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Ruling out the class of statistical processes involving two noninteracting
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In the framework of generalized probabilistic theories (GPT), we illustrate a class of statistical processes in the
case of two noninteracting identical particles in two modes that satisfies a well-motivated notion of physicality
conditions, namely the double stochasticity and the no-interaction condition proposed by Karczewski et al.
[Phys. Rev. Lett. 120, 080401 (2018)], which cannot be realized through a quantum mechanical process. This
class of statistical process is ruled out by an additional requirement, called the evolution condition, imposed
on two-particle evolution. We also show that any statistical process of two noninteracting identical particles in
two modes that satisfies all three physicality conditions can be realized within quantum mechanics using the
beam-splitter operation.
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I. INTRODUCTION

Of the many ways in which quantum mechanics (QM)
deviates from classical probability theory, the indistinguish-
able nature of identical particles and nonlocal nature [1]
of quantum correlations are prominent. The statistical na-
ture of indistinguishable particles plays a central role in our
everyday understanding, from molecules, atoms, and solids
to many astronomical events. The nonlocal nature exhibited
by quantum theory via violation of Bell-type inequality [2]
has revolutionized the fundamental understanding of nature
and has contributed to development of quantum information
theory and computation.

The generalized probabilistic theories (GPT) framework
begins with adopting the formalism of operational quan-
tum mechanics, which was advocated by the quantum logic
community [3–5] in the pre-quantum-information era. Later,
as a result of advancement in quantum information theory,
GPT was formulated using Euclidean real probabilistic vector
spaces to describe the state space [6–8]. It is considered one
of the fundamental frameworks in which to study the quantum
correlations in any probabilistic theory [6–14] and to find
the operationally motivated information theoretic axioms for
quantum theory [15–20].

The quest for physical axioms to characterize QM began
with an attempt by Popescu and Rohrlich in which they
constructed a probabilistic model (later called the PR box)
for maximally nonlocal correlations that violate the Clauser,
Horne, Shimoney and Halt (CHSH) inequality to its algebraic
maximum. The impossibility of realizing PR-box correlations
in QM was found by Tsirelson [21], even though the corre-
lations are nonlocal as well as nonsignaling. This prompted
the search for different physical principles to reproduce the
quantum mechanical bound in the case of CHSH inequality
[22–26].
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The GPT framework, which can accommodate any prob-
abilistic physical theory, facilitated such constructions and
thus provided a deeper understanding of the nature of QM
and in turn of nature. Motivated by these developments, the
GPT framework has been extended to accommodate general
relativity [27] and indefinite causal structure [28]. Hardy
has extended the GPT framework to field theories and has
provided a manifesto for constructing quantum gravity [29].

Recently, Karczewski et al. [30] proposed a general prob-
abilistic framework to deal with noninteracting identical par-
ticles. In this work, the authors formulated a well-motivated
physical principle called the consistency condition, which is
similar to the no-signaling condition that any theory with
noninteracting identical particles should satisfy, and provided
an example of a statistical process with three identical par-
ticles in three modes that satisfies the consistency condition
but cannot be realized in QM. Following the framework of
Karczewski et al. [30], in this work we show that there
exists a much simpler configuration, i.e., two noninteracting
identical particles in two modes, which satisfies the consis-
tency condition yet fails to produce such a process in QM.
We also show that an extra physicality condition proposed
by Karczewski et al., which recovers quantum mechanical
statistics in the case of three particles in three modes, can also
be used to rule out a proposed impossible process involving
two identical particles in the two-mode case. We call this
principle the “evolution principle” and show that the class of
physical theories involving generalized statistics of identical
particles, interpolated between fermions and bosons [31–33],
also satisfy this principle. We show that any process which
satisfies all of the three physicality conditions can be realized
by a quantum mechanical beam-splitter configuration.

II. GENERALIZED PROBABILITY THEORY
FRAMEWORK

The basic ingredients of GPTs are states, transforma-
tions, and measurements and are formulated in the language
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independent of Hilbert space formalism so that GPTs can
accommodate any probabilistic physical theory. In the case
of distinguishable particles, the framework is very well devel-
oped and has been used as a cornerstone for both foundational
understanding and applications. In the case of foundations,
the framework is used to provide the physicality conditions
that characterizes QM [22–26], to understand the limits and
advantages of general correlations [9,10,34–38], and to find
an axiomatic formulation of QM [6,18,39–41]. On the appli-
cation side, it has provided a methodology [42] of device-
independent certification of many quantum information the-
oretic and quantum computational tasks.

Recently, Karczewski et al. [30] developed a GPT frame-
work for noninteracting identical particles, which we briefly
review here.

