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Wigner current for open quantum systems
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We extend the Wigner current vector field (Wigner current) construct to single bosonic mode quantum systems
interacting with an environment. In terms of the Wigner function quasiprobability density and associated Wigner
current, the open system quantum dynamics can be concisely expressed as a continuity equation. Through
the consideration of the harmonic oscillator and additively driven Duffing oscillator in the bistable regime as
illustrative system examples, we show how the evolving Wigner current vector field on the system phase space
yields useful geometric insights concerning how quantum states decohere away due to interactions with the
environment, as well as how they may be stabilized through the counteracting effects of the system anharmonicity
(i.e., nonlinearity).
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I. INTRODUCTION

The Wigner function [1–4] provides a particularly useful
geometric representation of the state of a bosonic single-
mode quantum system as a real valued function on the two-
dimensional system phase space that can be interpreted as a
quasiprobability density. In particular, integrating the Wigner
function with respect to the system position coordinate x gives
the marginal probability density in the momentum coordinate
p (and vice versa). In terms of the Wigner function, the quan-
tum expectation value of a (Weyl-ordered) observable A(x, p)
is evaluated in exactly the same way as for the correspond-
ing classical system described by a phase-space probability
distribution function. Furthermore, the master equation that
describes the quantum dynamics of a bosonic single-mode
system interacting with its thermal environment gets mapped
to a partial differential equation for the Wigner function
dynamics that closely resembles the Fokker-Planck equation
for the corresponding classical system statistical dynamics;
the Wigner function dynamical equation may aptly be termed
the “quantum Fokker-Planck” equation.

The Wigner function can take negative values and so is
not a true probability distribution, however. The presence of
regions in phase space where the Wigner function is negative
is conventionally interpreted as a signature of nonclassicality
in the quantum state; with the exception of Gaussian (i.e.,
coherent and squeezed) states, all pure states have negative-
valued Wigner function regions and hence are nonclassical
[5]. Well-known examples are the harmonic oscillator energy
eigenstates or Fock states and so-called Schrödinger cat states
involving superpositions of different coherent states. In the
presence of a thermal environment, such nonclassical, pure
states will typically evolve into mixed states with Wigner
function representations that are everywhere positive [6].

Given the close resemblance between the Wigner function
representation of the open quantum system dynamical equa-
tions and the corresponding classical statistical dynamical
equations, the Wigner function has helped provide an under-
standing of how classical dynamics arises by approximation

from the underlying quantum dynamics [7–16]. Of particular
interest in this respect are nonlinear single-mode systems
such as the paradigmatic, driven damped Duffing oscillator.
A number of investigations employed the Wigner function
representation to explore the resulting quantum phase-space
dynamics in parameter regimes where the corresponding clas-
sical nonlinear dynamics exhibits, for example, bistability or
chaos [9,11,13–15]. By varying the system damping and noise
(diffusion) due to coupling to the environment, the quantum-
to-classical transition can be explored in a controllable and
geometrically direct way by comparing the corresponding
quantum Wigner function phase space and classical phase-
space pictures.

In the present work we extend the Wigner formulation of
open, single-mode bosonic system quantum dynamics and
take into account also the so-called Wigner current vector
field (or “Wigner current” for short) on phase space [17,18].
We will show that the Wigner current allows a particularly
concise reformulation of the quantum Fokker-Planck equation
as a standard continuity equation, equating (via the familiar
Gauss’s theorem of vector calculus) the rate of change of
the net Wigner quasiprobability within some two-dimensional
region of phase space to the net Wigner current normal to the
boundary enclosing the region.

