalize
S through a reversible S-B state exchange at λ = 0. Figure 4
shows the final temperature of S for ramps across the band-
width of a bath at temperature T . S is initially prepared with
mean occupation 2T/ωS (t f ), so that its final temperature is
2 T for adiabatic ramps in the absence of the bath. As S
effectively does not interact with the bath in fast UA ramps,
its final temperature is 2T in Fig. 4. In contrast, the FF

protocols yield a final temperature near T as λ̇ → ∞. When
λ̇ � ωB γ 2

SB, S is in instantaneous equilibrium at all times in
all the protocols. Consequently, all protocols result in a perfect
isothermal process at temperature T .

In Fig. 4, the final temperature of S monotonically in-
creases from T to 2T as a function of λ̇ in UA protocols. The
FF curves, on the other hand, are nonmonotonic; specifically,
they approximately follow the UA curve up to some value
of λ̇ and then peel off towards 〈HS (λ f )〉 ≈ T . We expect
that the FF protocols become effective for thermalization
only when the duration of the resonant S-B state exchange
(∼γSB/λ̇) becomes smaller than the relaxation time of the bath
(∼1/ωBγBB). This predicts that the FF curves peel off from
the UA one at λ̇/[ωB γ 2

SB] ≈ γBB/γSB, in good agreement with
Fig. 4. We note that the speed regime where the FF protocol
is effective cannot be treated in the Markovian approximation
because the bath is not in local equilibrium on the timescale
of the ramp.

Figure 4 also shows that the final temperature of S under
FF driving deviates from T at fast speeds. The FF protocol
only thermalizes S at λ(t ) = 0. For λ(t ) �= 0, S is effectively
decoupled from the bath and evolves adiabatically. Since the
occupation number of S is fixed in an adiabatic process, its
average energy increases as 〈H (λ)〉 = √

(1 + λ) T for λ > 0.
This gives 〈H (λ f )〉/T ≈ 1 + γBB at small γBB for λ̇ → ∞, in
quantitative agreement with Fig. 4.

V. APPLICATION: HEAT ENGINE

The FF protocols can be used in the design of a highly
efficient heat engine capable of producing a large power out-
put. The engine uses the S oscillator as a working substance,
with cold (C) and hot (H) reservoirs of optical phonons at
temperatures TC and TH , respectively. The model depicted
in Fig. 1 describes the engine when S is coupled to C(H ),
with frequency ωB = ωC (ωH ) and detuning λ(t ) = [ω2

S (t ) −
ω2

B]/ω2
B. Both reservoirs have the same coupling strengths γBB

and γSB. In a full cycle, S is first coupled to C and its frequency
ωS (t ) is increased across resonance with ωC . Subsequently, S
is coupled to H and ωS (t ) is decreased across resonance with
ωH .

Engines with a harmonic working substance behave much
like ideal gas engines [30–32,34,54–56]. For instance, one can
define an effective pressure P = 〈nS〉 and volume V = ω−1

S
and construct a PV diagram as shown in Fig. 5.

At slow speeds, the engine undergoes two “adiabatic”
and “thermal” strokes. Consider for definiteness the forward
ramp (λ̇ > 0) with S coupled to C. During an adiabatic
stroke |λ(t )| � γBB, γSB, S does not exchange energy with
C, and 〈nS〉 remains constant. When |λ(t )| � γBB, γSB, S
can exchange energy with the bath and undergo a thermal
stroke. The thermal stroke consists of two processes: (i) a
thermalization process where S is brought to temperature TC

and (ii) an isothermal process where S remains at TC as ωS

is tuned across the bath’s bandwidth. During an isothermal
process, 〈nS〉 = TC/ωS . Figure 5 shows the four strokes (solid
curves) in a complete slow cycle: (1) a contractive (λ̇ > 0)
thermal stroke with C, (2) a contractive adiabatic stroke, (3) an
expansive (λ̇ < 0) thermal stroke with H , and (4) an expansive
adiabatic stroke. This cycle is generally irreversible because
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FIG. 5. Schematic PV diagram for a heat engine: The engine
uses a harmonic working substance S and two reservoirs of optical
phonons. During the thermal strokes, S draws heat QH from a hot
bath at TH , and deposits heat QC into a cold bath at TC . During the
adiabatic strokes (solid black curves), S is effectively isolated and
〈nS〉 is constant. Solid colored curves show thermal strokes with slow
driving, while colored dotted curves show swift thermalization with
FF driving.

the thermalization process in each thermal stroke is irre-
versible. The degree of irreversibility is controlled by the ratio
r ≡ (TC/TH )/(ωC/ωH ) � 1. When r = 1, the thermalization
process is eliminated and we recover a Carnot efficiency
(see Appendix E and [56]).

Several works have used shortcut methods and optimal
control to accelerate the adiabatic strokes of quantum engines
[30–34,57,58].

We implement a FF protocol to speed up both the adi-
abatic and the thermal strokes. At high ramp speeds, the
protocol preserves the adiabatic strokes, but changes each
thermal stroke into a swift thermalization process at ωS ≈ ωB.
This results in an approximate Otto cycle (see the dotted
colored curves in Fig. 5). Intermediate speeds (not shown)
result in a mix of partial thermalization, isothermal, and swift
thermalization processes. The cycle is not an Otto cycle at
intermediate and slow speeds because S has time to interact
with bath modes across the entire frequency range of the
bandwidth.

Over a cycle, S absorbs heat from H , uses some of this
energy to do work, and releases the remainder into C. For a
thermal stroke with either bath, we define the heat as Q =
|�〈Hbath〉|, the change in the bath’s average energy between
the start and end of the stroke. Note the convention QC,H > 0.
Such heat may have contributions from spontaneous energy
transfer (e.g., thermal conduction), as well as induced energy
transfer (FF swift thermalization). The work done by the
engine is then W = QH − QC , the difference between the
absorbed and released heats. In the following, we consider
two performance measures of the engine: (i) efficiency, given
by η = W/QH , and (ii) average power over a cycle time τ ,
measured by P = W/τ .