Consider N particles in M modes. The states of identical
particles are determined by the particle occupation number
in each mode, φ = {n1, n2, . . . nM}, where n1, n2, . . . nM are
occupation number in mode {1, 2, . . . M} with

∑M
i=1 ni = N .

The state probability vector � is a d-dimensional vector
representing the probability distribution of particles over all
modes. The GPT framework consists of an initial state �i, an
evolution (or transformation) T given by a stochastic matrix,
and a final state � f .

For example, consider a single boson in two mode with a
symmetric beam-splitter (BS) transformation. The set of occu-
pation number states are {1, 0} and {0, 1}. The state probabil-
ity vector � = [P({1, 0}), P({0, 1})]T , where P({1, 0}) is the
probability distribution of particles. The transformation ma-
trix T (1)

BS for a BS for single particle in two modes is given by

T (1)
BS = 1

2

(
1 1

1 1

)
. (1)

Similarly, a GPT framework for two bosons in a
symmetric BS is given by representing the state � =
[P({2, 0}), P({1, 1}), P({0, 2})]T and the transformation
T (2)

BS by

T (2)
BS =

⎛
⎜⎝

1/4 1/2 1/4

1/2 0 1/4

1/4 1/2 1/4

⎞
⎟⎠. (2)

III. PHYSICALITY CONDITIONS

In the case of characterizing nonlocal correlations in a Bell-
type scenario, the natural physicality condition is to satisfy
relativistic causality, i.e., the impossibility of instantaneous
communication. The no-signaling condition states that the
marginal probability distribution of one party should not be
affected by the choice of observables by any another spatially
separated party. Similarly, in the case of contextuality [43],
it is Gleason’s no signaling (also called “no disturbance” in
the literature) which acts as the physicality or consistency
condition.

The consistency condition for noninteracting identical par-
ticles has to consider the noninteracting character. This re-
quirement as formulated in Ref. [30], which we call here the
no-interaction criteria:

No interaction. The transformation of a single-particle
distribution should not be affected by the presence of any
other particle.

The precise mathematical characterization requires defin-
ing a transition matrix R(N ) with elements R(N )

i j which spec-
ify the transition of an N-particle state � j to an (N − 1)-
particle state �i by randomly removing one particle from the
N-particle state:

�(N−1) = R(N )�(N ). (3)

Any K-particle state can be obtained from an N-particle
state by sequentially removing a single particle. For example,
a transition from three-particle state to single-particle state can
be obtained as �(1) = R(2)R(3)�(3). Thus, a transition matrix
R(N→K ) for an N-particle state to a K-particle state is given by

R(N→K ) = R(K+1) . . .R(N−1)R(N ). (4)

With these mathematical devices, the no-interaction condi-
tion constrains the allowed transformations T as

R(N→K )T (N )�i = T (K )R(N→K )�i, ∀i. (5)

This means that the state probability vector obtained by
first reducing an N-particle state to a K-particle state and
then transferring a K-particle state must be the same as first
transferring an N-particle state and then reducing it to a
K-particle state.

This will be evident by considering an elementary system
with N = 2 and M = 2, for which R(2) is given by

R(2) = 1

2

(
2 1 0

0 1 2

)
. (6)

The no-interaction condition constraints any T (2) that satisfies

R(2)T (2)�
(2)
i = T (1)R(2)�

(2)
i (7)

for all states �i. It is very clear from Eqs. (1) and (6) that
the symmetric BS transformation given in Eq. (2) satisfies the
no-interaction condition (7).

No increase of entropy after transformation demands the
double-stochasticity condition, which is stated as follows:

Double stochasticity. The transformation matrix T must be
doubly stochastic.

The final condition on the transformation T to be physi-
cal is the evolution principle, which is satisfied within QM
[44,45], and it can be stated as follows:

Evolution principle. The evolution of the states in which
all the particles are in the same mode should be equal to the
evolution generated by its single-particle counterpart.

In the two-particle case, this principle is written as

T (2)�(2) = T (1)�(1) × T (1)�(1). (8)

IV. CHARACTERIZATION OF TWO NONINTERACTING
IDENTICAL PARTICLES

In this section, we characterize the transformation of two
noninteracting identical particles in two modes satisfying the
conditions of double stochasticity, no interaction and the
evolution principle. It is shown that for two noninteracting
identical particles in two modes, any transformation that
satisfies all the three physicality conditions can be realized
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by quantum mechanical identical particles in a general beam-
splitter transformation.