Our key motivation for introducing the Wigner current
and casting the bosonic mode system quantum dynamics into
a continuity equation on phase space is to apply a more
geometric approach to addressing the sought-after goal of
generating macroscopic quantum states that are stable over
long times against the decohering effects of the environment.
By “macroscopic,” we mean that the averaged number of
energy quanta (e.g., photons, phonons, etc.) is large in the
stabilized, bosonic-mode state, while by “quantum” we mean
that the Wigner function representation of the state has signif-
icant negative regions in the system phase space. How large
can a negative Wigner valued region be? Two classic theorems
that can be easily generalized to mixed states establish that
the Wigner function is generally bounded in magnitude by
(π h̄)−1 = 2/h [19], while the area of a given region where the
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Wigner function is negative can exceed h̄, but where at least
one of its normalized linear coordinate dimensions x

√
mω0,

p/
√

mω0 must be of order
√

h̄ or smaller [20], with m the
effective mass and ω0 a characteristic harmonic oscillation
frequency of the single-mode bosonic system (see Sec. III for
further details on the rescaled phase coordinate definitions).

Stabilized macroscopic quantum states are useful not only
for quantum information processing applications, but also for
fundamental explorations, especially concerning how macro-
scopic a quantum state can be in the presence of unavoid-
able decohering environments. As with the above-mentioned
quantum-classical correspondence investigations, the Wigner
function has served as a useful tool in addressing the genera-
tion and detection of nonclassical states of bosonic-, single-,
as well as few-mode quantum systems. Several investigations
have been carried out involving optical [21,22], microwave
cavity [23], and superconducting circuit systems [24–33], as
well as nanomechanical systems [15,34–38].

Approaches to stabilizing quantum states involve mea-
surement feedback to control the quantum system dynamics
[39], as well as so-called autonomous methods that do not
require measurement feedback control. The latter typically
involve “reservoir engineering,” where the effective system-
environment interaction is tailored in such a way as to
evolve the system into a quantum state as well as to protect
the state from the decohering effects of the environment
[34,40–46].

Another approach to autonomously generating quantum
states exploits the nonlinearities in the closed bosonic-mode
system dynamics (equivalently anharmonicities in the system
Hamiltonian). The presence of anharmonicities can cause ini-
tial Gaussian states with associated positive Wigner functions
to evolve into nonclassical states with associated negative-
valued Wigner functions (see, e.g., Ref. [15]). In terms of the
quantum Fokker-Planck dynamical equations for the Wigner
function, the root cause of such evolution is the presence
of a third or higher-order position derivative term involving
the system potential energy. Only when the potential energy
is anharmonic is this term present and without this term
the Wigner function dynamical equation coincides with the
classical Fokker-Planck equation.

For example, in the case of the driven, damped Duffing
oscillator with x4 anharmonicity and in the regime of bistable
large and small amplitude oscillatory solutions for the classi-
cal dynamics, an initial coherent state will transiently evolve
into a Schrödinger cat-like state where the Wigner function
displays a sequence of alternating negative and positive re-
gions in between the corresponding large and small amplitude
positive Wigner function peaks [15]. In a classically chaotic
regime, an initial coherent state will spread out in phase
space, exhibiting a complex interference pattern of positive
and sub-h̄ (i.e., sub-Planckian) scale negative Wigner function
regions [9]. However, depending on the environment temper-
ature, such nonclassical features will typically diffuse away
for the usual device system-environment couplings, leaving
a long time steady state that is closely approximated by the
corresponding classical system Fokker-Planck equation.

Nevertheless, the question is still largely unresolved as
to whether it might be possible to stabilize quantum states

of a single-mode bosonic system largely through its anhar-
monicities alone. In particular, for certain anharmonicity types
and drives (whether externally or internally generated by the
system dynamics), we may be able to prepare and maintain
quantum states with significant associated negative Wigner
function regions, despite the counteracting decoherence ef-
fects of environmental noise. Recent relevant developments
in superconducting microwave resonator (as well as cou-
pled nanomechanical resonator) circuits involving embedded
Josephson junction elements provide strong motivation for
pursuing this question [47–55]; the Josephson junctions can
induce strong effective anharmonicities in the microwave
mode Hamiltonian, as well as internally generated drive tones
through the ac-Josephson effect. One consequence is lasing-
like behavior [50], with the continuous, stimulated emission
of amplitude-squeezed microwaves with large average photon
number [51].