In the slow limit (λ̇ → 0) we have (see Appendix E)

η = ηc − TC

TH

(1 − r)2

r (1 − r + 2 γBB)
, P → 0. (15)

For 0 � r � 1, η is bounded by the Carnot efficiency ηC =
1 − TC/TH . At r = 1, η = ηC .

For fast enough ramps (γSB, γBB � λ̇/ωC,H ), we break up
the analysis into two cases based on the relation between γSB

and γBB.
When γBB � γSB � 1, S effectively interacts with a single

bath oscillator B of frequency ωH,C during either thermal
stroke. The FF protocol induces an exchange of thermal
occupation distributions between S and B, so that

QH,C = ωH,C (〈nH 〉 − 〈nC〉). (16)

Above, the H and C baths are taken to be in the classical
regime, so that 〈nH,C〉 ∼ TH,C/ωH,C . Then the efficiency and
power are given by

η = 1 − ωC

ωH
� ηc, P = kBTH

τ
η (1 − r). (17)

This efficiency is characteristic of an Otto engine. It is
bounded by the Carnot efficiency, as follows from the consis-
tency condition 〈nH 〉 � 〈nC〉. While it is possible to attain the
Carnot efficiency in the limit r → 1, the power output simul-
taneously tends to zero. To achieve finite power in practice,
one must keep r < 1 at the expense of some efficiency. We
note that one can also optimize P with respect to the ratio
ωC/ωH at fixed TC, TH ; the corresponding efficiency is then
the well-known Curzon-Ahlborn bound [54,55].

When γBB � γSB, the finite bandwidth of the bath modifies
the heat at high speeds:

Qi = ωi

(
TH

ωH
− TC

ωC

)(
1 + γ 2

BB

) ∓ 2 Ti γ
2
BB. (18)

We take i = H and the minus sign for the heat released by the
hot reservoir, and i = C and the plus sign for the heat released
into the cold reservoir. The correction O(γ 2

BB) arises because
FF is no longer transitionless. It induces excess excitations
in the bath (i.e., dissipation) during the S-B exchange. This
causes S to extract less net heat from H and dump more into
C, reducing the efficiency (see Appendix E).

Figure 6 shows the high-speed efficiency for γBB ∼ γSB as
a function of r for several ratios ωC/ωH . As r is increased,
the difference between η and ηc decreases until a minimum
is reached at a specific value rmin = 1 − O(γBB). By tuning r
close to rmin, the engine can operate near the Carnot efficiency.
If we continue to increase r > rmin, then η diverges from ηc,
and the engine eventually breaks down. The breakdown value
r0 = 1 − O(γ 2

BB) occurs when QH = QC and the engine fails
to extract useful work. The figure also shows a collapse of
curves upon rescaling by ωC/ωH . Thus (η − ηC ) ∝ ωC/ωH

can be taken arbitrarily close to zero by decreasing ωC/ωH to
further optimize the efficiency. For details, see Appendix E.

The engine’s performance in the regime γBB � γSB across
several speed scales is summarized in Fig. 7. The plot shows
power P and relative efficiency η/ηc for FF driving (solid
curves) with three different values of r—r < rmin, r ≈ rmin,
and rmin < r < r0 (see vertical dashed lines in Fig. 6)—and
for UA driving (dashed curves) at r ≈ rmin = 0.96. In the
FF protocols, the power decreases with increasing r over the
whole speed domain (recall P → 0 as r → 1). At a given
r, P increases with ramp speed. As λ̇ → ∞, P becomes
linearly proportional to λ̇, since the work done by the engine
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FIG. 6. High-speed engine efficiency η as a function of r ≡
(TC/TH )/(ωC/ωH ). Left: The difference between the Carnot effi-
ciency ηc and the efficiency η for several values of ωC/ωH . ηc − η

is minimized at a special r = rmin ≈ 0.96, and grows sharply as r
approaches the breakdown value r0 ≈ 1. Right: Upon rescaling by
ωC/ωH , the curves collapse onto each other. The dark line is the
zero bandwidth limit γBB = 0. The vertical dashed lines indicate the
values of r = 0.84 < rmin (light green), r = 0.96 ≈ rmin (dim blue),
and rmin < r = 0.997 < r0 (dark scarlet) used in Fig. 7. Simulation
parameters: N = 100, γBB = 0.03, γSB = 0.02, TH = 100. TC is var-
ied to tune r.

approaches a constant value. The power over a cycle in the UA
protocol is not only lower than the corresponding FF power
at large speeds but also decreases with λ̇. The bottom panel
shows that the relative efficiency of FF protocols increases
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FIG. 7. FF driving produces an efficient high-power engine. Top
panel: Plot of the engine’s power output P as a function of ramp
speed λ̇/[ωBγ 2

SB]. Power decreases with r. At r = 0.96, FF outper-
forms UA in producing power at high speeds. Bottom panel: Plot
of the relative efficiency η/ηc as a function of ramp speed. η/ηc

first increases with r (curves r = 0.84, 0.96), then shows signs of
breakdown at high speeds, when r approaches 1 (curve r = 0.997).
At r = 0.96, FF beats the UA efficiency at high speeds. Simula-
tion parameters: N = 100, ωC = 1, ωH = 2, γBB = 0.03, γSB = 0.02,
TH = 100. r is varied using TC .

with r for r < rmin over the whole speed domain. For r > rmin,
the r = 0.997 curve shows signs of the engine breakdown
at high speeds. At a given r, η/ηc decreases from its slow
speed value in Eq. (15) to its fast speed value derived from
Eq. (18) (see Appendix E). The efficiency of the UA protocol
is less than the corresponding FF protocol at large speeds.
Thus Fig. 7 establishes that FF outperforms UA in both power
and efficiency.