A. GPT characterization

Consider a general transformation T (2)
g of two identical

particles in two modes that satisfies the doubly stochastic
condition:

T (2)
g =

⎛
⎜⎝

α1 α2 1 − α1 − α2

α3 α4 1 − α3 − α4

1 − α1 − α3 1 − α2 − α4 −1 + ∑4
i=1 αi

⎞
⎟⎠.

(9)

Similarly, the general transformation T (1)
g of a single particle

in two modes is

T (1)
g =

(
β 1 − β

1 − β β

)
. (10)

Now, applying the no-interaction condition (7) on the general
transformations (9) and (10) constrains the values of αi as

α4 = 1 − 2α2, α3 = 2(β − α1). (11)

After the application of no-interaction condition, the general
transformation is a three-parameter family which can be
written as

T ′(2)
g =

⎛
⎜⎝

α1 α2 1 − α1 − α2

2(β − α1) 1 − 2α2 2(−β + α1 + α2)

1 + α1 − 2β α2 2β − α1 − α2

⎞
⎟⎠.

(12)

Further application of evolution principle (8) to Eq. (12)
relates the two parameters α1 and α2 by the equations

α1 = β2, α2 = 2(β − β2). (13)

The general transformation T (2)
g which satisfies all the three

physicality conditions is a single-parameter family repre-
sented by parameter β and given as

T ′(2)
g (β ) =

⎛
⎜⎝

β2 2β(1 − β ) (1 − β )2

2β(1 − β ) 1 − 4β(1 − β ) 2β(1 − β )

(1 − β )2 2β(1 − β ) β2

⎞
⎟⎠.

(14)

B. Quantum mechanical characterization

The input-output relation for boson annihilation operators
for general two-mode BS can be written as(

b̂1

b̂2

)
= UBS

(
â1

â2

)
=

(
u11 u12

u21 u22

)(
â1

â2

)
, (15)

where (â1, â2) and (b̂1, b̂2) are the input-output boson an-
nihilation operators. The output bosonic commutation rela-
tion [b̂i, b̂ j] = δi j restricts the elements of the transformation
U with |u11|2 + |u12|2 = 1, |u21|2 + |u22|2 = 1 and u11u∗

11 +
u22u∗

22 = 0. These restrictions imply that the BS transfor-
mation has to be an unimodular representation of subgroup

SU(2) [46], and the simplest representation of SU(2) that
realizes the BS transformation is

UBS =
(

cos θ sin θ

− sin θ cos θ

)
. (16)

The corresponding two-particle T (2)
QM and single-particle

T (1)
QM transformations in the GPT can be written as

T (1)
QM =

(
sin2 θ cos2 θ

cos2 θ sin2 θ

)
(17)

and

T (2)
QM =

⎛
⎜⎝

sin4 θ 2 sin2 θ cos2 θ cos4 θ

2 sin2 θ cos2 θ cos2 2θ 2 sin2 θ cos2 θ

cos4 θ 2 sin2 θ cos2 θ sin4 θ

⎞
⎟⎠.

(18)

The constraint on the general transformation of two nonin-
teracting identical particles in two modes that satisfies all three
conditions of physicality is characterized in Sec. IV A and the
allowed single-parameter general transformation is given in
Eq. (14). Any transformation that satisfies all three physicality
conditions can be realized in a quantum mechanical way by a
BS transformation (18) by substituting β = sin2 θ in Eq. (14).
It is important to note that the given QM realization is not
unique. The general BS transformation can be represented by
including the phase factors. There can be many BS unitaries
that can realize the given GPT transformation.

V. IMPOSSIBLE PROCESS

Karczewski et al. [30] provided an example of a process
involving N = 3 in an M = 3 system with a transformation
T (3) that exceeds the bunching probability bound given
in QM, even though the transformation T (3) satisfies the
no-interaction condition (5) and the matrix representing T (3)

is doubly stochastic. The given transformation (process) is
not realizable in QM, similar to the maximally nonlocal PR
box, which cannot be realized in QM. Here we report a class
of transformations T (2) which satisfies double stoachasticity
and no-interaction conditions that cannot be realized in QM.
The class of transformations T ′(2) in Eq. (12) that violate
the evolution condition given in Eq. (13) cannot be realized
within QM.

An elementary example involving N = 2 in M = 2, which
satisfies the no-interaction condition (7) and is doubly
stochastic but has no quantum mechanical unitary transfor-
mation that can realize such a process, can be given by the
transformation T (2)

(imp):

T (2)
(imp) =

⎛
⎜⎝

1/2 0 1/2

0 1 0

1/2 0 1/2

⎞
⎟⎠. (19)

It can be easily verified that T (2)
(imp) is doubly stochastic and

satisfies the no-interaction condition (7) with respect to T (1)
BS

in Eq. (1). We can use the evolution principle to rule out T (2)
(imp),
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as the transformation T (2)
(imp) violates it. This can be seen by

noting that P(20)
(20) �= P(10)

(10) P(10)
(10) .