The potential advantage of bringing the Wigner current
into play is that it can give a graphic geometric represen-
tation of how nonclassical states form through the system
Hamiltonian anharmonicity, as well as diffuse away due to the
environment. By exploring the relative contributions to the net
Wigner current across the boundary of a given negative region
that arise from the system Hamiltonian anharmonicity and
from the interactions with the environment, we may be able
to improve our understanding of how to “engineer” system
Hamiltonian anharmonicities and drive tones so as to stabilize
macroscopic bosonic quantum states in the presence of envi-
ronmental noise. As an application of the geometric Wigner
current construct for open quantum systems, the present work
gives some initial steps in this direction.

Note that in the present work we do not attempt to address
the largely open question as to how the negative Wigner
function regions form in the first place; rather, we suppose
that negative regions have already formed, and consider how
the regions may be stabilized in the presence of environmental
noise. Some promising first steps towards understanding how
negative regions form from a Wigner current perspective are
given in Refs. [56,57].

In Sec. II, we reformulate the quantum Fokker-Planck
equation for a one-dimensional anharmonic particle system
interacting with a thermal bath as a continuity equation
in terms of the Wigner function and associated current. In
Sec. III we consider as specific system examples the harmonic
oscillator and additively driven Duffing oscillator, solving nu-
merically for their Wigner functions and currents. In Sec. IV,
we take some first steps towards a geometric understanding
from a Wigner current perspective concerning how nonclassi-
cal states may be stabilized. Concluding remarks are provided
in Sec. V.

II. QUANTUM FOKKER-PLANCK EQUATION
AS A CONTINUITY EQUATION

For a one-dimensional, mass m particle with Hamilto-
nian H = p2/(2m) + V (x, t ), where V (x, t ) is the (time-
dependent) potential energy, a suitable Lindblad master equa-
tion that describes the quantum dynamics of the system
state characterized by density matrix ρ(t ) interacting with an
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oscillator bath can be written as follows:

dρ

dt
= − i

h̄
[H, ρ] + γ

2
(n̄ + 1)(2aρa† − a†aρ − ρa†a)

+ γ

2
n̄(2a†ρa − aa†ρ − ρaa†), (1)

where γ is the system energy damping rate, n̄ = (eh̄ω0/(kBT ) −
1)−1 is the Bose-Einstein thermal average occupation number
of the temperature T bath at the characteristic harmonic
oscillation frequency ω0 of the system Hamiltonian. Strictly
speaking, the master equation (1) is valid to a good approxi-
mation provided the system-environment interaction is weak:
γ � ω0, the temperature is in the range h̄γ � kBT � h̄ω0,
and the anharmonic potential contribution V − mω2

0x2/2 is
sufficiently weak [58]. However, following frequent practice,
we will assume that the master equation can still give rea-
sonable open system quantum dynamics even when these
conditions are not strictly adhered to.

The Wigner function representation of the quantum state
ρ(t ) as a real-valued function on phase space is defined
as [1–4]

W (x, p, t ) = 1

π h̄

∫ +∞

−∞
dy e−2ipy/h̄〈x + y|ρ(t )|x − y〉

= 1

π h̄

∫ +∞

−∞
d p′ e+2ip′x/h̄〈p + p′|ρ(t )|p − p′〉.

(2)

Expressing the master equation (1) in terms of the Wigner
function (2), we obtain the so-called “quantum Fokker-
Planck” equation

∂W

∂t
= − p

m

∂W

∂x
+ ∂V

∂x

∂W

∂ p

+
∑
n�1

(−1)n(h̄/2)2n

(2n + 1)!

∂2n+1

∂x2n+1
V

∂2n+1

∂ p2n+1
W

+ γ

2

∂

∂x

[
xW + h̄

(
n̄ + 1

2

)
1

mω0

∂W

∂x

]

+ γ

2

∂

∂ p

[
pW + h̄

(
n̄ + 1

2

)
mω0

∂W

∂ p

]
. (3)

The Wigner current vector fields for the system ([17,18])
and environment are defined, respectively, as follows:

Jsys =
( p

mW

−∑
n=0

(−1)n (h̄/2)2n

(2n+1)! ∂ (2n+1)
x V ∂ (2n)

p W

)
(4)

and

Jenv = −γ

2

(
xW + h̄

(
n̄ + 1

2

)
(mω0)−1∂xW

pW + h̄
(
n̄ + 1

2

)
mω0∂pW

)
, (5)

where the first row is the position x component and the second
row is the momentum p component of the current vector, and
where we used the shorthand notation ∂x ≡ ∂

∂x
, and ∂p ≡ ∂

∂p
.