Since P ∼ τ−1 ∼ λ̇ with FF protocols, P can in principle
be arbitrarily enhanced by reducing the cycle time τ . There
is, however, a practical limit to how small we can make
τ while running the engine without interruption. Any fast
cycle takes the oscillator B out of equilibrium due to the
S-B exchange induced by FF. Thus B must be given enough
time [≈ (ωBγBB)−1] to equilibrate with the remaining bath
degrees of freedom before the next cycle. This imposes a
ramp speed bound λ̇ � 2 ωB |λ f − λi| γBB, which limits the
maximum power output. The simulation results presented
here satisfy this condition. One can overcome this constraint
and further increase the power output by reconnecting S to
different parts of the bath after each cycle.

VI. DISCUSSION AND CONCLUSION

We have developed efficient FF protocols which realize a
resonant state exchange between a system and a bath oscillator
by controlling the local parameters of the system and the
system-bath coupling. In the presence of a phonon bath, these
FF drives realize a swift thermalization process with high
fidelity. We used these FF protocols in the design of a high-
power engine which can operate near the Carnot efficiency.
Our paper demonstrates the power of FF methods to achieve
efficient energy transfer in small open quantum systems and
optimize thermodynamic processes. With recent advances in
reservoir engineering [6], this opens up the possibility of
realizing powerful efficient microscopic engines with non-
Markovian environments.

Interestingly, the FF protocols are most efficient at fast
driving speeds, where the bath does not relax and cannot be
treated in the Markovian approximation. The FF protocols
realize a coherent exchange of energy with a local bath degree
of freedom, which subsequently relaxes with the rest of the
bath. In the limit of zero bath-bath coupling (and hence infinite
bath relaxation time), the local bath degree of freedom does
not relax after the exchange, resulting in no irreversible energy
dissipation. At finite bath-bath coupling, a small amount of
residual energy is dissipated due to the mismatch of the final
state of the local bath degree of freedom and its equilibrium
state. This mistake is controlled by the bandwidth of the bath
and is independent of the protocol ramp speed [see Eq. (18)].
Thus our protocols are different from those previously ob-
tained with Markovian environments [35–40,42], where quick
equilibration is achieved at the expense of dissipative losses
that increase with the ramp speed.

The approach presented in this paper applies broadly to
systems with Landau-Zener characteristics, where adiabatic
state exchanges occur as a consequence of avoided level
crossings. In such setups, FF driving can be used for rapid
state preparation. Using swift thermalization, one can cool
many-body quantum systems close to their ground state,
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of interest in numerous applications of ultracold atom and
optomechanical systems.
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APPENDIX A: TWO OSCILLATOR SYSTEM

1. Hamiltonian

The system S consists of a particle (X, P) in a tunable har-
monic potential, which is locally coupled to a bath oscillator
B with coordinates (xB, pB). The Hamiltonian is

H0 = 1

2
P2 + ω̃2

S (t )

2
X 2 − γ̃SB(t ) ω2

B xB X + 1

2
p2

B + ω2
B

2
x2

B

(A1)

where ω̃S (t ) is the system’s time-dependent frequency, ωB is
the frequency of the bath mode, and γ̃SB(t ) is the dimension-
less S-B coupling. UA protocols set a target ramp ω̃S (t ) =
ωS (t ), which FF protocols modify to achieve fast adiabatic
driving. In UA protocols, γ̃SB(t ) = γSB � 1 is held constant
during the ramp, while in FF protocols γ̃SB(t ) is enhanced
in time near resonance. In all cases, the value of the S-B
coupling at the start and end of the ramp is given by γSB:
γ̃SB(ti ) = γ̃SB(t f ) = γSB.

2. Normal-mode dispersion

In terms of the normal-mode occupation number operators
n+ and n−, H0 becomes

H0 = ω+(t )(n+ + 1/2) + ω−(t )(n− + 1/2) (A2)

where

ω2
±(t ) = ω2

B

(
1 + λ(t )

2
±

√[
λ(t )

2

]2

+ γ 2
SB

)
(A3)

and

λ(t ) ≡ ω2
S (t ) − ω2

B

ω2
B

. (A4)

Here, λ(t ) measures the detuning of a UA drive from reso-
nance ωS (t ) = ωB. The dispersion in Eq. (A3) is shown in
Fig. 2 of the main text.

APPENDIX B: EMERGENT SPEED SCALES
IN UNASSISTED PROTOCOLS

1. Emergent speed scales

In unassisted protocols, the response of the S + B system
depends on how the ramp speed λ̇ compares to two emergent
speed scales. We present a heuristic derivation of these scales.

Consider a transition from the energy level with (n, m)
quanta in the (+,−) normal modes to the energy level with
(n′, m′) quanta. The energy change is

�(t ) ≡ En,m − En′,m′ = δn ω+(t ) + δm ω−(t ) (B1)

where δn = n − n′ and δm = m − m′. Such a transition can
be classified based on the relation between δn and δm: (i)
δn = −δm for an exchange process which conserves the total
number of quanta, (ii) δn = δm for a pair creation or annihi-
lation process between the normal modes, and (iii) δn �= ±δm
for processes that create or destroy quanta within each normal
mode.

A transition process has negligible probability of occur-
rence when the gap �(t ) is varying slowly enough:∣∣∣∣d�(t )

dt

∣∣∣∣ 1

�(t )
� �(t ) ⇔ |λ̇| � �2(λ)

|∂λ�(λ)| .

At a given λ̇, any transition process satisfying this condition
is considered inactive and essentially adiabatic. The energy
gap reaches its minimum value at resonance |λ| ≈ γSB. For
the UA protocol, the adiabatic condition is first violated near
resonance at the speed scale:

λ̇1 ≡ �2

|∂λ�|
∣∣∣∣
|λ|∼γSB

∼ ωB γ 2
SB. (B2)

When λ̇ becomes comparable to or larger than λ̇1, number
conserving nonadiabatic transitions satisfying δn = −δm start
to occur.