The environment current can be further decomposed as a sum
of damping and diffusion contributions: Jenv = Jdamp + Jdiff ,

where

Jdamp = −γ

2

(
xW
pW

)
(6)

and

Jdiff = −γ h̄

2

(
n̄ + 1

2

)(
(mω0)−1∂xW

mω0∂pW

)
. (7)

In terms of the system and environment currents, the master
equation for the Wigner function (3) takes the concise form of
a continuity equation:

∂W

∂t
+ ∇ · J = 0, (8)

where J = Jsys + Jenv and ∇ = (∂x, ∂p).

III. HARMONIC AND DUFFING OSCILLATOR
WIGNER CURRENTS

The driven Duffing oscillator is characterized by the anhar-
monic plus additive driving potential

V (x, t ) = 1

2
mω2

0x2 + λ

4
x4 − xF cos(ωdt ), (9)

where the parameter λ gives the strength of the anharmonic
potential, the parameter F gives the strength of the time-
dependent sinusoidal drive, and ωd is the drive frequency.
Substituting Eq. (9) into Eq. (4), we obtain for the driven
Duffing oscillator system Wigner current:

JDuff =
( p

mW[− mω2
0x + F cos(ωdt ) − λx3 + h̄2λ

4 x∂2
p

]
W

)
.

(10)

For the harmonic oscillator the system Wigner current simpli-
fies to

JHO =
( p

mW

−mω2
0xW

)
. (11)

It is convenient to work in terms of dimensionless forms
of the Wigner function and current. In terms of the length
unit x0 = √

h̄/(mω0) and time unit t0 = ω−1
0 , we transform

the various coordinates and parameters into dimensionless
form as follows: x̃ = x/x0, p̃ = p/(mω0x0), F̃ = x0F/(h̄ω0),
λ̃ = λx4

0/(h̄ω0), γ̃ = γ /ω0, ω̃d = ωd/ω0, and t̃ = ω0t , where
the tilde denotes the dimensionless form. The dimensionless
form for the Wigner function is

W̃ = h̄W

= 1

π

∫ +∞

−∞
dy e−2ipy/h̄〈x + y|ρ(t )|x − y〉

= 1

π

∫ +∞

−∞
dỹ e−2i p̃ỹ〈x̃ + ỹ|ρ(t )|x̃ − ỹ〉, (12)

where |x̃〉 = √
x0|x〉 [so that 〈x̃|x̃′〉 = δ(x̃ − x̃′)]. The continu-

ity equation becomes in dimensionless form:

∂W̃

∂ t̃
+ ∇̃ · J̃ = 0, (13)
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(a) t = 0 (initial state) (b) t = 4τ (c) t = 100τ

FIG. 1. Snapshots of evolving harmonic oscillator Wigner function and associated current vector field J = JHO + Jenv for an initial
superposition of coherent states with separation x = 6; the damping rate γ = 0.01 and bath temperature T = 0.

where J̃ = J̃Duff + J̃env, with

J̃Duff =
(

p̃W̃[− x̃ + F̃ cos(ω̃d t̃ ) − λ̃x̃3 + λ̃
4 x̃∂2

p̃

]
W̃

)
, (14)

and

J̃env = J̃damp + J̃diff , (15)

with

J̃damp = − γ̃

2

(
x̃W̃
p̃W̃

)
(16)

and

J̃diff = − γ̃

2

(
n̄ + 1

2

)(
∂x̃W̃
∂p̃W̃

)
. (17)

For the harmonic oscillator, we have for the dimensionless
current: J̃ = J̃HO + J̃env, with

J̃HO =
(

p̃W̃
−x̃W̃

)
(18)

and J̃env given by Eq. (15). From now on, we drop the tildes
for notational convenience, the dimensionless form of the
parameters and coordinates understood.