At even faster speeds, when λ̇ becomes comparable to

λ̇2 ≡ �2(λ)

|∂λ�(λ)|
∣∣∣∣
|λ|∼γSB

∼ ωB, (B3)

the pair creation or annihilation processes with δn + δm �= 0
occur. These processes lead to the breakdown of the RW
approximation used to develop a simple FF protocol in the
main text. Since γSB � 1, λ̇1 � λ̇2. Therefore there is a large
window of protocol speeds where one can rely on the rotating
wave approximation and use the simplified RW-FF protocol.

2. Number conserving regime

When the condition λ̇ � λ̇2 is satisfied, there is a mapping
of H0 to the LZ problem. To see this, express H0 in terms
of creation and annihilation operators and drop all number
nonconserving terms:

H0 ≈ [
a† b†

][ωS −g
−g ωB

][
a
b

]

where g ≈ 1
2 ωB γSB near resonance, (a†, a) are the system

bosonic creation and annihilation operators, and (b†, b) are the
creation and annihilation operators of oscillator B.

Interpreting a and b as Schwinger bosons, we write the
Hamiltonian using the angular momentum operators [59]

H0 = (ωS − ωB) Lz − 2gLx + (ωS + ωB)

2
Nb ,

Lz = 1
2 (a†a − b†b), Lx = 1

2 (a†b + b†a), Nb = a†a + b†b.

(B4)
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FIG. 8. Number variance of the (+) normal mode vs normalized
speed after an unassisted ramp. The two curves correspond to two
different values of the system-bath coupling. There is a good collapse
of the results in the number conserving regime |λ̇| � ωB, where the
dynamics is equivalent to that of the LZ problem. The collapse breaks
down at higher speeds, where the second scale λ̇2 ∼ ωB becomes
relevant. The system is initialized in an eigenstate |n−, n+〉 = |3, 1〉.
Variance is measured at the end of the ramp. Simulation parameters:
λi = −0.8, λ f = +0.8, and ωB = √

5.

The total number of bosons Nb is conserved and sets the total
angular momentum of the system L = Nb/2. When Nb = 1
and hence L = 1/2, this Hamiltonian is equivalent to the
LZ Hamiltonian with gap g and tuning parameter λLZ(t ) ≡
1
2 (ωS (t ) − ωB). Because the Hamiltonian (B4) is linear in the
angular momentum operators, the solution in the Heisenberg
picture is independent of L or Nb. Therefore, one can use well-
known results of the LZ problem for identifying the adiabatic
breakdown criterion for general L and for finding CD and
FF protocols. In particular, the characteristic LZ ramp speed
defining the adiabatic-diabatic crossover is λ̇LZ ∼ g2 [44,45],
which is equivalent to λ̇1 ∼ ωB γ 2

SB for the corresponding
oscillator problem.

In this number conserving or LZ regime, the ramp speed
scale λ̇1 dominates the physical behavior of the system. Thus
physical quantities show a collapse of curves when rescaling
λ̇ by λ̇1. As an example, Fig. 8 shows the occupation number
variance of the (+) normal mode after an unassisted ramp
λ(t ) across resonance, as a function of λ̇/ωB γ 2

SB. The plot
shows a good collapse of curves over different values of
γSB ≈ 0.1 and 0.01 in the regime λ̇ � λ̇2.

APPENDIX C: TWO-PARTICLE
COUNTERDIABATIC DRIVE

1. Counterdiabatic gauge potential

For any protocol λ(t ), one can design dynamics which
follow the instantaneous eigenstates of H0[λ(t )] in accor-
dance with the adiabatic theorem. This is accomplished by
evolving the system under the counterdiabatic Hamiltonian
HCD = H0 + λ̇A, where the gauge potential A satisfies the

commutator relation [19,60]:

[H0, i h̄ ∂λH0 + [H0,A]] = 0. (C1)

For H0 in Eq. (A1), we find

A = a1
{X , P}+

2
+ a2 X pB + a3 xB P + a4

{xB , pB}+
2

(C2)

where

a1 = − λ2 + γ 2
SB (2 − λ)

4
(
1 + λ − γ 2

SB

)(
λ2 + 4 γ 2

SB

) , (C3)

a2 = + γSB
[
4(1 + λ) + λ − 6γ 2

SB

]
4
(
1 + λ − γ 2

SB

)(
λ2 + 4 γ 2

SB

) , (C4)

a3 = − γSB
[
4(1 + λ) − λ − 2γ 2

SB

]
4
(
1 + λ − γ 2

SB

)(
λ2 + 4 γ 2

SB

) , (C5)

a4 = − γ 2
SB(2 + λ)

4
(
1 + λ − γ 2

SB

)(
λ2 + 4 γ 2

SB

) . (C6)

In the weak-coupling regime γSB � 1 and close to the
resonance |λ| � 1, these expressions simplify:

a1 ≈ − K1

4(1 + λ)
, (C7)

a2 ≈ −a3 ≈ γSB(
λ2 + 4 γ 2

SB

) , (C8)

a4 ≈ − 1

4(1 + λ)

2 γ 2
SB(

λ2 + 4 γ 2
SB

) . (C9)

The factor K1 in Eq. (C7) is close to 1/2 near resonance (|λ| �
γSB) and smoothly approaches 1 as λ → ±∞. Note that a2

and a3 are much larger than a1 for |λ| � γSB; we therefore set
K1 = 1 with negligible error. Moreover, a4 ∼ γSB a2 so it can
be ignored to leading order. The expressions in Eqs. (C7) and
(C8) appear in the main text in Eq. (5).

2. Dynamic switch under HCD

The dynamics under HCD is most simply seen in the
γSB → 0 limit, in which a1 → −1/[4(1 + λ)], a2 = −a3 →
(π/2)δ(λ), and a4 → 0. When λ �= 0, HCD reduces to the
well-known result for a dilated oscillator in vacuum [19,46]:

H (0)
CD = − λ̇

4(1 + λ)

(X P + P X )

2
.

Near resonance λ ≈ 0, the equations of motion become

Ẋ ≈ −π

2
δ(t − tc) xB, Ṗ ≈ −π

2
δ(t − tc) pB, (C10)

ẋB ≈ +π

2
δ(t − tc) X, ṗB ≈ +π

2
δ(t − tc) P (C11)

where tc is the time at which the system is at resonance,
i.e., λ(tc) = 0. Solving these equations in the time interval
[t− = tc − ε, t+ = tc + ε], with infinitesimal ε > 0, we find

X (t+) = −xB(t−), xB(t+) = X (t−),

P(t+) = −pB(t−), pB(t+) = P(t−).

Up to a minus sign, the counterdiabatic protocol forces a swap
of the phase-space coordinates (X, P) of the system particle
with those of the bath mode (xB, pB). As the character of the
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normal modes changes from S to B and vice versa across res-
onance, the swap ensures the preservation of the occupations
of the normal modes of H0 across resonance. Before and after
the swap, the occupation numbers are preserved by driving the
system with H (0)

CD.

APPENDIX D: FAST-FORWARD DRIVE

In this section, we derive a FF Hamiltonian which imple-
ments HCD with accessible controls using Floquet engineer-
ing. The task is achieved in two steps.

(i) We transform HCD using a series of unitary rotations
Uk to obtain a fast-forward Hamiltonian H ′

FF with three time-
dependent couplings: ω̃2

S (t ), γ̃SB(t ), ω̃2
B(t ).

(ii) In order to eliminate the time dependence in the
bath frequency ω̃2

B(t ) → ω2
B, we apply an additional periodic

modulation of the system-bath coupling γ̃SB(t ) to generate a
Floquet-engineered FF Hamiltonian equal to H ′

FF in the limit
of high driving frequency.

1. Unitary transformations

We shall construct a sequence of four time-dependent
unitary transformations Uk (t ), k = 1, . . . , 4 yielding Hamil-
tonians Hk equivalent to HCD:

Hk = U †
k Hk−1Uk − iU †

k ∂tUk, Hk=0 ≡ HCD.

Each unitary will depend explicitly only on λ and its time
derivatives up to order 5. λ(t ) is chosen sufficiently smoothly
such that Uk (t ) = I and ∂tUk (t ) = 0 at the beginning and the
end of the protocol. To do this, we impose that the time
derivatives λ( j), j � 6, vanish at the ramp boundaries.

The condition Uk (ti, f ) = I ensures that the FF protocol
retrieves the target adiabatic state at the end of the ramp. To
see this, consider the nth eigenstate of H0 evolved under HCD:
|ψCD(t )〉 = |ψn[λ(t )]〉. The wave function under time evolu-
tion with the rotated Hamiltonian H4 follows this eigenstate
rotated by the corresponding unitary [19]:

|ψ4(t )〉 = U4(t )U3(t )U2(t )U1(t )|ψCD(t )〉.
Since each unitary is the identity at the protocol boundaries,
|ψ4(t )〉 coincides with the target |ψn[λ(t )]〉 at the beginning
and end of the ramp.

The condition ∂tUk (ti, f ) = 0 ensures H4 = H0 at the pro-
tocol boundaries. This requirement guarantees the stability of
the final state after the ramp. Otherwise, any target eigenstate
of H0 would not be an eigenstate of H4, and would not be
stationary after the ramp (see, e.g., [47]).

The unitaries Uk are designed to successively eliminate
momentum-dependent couplings. The first two unitaries,

U1 = exp

(
−i

[
(η + λ̇a1)

X 2

2
+ λ̇ a2 X xB + λ̇ a4

x2
B

2

])
and

U2 = exp

(
i μ

P2

2

)
,

where

η(t ) ≡ (λ̇ ȧ2 + λ̈ a2 + λ̇a1λ̇a3 + λ̇a4λ̇a2)/[λ̇(a2 − a3)],

μ(t ) ≡ λ̇
(a2 − a3)

γSB ω2
B

,

remove momentum-dependent S-B couplings in HCD, yielding
the Hamiltonian

H2 = 1

2 M(t )
P2 + 
̃(t )

2
X 2 + 1

2
p2

B + K ′(t )

2
x2

B

− γSB ω2
B xB X − 1

2
[η(t ) + μ(t ) 
̃(t )](X P + P X ).

Here


̄(t ) ≡ ω2
S − (λ̇a1)2 − ∂t (a1) − (λ̇ a2)2 + η2 + ∂tη,

K ′(t ) ≡ ω2
B + λ̇a2 (λ̇a2 − 2λ̇a3) − (λ̇a4)2 − ∂t (λ̇a4),

and

M−1(t ) ≡ 1 + 2 η μ + 
̄ μ2 − ∂tμ.

Note that these transformations also shift the squared fre-
quency of the system and bath modes, generate a unit-less
mass M(t ), and produce a term proportional to the dilation
operator ∼(XP + PX ) of the system.

The extra mass and dilation terms can be removed using
the same transformations that appear in the construction of a
FF protocol for a single dilated harmonic oscillator in vacuum
[19,46]. The transformation U3(t ) is a canonical rescaling of
X and P, so that (M, 
̃) → (1, 
̃ M−1). The transformation
U4(t ) shifts momentum to remove the term ∼(XP + PX ):

U3 = exp

(
i
ln[M]

4
{X, P}

)
, U4 = exp

(
−i ξ

X 2

2

)
,

where

ξ (t ) ≡ η + μ 
̄ + 1
2∂t ln[M].

These unitary transformations yield the FF Hamiltonian
H ′

FF = H4:

H ′
FF = P2

2
+ 
′(t ) X 2

2
+ p2

B

2
+ K ′(t ) x2

B

2
− C′(t ) xB X (D1)

where


′(t ) ≡ 
̄ M−1 − ξ 2 − ∂tξ,

C′(t ) ≡ γSB ω2
B

√
M−1.