In Figs. 1 to 4, we show example numerical solutions
to the Wigner function W and associated current vector
field J for the undriven, open harmonic and driven Duffing
oscillator systems. This involves first solving the Lindblad
master equation (1) for the system density matrix ρ(t ) using
QUTIP [59] and then evaluating the Wigner function and
current in terms of the density matrix; the source code can
be obtained from Ref. [60]. Although the Wigner function
time dependence for the open harmonic oscillator system can
be determined analytically [61,62], we nevertheless solve the
harmonic oscillator master equation numerically as a check
on the validity of our code.

Figure 1 shows snapshots of the evolving Wigner function
and associated current J = JHO + Jenv for the harmonic oscil-
lator initially in a superposition of coherent states separated

by x = 6; the snapshot times are given in multiples of the
free oscillation period τ = 2π/ω0 = 2πt0. The damping rate
is chosen to be γ = 0.01 and the bath temperature is set
to zero. Regions color-coded blue correspond to positive
Wigner function value, red regions correspond to negative
Wigner function value, while the local color density gives a
measure of the Wigner function magnitude. A unit area square
corresponding to Planck’s constant h̄ in our dimensionless
units is indicated at the bottom right of each figure to give
the scale, while the arrow legend at the top left of each figure
indicates the scale for the current vector field. Figure 2 shows
the same evolving Wigner function snapshots as in Fig. 1
but with just the environmental diffusion current Jdiff (17)
indicated. In the final indicated snapshots corresponding to
t = 100τ [Figs. 1 to 2(c)], the Wigner function and current
hardly change between subsequent snapshots separated by a
free oscillation period, indicating that the system dynamics
has reached a steady state to a good approximation. This is to
be expected given that γ t = 2π , i.e., the final snapshot time
is approximately six times longer than the harmonic oscillator
relaxation time.

Figure 3 shows snapshots of the evolving Wigner func-
tion and associated current J = JDuff + Jenv for the driven
Duffing oscillator initially in an undisplaced coherent state;
the snapshot times are given in multiples of the drive period
τd = 2π/ωd . We choose the dimensionless Duffing oscillator
parameter values λ = 0.05 (anharmonic strength), ωd = 1.09
(drive frequency), F = 0.092 (drive strength), and γ = 0.01
(damping rate), with the bath temperature set to zero. These
parameter values result in the classical Duffing oscillator
exhibiting bistability for the steady-state dynamics at zero
temperature, corresponding to coexisting small and large am-
plitude oscillations. For the above parameter choices, these
small and large steady-state amplitudes are 0.52 and 2.46,
respectively. Figure 4 shows the same evolving Wigner func-
tion snapshots as in Fig. 3, but with just the environmental
diffusion current Jdiff (17) indicated. In the final indicated
snapshots corresponding to t = 300τd [Figs. 3(c) and 4(c)],
the Wigner function and current hardly change between sub-
sequent snapshots separated by a drive period. These final
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(a) t = 0 (initial state) (b) t = 4τ (c) t = 100τ

FIG. 2. Snapshots of evolving harmonic oscillator Wigner function and associated environmental diffusion current vector field Jdiff for an
initial superposition of coherent states with separation x = 6; the damping rate γ = 0.01 and bath temperature T = 0.

snapshots should therefore correspond pretty accurately to the
long time limit steady-state Wigner function and current.

IV. DISCUSSION

Common to the harmonic and Duffing oscillator quantum
dynamics indicated in Figs. 1 and 3, the direction of the
current J in the regions of positive-valued Wigner function
is clockwise about the phase-space origin, just as is the case
for an evolving classical probability density that results from
solving the corresponding classical Fokker-Planck equation
for some initial probability distribution; for the harmonic
oscillator system, the Wigner current continuity equation (8)
coincides with the classical, Brownian motion Fokker-Planck
equation, while for the Duffing oscillator the Wigner current
continuity equation (8) differs from the classical Fokker-
Planck equation only in the presence of the system quantum
current term (0, λx∂2

pW/4) [see Eq. (14)]. In contrast, the
current direction in the regions of negative-valued Wigner
function is counterclockwise, i.e., in the opposite direction to
the corresponding classical current [17,18,63].

The harmonic and time-dependent drive contributions to
JDuff [Eq. (14)] dominate the Wigner current. In principle, one
can go to the rotating frame of the drive so that the nontrivial
anharmonic and environment contributions dominate. How-
ever, the resulting algebraic expressions in the rotating frame
become quite involved. While considerable simplification re-
sults if the rotating wave approximation (RWA) is made, we
prefer not to go to the rotating frame and perform the RWA
in the present work. As we shall see below, the dynamics
throughout a given drive period of the nonvanishing quantum
and diffusion contributions to the Wigner current on a negative
region boundary suggests a possible way to stabilize negative
regions in the long time limit; such a dynamics would be
effectively averaged over if the RWA were carried out.

In Figs. 2 and 4, we can see that for any negative-valued
Wigner function region, the diffusion contribution to the
environmental current Jdiff is always directed inwards on the
boundary of the negative region, with the result that the envi-
ronmental diffusion current acts to destroy negative regions.
This is just the process of decoherence viewed in terms of the
Wigner current.

(a) t = 0 (initial state) (b) t = 18τd (c) t = 300τd

FIG. 3. Snapshots of evolving Duffing oscillator Wigner function and associated current vector field J = JDuff + Jenv for an initial
undisplaced coherent state; the damping rate γ = 0.01 and bath temperature T = 0.
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(a) t = 0 (initial state) (b) t = 18τd (c) t = 300τd

FIG. 4. Snapshots of evolving Duffing oscillator Wigner function and associated environmental diffusion current vector field Jdiff for an
initial undisplaced coherent state; the damping rate γ = 0.01 and bath temperature T = 0.

To gain a better understanding of the Wigner function
evolution for nonclassical states, let us suppose that the
Wigner function at some given time instant t is negative
in certain regions of phase space. This is the case for
the initial coherent state superposition example considered
above (see Figs. 1 and 2), while for the Duffing oscillator,
we see that negative Wigner function regions are generated
through the dynamics (Figs. 3 and 4). Consider a particular
negative region with phase space area A(t ) and boundary
∂A(t ), where the indicated t dependence accounts for the
fact that the negative region evolves in time. In particular,
the boundary is defined by W (x, p, t )|∂A(t ) = 0. A measure
of the degree of negativity of the region is given by the
negative “volume” under the integral

∫
A(t ) dxd pW (x, p, t ).

From Eqs. (13) to (17) and Gauss’s theorem, the time rate of
change of this negative volume is

d

dt

∫
A(t )

dxd pW (x, p, t ) = −λ

4

∫
∂A(t )

ds n · (0, x)
∂2W

∂ p2

+ γ

2

(
n + 1

2

) ∫
∂A(t )

ds n · ∇W,

(19)

where we used the fact that the Wigner function vanishes on
the boundary ∂A(t ), s parametrizes the boundary curve, and n
is the unit vector outwards normal to the curve.

For the harmonic oscillator system, the first term on
the right-hand side of the equals sign in Eq. (19) van-
ishes (since λ = 0) and the rate of change of the region
negativity is affected solely by the environmental diffusion
current (17). Since the Wigner function is by definition
negative on the interior region and positive on at least the
immediate exterior region of the boundary ∂A(t ), the gra-
dient ∇W points outwards so that n · ∇W � 0 everywhere
on the boundary. Therefore, for the harmonic oscillator we
have that

d

dt

∫
A(t )

dxd pW (x, p, t ) � 0, (20)

and we thus see that the size of a negative region always
decreases with time at a rate governed by the environmental
diffusion current. That the environment causes decoherence
for a harmonic oscillator initially in a quantum superposition
state is of course well known. Nevertheless, in our view
there is value in picturing the process of decoherence from
a geometric, current perspective, especially in the case where
the oscillator is anharmonic.