In what follows, we denote K ′(t ) ≡ ω2
B + z2(t ), where

z2(t ) ≡ λ̇a2 (λ̇a2 − 2λ̇a3) − (λ̇a4)2 − ∂t (λ̇a4).

2. Floquet-engineered fast-forward drive

The FF protocol in Eq. (D1) can be implemented by
controlling only the system’s frequency and a local coupling
to the environment. The term K ′(t ) cannot be manipulated
directly, but can be effectively engineered by applying an
additional Floquet modulation of the system-bath coupling.
Then K ′(t ) appears in the leading order of a high-frequency
Magnus expansion of a Floquet Hamiltonian.

Consider the Hamiltonian

HFE
FF = 1

2
P2 + 1

2
[
′(t ) − z2(t )] X 2 + p2

B

2
+ ω2

B x2
B

2

− [C′(t ) −
√

2 z(t ) � cos(� t )] xB X. (D2)
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The Floquet frequency � is taken to be large enough to allow
for a timescale separation between the oscillatory part of
the drive [cos(�t )] and all other time-dependent parameters
(
′(t ),C′(t ), z(t )). These parameters then become effectively
constant on the timescale of the Floquet driving period.

A simple way to find the Floquet Hamiltonian in this
system is to go to the rotating frame with respect to the
oscillating term [49]. To leading order in 1/�, we have

HF ≈ e−i
√

2z sin(�t ) xB X H ′ei
√

2z sin(�t ) xB X ,

where the overline stands for period averaging and H ′ is the
Hamiltonian (D2) without the oscillating term. For harmonic
systems, the time averaging is easy to compute and only the
kinetic-energy terms generate new terms not present in H ′:

e−i
√

2z sin(�t ) xB X
P2

2
ei

√
2z sin(�t ) xB X = P2

2
+ z2x2

B

2

and similarly for p2
B/2. The effective Floquet Hamiltonian

then reads

HF ≈ P2

2
+ 
′(t )

2
X 2 + p2

B

2
+ K ′(t )

2
x2

B − C′(t ) xB X (D3)

where we have used z2(t ) = K ′(t ) − ω2
B. Therefore, in the

high-frequency limit (� → ∞), HF becomes equivalent to
H ′

FF in Eq. (D1).
A few comments are in order. First, the Floquet-engineered

FF Hamiltonian is only defined when z2(t ) > 0. This condi-
tion is generally satisfied for the protocols λ(t ) considered in
this paper. Second, the period averaging is sensitive to a gauge
choice of the interval over which the period is measured [49].
This implies the dynamics of HF and HFE

FF are stroboscopically
equivalent, i.e., their evolution operators are identical only
at integer multiples of the period. It follows that H ′

FF and
HFE

FF yield the same dynamics stroboscopically in the high-
frequency limit.

The equivalence of the dynamics of H ′
FF and HFE

FF at
high frequencies enables us to achieve a fast-forward proto-
col which implements HCD with the accessible experimental
controls

ω̃2
S (t ) = 
′(t ) − z2(t ), (D4)

ω2
B γ̃SB(t ) = C′(t ) −

√
2 z(t ) � cos(� t ), (D5)

given any bare protocol λ(t ) satisfying proper boundary con-
ditions.

In Fig. 9(a), we demonstrate the performance of the
Floquet-engineered FF protocol by plotting the energy in-
fidelity W [see Eq. (9) of the main text] as a function of
the inverse frequency �−1. The dotted lines are chosen to
have unit slope. The plot provides evidence that W ∼ �−1

as � → ∞. Figure 9(b) shows how a high-frequency FE-FF
protocol can decrease the energy infidelity by several orders
of magnitude compared to UA, over a whole range of speeds
λ̇ spanning several decades.

APPENDIX E: ENGINE

This section describes the application of FF driving to
speed up thermalization processes in heat engines. A detailed
description of the engine is given in the main text.
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104
(a)

FE-FF

10-1 100 101 102
10-15

10-12

10-9

10-6

10-3

100

(b)

  = 40 

  = 480 

UA
FE-FF
FE-FF
CD

FIG. 9. Increasing the drive frequency � of a FE-FF protocol
minimizes diabatic transitions. (a) Simulation results for the energy
infidelity W [see Eq. (9)] as a function of the inverse drive fre-
quency 1/�, for a fast ramp with λ̇ = 500 ωB γ 2

SB. The plot shows
the convergence W ∼ �−1 → 0 as � → ∞, in agreement with the
high-frequency equivalence of HFE

FF and HCD. (b) Energy infidelity
W as a function of normalized ramp speed λ̇/[ωB γ 2

SB]. The plot
shows how FE-FF protocols suppress diabatic transitions by several
orders of magnitude compared to UA, when � is much larger than all
other relevant frequency scales. Simulation parameters: λi = −0.67,
λ f = +0.67, ω2

B = 3, γSB = 0.02, and γBB = 0.

1. Slow ramp speeds

As λ̇ → 0, the UA and FF protocols coincide. The time
evolution of S under UA and FF protocols is thus nearly
identical at slow ramp speeds.

In the forward ramp (λ̇ > 0), S comes into contact with
the cold bath C when its frequency is ωS = ωC (1 − γBB). S
thermalizes to the temperature of the cold bath TC at this
point. It then undergoes an isothermal process at temperature
TC as its frequency sweeps across the bandwidth of the cold
bath, i.e., between ωS = ωC (1 − γBB) and ωC (1 + γBB). Once
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ωS > ωC (1 + γBB), S is effectively isolated and contracts
adiabatically until the point where λ(t ) is reversed. In the
backward ramp (λ̇ < 0), S expands adiabatically until its
frequency coincides with the edge of the hot bath’s bandwidth,
i.e., until ωS = ωH (1 + γBB). At this point, S thermalizes
to the temperature of the hot bath TH . It then undergoes
an isothermal process at temperature TH as its frequency is
decreased across the bandwidth of the hot bath, i.e., as ωS

is reduced from ωH (1 + γBB) to ωH (1 − γBB). Once ωS <

ωH (1 − γBB), S expands adiabatically until it returns to its
initial configuration. This cycle is schematically depicted by
the solid curves in Fig. 5 of the main text.