In particular, for the Duffing oscillator system (λ 
= 0), on
the other hand, we see from Eq. (19) that the rate of change
of the region negativity is now governed by two current
contributions: the system quantum current (0, λx∂2

pW/4) and
the environmental diffusion current (17). Figure 5 shows
the Wigner current on the W = 0 boundary of a particular
negative region, comprising the net sum of these two current
contributions. Each row of subplots in Fig. 5 show the Wigner
function at times separated by one quarter of the drive period.
The subplots in first row occur at times when the long-term
trend is for the negativity volume to grow. Those in the second
and third rows occur at times with the opposite long-term
behavior. Figure 5(a) shows a negative region when its volume
is slightly increasing due to a net outward boundary current.
The region evolves into that which is shown in Fig. 5(b) when
the negativity volume is now significantly increasing due to
the comparatively larger net outward boundary current. In
Fig. 5(c) the region now contracts with the net flow inwards
but expands again in Fig. 5(d). This pulsing behavior repeats
itself over many periods of the drive, as can be seen in the
other plots of Fig. 5 and also in Fig. 6 which traces the
continuous evolution of the same negative region from initial
formation to almost complete disappearance; note in partic-
ular the small half-drive period oscillations in the negativity
volume.

At a given location on the boundary, the environmental
diffusion current always flows inwards, thus acting to de-
stroy the negative region. On the other hand, the functional
dependence of the system quantum current leads to more
varied flow behavior on the boundary and can act to either
create or destroy the negative regions; the quantum current
must therefore be responsible for the initial generation and
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FIG. 5. Snapshots of evolving Duffing oscillator Wigner function and current vector field J on the boundary of a single negative region for
an initial undisplaced coherent state; the damping rate γ = 0.01 and bath temperature T = 0.

possible eventual stabilization of negative regions in the
steady state.

To counteract the diffusive inflow, from Eq. (19) we neces-
sarily require that

λ

4

∫
∂A(t )

ds n · (0, x)
∂2W

∂ p2
> 0. (21)

Although the orientation and location of the boundary seg-
ments along with the magnitude of the term ∂2

pW can result
in quite complicated current flows on the negative region

boundaries, there are certain conditions that lead to pre-
dictable flow patterns. To aid our intuition, we will focus on
the two terms n · (0, x) and ∂2

pW in Eq. (21), which must
both be large for there to be a significant quantum current.
The n · (0, x) term is significant on boundary segments with
sizable x coordinates and where the normal vector n is ori-
ented with a small angle relative to the vertical p axis. At
certain times in the evolution over a given drive period, the
second derivative ∂2

pW becomes large at these same boundary
segments, resulting in sizable boundary currents inwards or
outwards depending on the relative signs of the n · (0, x) and

FIG. 6. Time evolution for the volume of the first sizable negative region to form and the focus of Fig. 5. The arrows indicate approximate
times corresponding to the snapshots appearing in the Fig. 5 rows.
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∂2
pW terms, and the sign of λ which we assume here to be

positive. This can be observed whenever the large positive
peak is directly above or below the negative region of interest
[c.f. Figs. 5(b), 5(d), 5(f), 5(h), 5(j), and 5(l)], leading to large
positive ∂2

pW where n · (0, x) > 0, and therefore resulting in
a large net outward current on the boundary segment of the
negative region that is proximal to the large positive peak.

In the quadrants where x and p have the same sign [c.f.
Figs. 5(a), 5(c), 5(e), 5(g), 5(i), and 5(k)], the positive peak
is now directly to the left or right of the negative region of
interest, leading instead to large positive ∂2

x W , and having
little effect on the ∂2

pW term. In fact, in these quadrants,
∂2

pW < 0 on most of the negative region boundary where
n · (0, x) > 0, resulting in a net inwards flow.

This change in the direction of the quantum current from
outwards to inwards on the boundary is the mechanism re-
sponsible for the oscillation in the volume of the individual
negative region as it cycles clockwise in phase space. Figure 6
clearly displays this “heartbeat” behavior for the single nega-
tive region of interest shown in the snapshots of Fig. 5. Arrows
on the time axis of Fig. 6 indicate the approximate times of the
snapshots.

While significant negative regions develop in the Duffing
oscillator numerical example considered above during inter-
mediate times [Fig. 3(b)], the negative regions practically
vanish in the long time limit steady state, even at zero temper-
ature [Fig. 3(c)]. We have seen that as negative regions transit
between adjacent quadrants of phase space, there is an ebb
and flow in their size; any stabilization of negativity would be
in the sense that significant negativity persists and is repeated
at times that are equal modulo the drive period. For this to
be possible, the net effect of the quantum current over the
drive period must be to increase the negativity volume, thus
counteracting the deleterious effects of the diffusion term in
Eq. (19). If the negative region does not disappear during one
period of the drive τd , we can formulate a criterion for this
weaker form of stabilization as follows:

∫ t0+τd

t0

dt

[
− λ

4

∫
∂A(t )

ds n · (0, x)
∂2W

∂ p2

+ γ

2

(
n + 1

2

)∫
∂A(t )

ds n · ∇W

]
� 0, (22)

as t0 → ∞.
In the above simulations the chosen, example parameter

values result in coexisting small and large amplitude stable
oscillations for the classical dynamics; the Wigner function
must correspondingly spread out through diffusive current
flow from its initially narrow and strongly peaked coherent
state distribution [Fig. 3(a)]. As a result, the magnitude of the
term ∂2

pW must decrease overall, and with the small chosen
anharmonic coupling strength value λ (=0.05), the system
quantum current term is too weak to counter the deleterious
effects of the diffusion term in Eq. (19) and hence be able to
stabilize sizable negative regions.

Although we have not yet identified specific examples
that lead to the evolution of the Wigner function such that
Eq. (22) is satisfied, there are certain, basic Wigner function
distribution geometries that appear to be good candidates.

FIG. 7. Snapshots of an idealized Wigner function distribution
geometry that may sustain a significant negative region as it repeat-
edly cycles clockwise in phase space. Note that the indicated distri-
bution is schematic only and meant to show the relative locations of
the positive and negative regions and their overall aspect ratios. The
distribution is squeezed in such a way as to maximize the horizontal
dimension when the quantum current can play a dominant role in
growing the negative volume, and minimize the horizontal dimension
when the net Wigner current would otherwise reduce the negative
volume.

In particular, consider the situation where a negative region
precedes a large positive region as they cycle clockwise in
phase space, similar to what is observed in actual simula-
tions as we discussed above. If, furthermore, the positive
region is squeezed such that a large portion of its bound-
ary is proximal to the negative region [c.f. Fig. 7], then
according to our above analysis there should be significant
growth of the negative region volume in the two quadrants
where x and p have opposite sign, while in the other two
quadrants where x and p have the same sign there should
be comparatively less shrinkage of the negative region vol-
ume. Note that the preceeding argument depends on the
inflection point ∂2

pW = 0 occurring where W > 0, so that
∂2

pW > 0 on the negative region boundary; based on our
above numerical simulations of the Duffing oscillator, it is
reasonable to assume this over a large portion of the boundary
provided that the maximum of the positive peak is relatively
large compared to the minimum of the adjacent negative
region.

V. CONCLUSION

In this present work, we extend the Wigner phase-space
formulation of open quantum system dynamics to include a
description of the Wigner current vector fields on phase space.
This enables the quantum Fokker-Planck equation describing
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the Wigner function dynamics to be written in the concise
form of a continuity equation. The evolving Wigner current
is investigated numerically for a harmonic oscillator and a
driven Duffing oscillator in the bistable regime, the last of
these serving as an illustrative anharmonic system. Through
the application of the two-dimensional Gauss’s theorem to
boundary-enclosed, negative Wigner function regions on sys-
tem phase space, we saw that the growth and reduction of
negative regions are governed solely by the so-called quantum
current due to the system anharmonicity and the diffusion
current across the negative region boundaries. By examining
the geometric form of these specific contributions to the total
Wigner current, we were able to gain some initial insights as

to how negative regions might be stabilized, i.e., maintained
in the steady state.
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