In the slow ramp speed limit, it is straightforward to
calculate the heat absorbed (emitted) from baths H (C).
When S thermalizes at the edge of the cold bath bandwidth
at ωS = ωC (1 − γBB), its average occupation changes from
〈ni〉 = TH/[ωH (1 − γBB)] to 〈n f 〉 = TC/[ωC (1 − γBB)]. Thus,
the heat emitted to the cold bath is

Qth
C = ωC

(
TH

ωH
− TC

ωC

)
.

The heat ejected into the cold bath from the subsequent
isothermal process is given by the integral of TC/ωS over the
bandwidth of C. Therefore, the total heat ejected into C is

QC = Qth
C +

∫ ωC (1+γBB )

ωC (1−γBB )

TC

ωS
dωS

= ωC

(
TH

ωH
− TC

ωC

)
+ TC ln

(
1 + γBB

1 − γBB

)
. (E1)

Similarly,

QH = Qth
H +

∫ ωH (1+γBB )

ωH (1−γBB )

TH

ωS
dωS

= ωH

(
TH

ωH
− TC

ωC

)
+ TH ln

(
1 + γBB

1 − γBB

)
. (E2)

The efficiency and power obtained from expressions (E1) and
(E2) are given in Eq. (10) of the main text. Note that P → 0,
since τ → ∞ in the slow limit.

The thermalization process at the edge of the H/C bath
bandwidth makes the cycle irreversible. Consequently, the
efficiency is less than the Carnot bound ηC = 1 − TC/TH . To
attain the Carnot bound, we must impose the reversibility
condition

TC

TH
= ωC

ωH
or r ≡ TC

TH

ωH

ωC
= 1 (E3)

so that Qth
C,H = 0 at r = 1. The efficiency is then

η = 1 − QC

QH
= 1 − TC

TH

ln
( 1+γBB

1−γBB

)
ln

( 1+γBB

1−γBB

) = ηC . (E4)

2. Fast driving

The FF drive boosts the performance of the engine in fast
ramps. Assume λ̇ is larger than all intrinsic frequency scales,
in particular, the thermalization rates ωBγBB and the interac-
tion rates ωBγSB of both baths H and C. We focus on the limit
of γBB � γSB below.

Consider the energy change in either bath due to the
resonant S-B exchange [(xB, pB) → −(X, P)]:

Q ≡ |�〈Hbath〉| =
∣∣∣∣ωB

(
〈nS〉 − 〈nB〉

)

+ γBB ω2
B 〈(X + xB) (xJ+1 + xJ−1)〉

∣∣∣∣ (E5)

where xJ±1 denote the coordinates of the bath oscillators
coupled on either side of B. 〈nS〉 and 〈nB〉 denote the average
occupation numbers of S and B, respectively, before the
switch.

The final state of B after the FF switch is uncorrelated with
its neighbors because the initial state of S is uncorrelated with
the bath. Therefore, 〈X (xJ+1 + xJ−1)〉 = 0.

To evaluate 〈xB xJ±1〉 we first express the bath oscillators
x j in terms of their normal-mode coordinates x̃k :

x j =
√

2

N + 1

N∑
k=1

sin

(
π k j

N + 1

)
x̃k (E6)

where we have used open boundary conditions.
Since the bath is initialized in a classical thermal state at

temperature T , equipartition implies that

〈x̃k x̃k′ 〉 = δk,k′
〈
x̃2

k

〉 = δk,k′ T/ω2
k ,

where the normal-mode frequencies are obtained by diagonal-
izing Hbath:

ω2
k = ω2

B

[
1 − 2 γBB cos

(
πk

N + 1

)]
. (E7)

Therefore,

〈xB xJ±1〉 = T
N∑

k=1

sin

(
π k J

N + 1

)
sin

(
π k (J ± 1)

N + 1

)
1

ω2
k

.

(E8)

Using Eq. (E7), we evaluate Eq. (E8) to leading order in γBB:

γBB ω2
B 〈xB xJ±1〉 ≈ T γ 2

BB. (E9)

A similar derivation, writing operators in terms of normal-
mode coordinates and expanding to leading order in γBB, gives

〈nB〉 = T

ωB

(
1 + γ 2

BB

)
. (E10)

During engine cycles, S alternates between swapping its occu-
pation with a cold B oscillator and with a hot B oscillator. For
example, after interacting with the hot bath, its occupation is
given by

〈nS〉 = TH

ωH

(
1 + γ 2

BB

)
. (E11)

This is the occupation of S before the subsequent switch with
the cold bath. To obtain the heat transfer to the cold bath,
we substitute Eqs. (E9), (E10) (with T = TC), and (E11) into
(E5):

QC = ωC

(
TH

ωH
− TC

ωC

)(
1 + γ 2

BB

) + 2 TC γ 2
BB. (E12)
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The heat absorbed from the hot bath can be derived by a
similar argument:

QH = ωH

(
TH

ωH
− TC

ωC

)(
1 + γ 2

BB

) − 2 TH γ 2
BB. (E13)

Equations (E12) and (E13) are summarized in Eq. (13) of the
main text.

The efficiency is found to be

η = 1 − ωC

ωH

[
(1 − r)

(
1 + γ 2

BB

) + 2 r γ 2
BB

(1 − r)
(
1 + γ 2

BB

) − 2 γ 2
BB

]
(E14)

where r = [TC ωH ]/[TH ωC]. Observe that the efficiency is
smaller than the γBB = 0 limit because less heat is drawn from
H and more heat is dumped into C.

The reversibility condition r = 1 is no longer attainable
since the engine fails at a sufficiently large r = r0 < 1. The
breakdown ratio r0 is defined such that QC = QH , where the
engine fails to extract useful work. Using Eqs. (E12) and
(E13) and expanding in γBB, we obtain

r0 = 1 − 2
(ωH + ωC )

(ωH − ωC )
γ 2

BB. (E15)

We therefore operate the engine at r < r0 to extract useful
work as high ramp speeds.

There exists an optimal ratio r = rmin < r0 which mini-
mizes the deviation of η from ηC . We minimize

ηC − η = ωC

ωH

[
(1 − r)2

(
1 + γ 2

BB

) + 4 r γ 2
BB

(1 − r)
(
1 + γ 2

BB

) − 2 γ 2
BB

]
(E16)

with respect to r to obtain

rmin = 1 − 2γBB − γ 2
BB

1 + γ 2
BB

= 1 − 2 γBB + O
(
γ 2

BB

)
. (E17)

The behavior of the efficiency as a function of r is shown in
Fig. 10(a). Observe that far from the reversibility condition
r � 1, the high-speed efficiency is comparatively different
from ηC . Near rmin, η is closest to ηC , and in fact η/ηC can
be quite close to 1 (see, for example, Fig. 7 of the main text).
For rmin < r < r0 we see a sharp deviation of η from ηC as
we approach the breakdown ratio r0. The plot shows curves
for different values ωC/ωH which collapse upon rescaling
by ωC/ωH (see inset). This is expected from Eq. (E16) and
emphasizes that the difference between η and ηC can always
be made smaller by tuning the ratio ωC/ωH . For reference,
the inset also shows a black dashed line representing the limit
γBB = 0, where it is possible to attain the Carnot efficiency
at r = 1 with zero power output. Away from r = 1, the finite
γBB > 0 curves exhibit qualitatively similar behavior to the
γBB = 0 case. Only near r = 1 do we see significant devi-
ations from the γBB = 0 case, as the irreversible heat terms
O(γ 2

BB) in Eqs. (E12) and (E13) dominate the exchange.
While we have focused on γBB � γSB for simple analytic

derivations, these results can be generalized to γBB � γSB by
including γSB corrections. The treatment is more involved
since we must take into account the finite extent of the FF
S-B exchange in the frequency domain (that is, the exchange
no longer occurs at resonance, but over a frequency domain
around resonance). Nevertheless, the behavior for γBB � γSB

FIG. 10. Deviation of the efficiency from the Carnot bound as
a function r = (TC/TH )/(ωC/ωH ). (a) Simulation data for γBB �
γSB, together with analytic curves obtained from Eq. (E16). Here
rmin ≈ 0.96 and r0 > 0.995. The inset shows the curves collapse
onto each other upon rescaling by ωC/ωH . (b) Simulated curves
obtained in the same manner as in (a), now with γBB = γSB. Inset: The
curves exhibit an approximate collapse upon rescaling by ωC/ωH .
The dot-dashed lines in both insets show the ideal case with γBB = 0.
Simulation parameters: (a, b) ω2

H + ω2
C = 5, TH = 100, and λ̇ ≈ 0.2.

r is obtained by varying TC from 80 to 99.5. (a) γBB = 0.02, γSB =
0.01γBB. (b) γBB = γSB = 0.02.

has been studied numerically in Fig. 10(b) and has been found
to be of the same qualitative nature as γBB � γSB.

APPENDIX F: SIMULATIONS

We simulate the dynamics of (N + 1) coupled oscillators in
the Heisenberg picture. Specifically, we numerically solve the
Heisenberg equations of motion for the normal-mode creation
and annihilation operators (b1(t ), b†

1(t ), b2(t ), b†
2(t ), . . .) in

the basis (b1(0), b†
1(0), b2(0), b†

2(0), . . .) at t = 0. Here N
denotes the number of bath oscillators. We take as input the
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parameters ωB, γSB, and γBB, as well as the ramp parameters
described next.

The ramp protocol λ(t ) takes in an initial value λi =
λ(0) < 0 at ti = 0, a final value λ f = λ(t f ) > 0, a ramp up
or down interval δλ � λ f − λi, and a maximum ramp speed
λ̇ = λ̇0. The speed λ̇ is increased from zero to λ̇0 for λ in the
interval [λi, λi + δλ] following a polynomial smooth step of
sixth order. The ramp is linear with λ̇ = λ̇0 from λ = λi + δλ

to λ f − δλ. In particular, the ramp is linear at resonance. The
subsequent ramp-down of λ̇ to zero also follows a polynomial
smooth step of sixth order over an interval [λ f − δλ, λ f ]. The
ramp up and down intervals are necessary to satisfy boundary
conditions (see Appendix D). In the text, λ̇0 is the speed of the
ramp.

The initial conditions used in simulations depend on the
application. When γBB = 0, we initialize the S-B system in
an eigenstate |n−(0), n+(0)〉 of the two oscillator Hamiltonian
H0(λi ) and compare the time evolved state to the adiabatically

connected eigenstate |n−(t f ), n+(t f )〉 of H0(λ f ). When γBB >

0, S is connected to a one-dimensional chain that models an
optical phonon bath at temperature T . In this case, the bath
normal-mode occupations are initialized in their correspond-
ing high-temperature Gibbs distributions with expectation
values 〈nj〉 = T/ω j . Since S is far from resonance at t = 0,
it is essentially an independent normal mode. We therefore
initialize it separately at a temperature different from the bath.

To simulate the engine, we perform two ramps: a forward
ramp λ̇ > 0 as described above, and a backward ramp λ̇ < 0
which runs in reverse. In each cycle, we must disconnect S
from a cold (hot) bath and connect it to the hot (cold) bath.
The connecting and disconnecting operations must be done
slowly enough to avoid generating excess heat, or sufficiently
far from resonance that this excess heat becomes negligible.
This process is easily sped up by using a different CD or
FF protocol to turn on or off the coupling γSB away from
resonance.
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