VI. EVOLUTION CONDITION AS PHYSICAL CONDITION

The notion of a physicality condition is obtained by noting
the general principle satisfied by the required physical theory.
For example, the most general physicality conditions like no
signaling and the laws of thermodynamics arise from the
fact that all known physical theories satisfy these conditions.
The quest for deriving QM from well-formulated physical
principles began with a more preliminary task of bounding
the nonlocal correlations to Tsirelson’s value (bound) [21].
In the process, many physicality conditions were formulated
which bound nonlocal correlations to quantum value [22–26].
The basic idea is that these principles lead to the predictions
satisfied by classical and quantum mechanical theories. On the
contrary, violating any of these principles lead to predictions
that are not in consonance with that of either classical or
quantum theories.

Similarly, as noted in Ref. [30] and shown in Ref. [45],
the evolution principle is satisfied by classical and quantum
theories, making it a viable candidate for physical principle.
If the proposed physicality principle is satisfied by a broad
range of physical theories, then the principle will have a broad
range of theoretical validity. As a first step in this direction, we
show that in a two-mode beam-splitter scenerio, the evolution
principle is satisfied by more generalized statistics of identical
particles interpolated between fermions and bosons generated
by deformed Fermi and Bose algebras [31–33]. The extended
algebra are called q-deformed algebra and the excitations are
called quons. The operator algebraic relation between creation
(â†) and annhilation (â) operators is given as

âiâ
†
j − qâ†

j âi = δi j I, (20)

where −1 � q � 1 is the deformation factor. This algebraic
relations leads to the following relations:

âi |0〉 = 0, â†
i âi |ni〉 = vn |n j〉 ,

â†
i |ni〉 = √

vn+1 |(n + 1)i〉 , âi |ni〉 = √
vn |(n − 1)i〉 ,

(â†
i )n |0〉 = √

vnvn−1 . . . v1 |ni〉 , (21)

where

vn =
{∑n−1

m=0 vm = 1 + qvn−1, n � 2,

1, n = 1.
(22)

Consider the linear transformation as BS operation given in
Eq. (15), where (â1, â2) and (b̂1, b̂2) are the input-output quon
annhilation operators. Denote

√
T = u11 = u22 and

√
R =

u12 = −u21 as reflection and transmission coefficients of BS
with R + T = 1.

The single quon in the two-mode scenario transforms
according to the Eq. (15) as

|φin〉 = â†
1 |00〉 → u11 |1, 0〉 + u21 |0, 1〉 . (23)

Accordingly, the single-quon statistics are P(1,0)
(1,0) = T, P(1,0)

(0,1) =
R, P(0,1)

(1,0) = R, P(0,1)
(0,1) = T . Beginning with a single quon in

both modes, we get

|φin〉 = â†
1â†

2 |00〉 → [u11u12(b̂†
1)2 + u21u22(b̂†

1)2+u11u12b̂†
1b̂†

2

+ u21u12b̂†
2b̂†

1] |00〉 . (24)

From this, we get P(1,1)
(2,0) = P(1,1)

(0,2) = RT (1 + q) and P(1,1)
(2,0) =

R2 + T 2 − 2qRT . Similarly, we get P(2,0)
(2,0) = P(0,2)

(0,2) = T 2,

P(2,0)
(0,2) = P(0,2)

(2,0) = R2, and P(2,0)
(1,1) = P(0,2)

(1,1) = 2RT . From this,
it is easy to see that the quon statistics satisfies evolution
principle (8) for two quons in two modes. For example, note
P(2,0)

(2,0) = P(1,0)
(1,0) × P(1,0)

(1,0) = T 2.
The evolution principle is satisfied by quon statistics,

which raises the question of what other principle(s) it satisfies.
In order to investigate that, let us write the general transforma-
tion matrix T (2)

q for two quons in two modes:

T (2)
q =

⎛
⎜⎝

T 2 2RT R2

RT (1 + q) R2 + T 2 − 2qRT RT (1 + q)

R2 2RT T 2

⎞
⎟⎠.

(25)

From this, it is immediately clear that the transformation T (2)
q

is not doubly stochastic in general but it is for q = 1, which
is bosonic statistics. The transformation T (1)

q for general quon
statistics is given as

T (1)
QM =

(
T R

R T

)
. (26)

The satisfaction of the no-interaction condition (7) requires
that R(2)T (2)

q = T (1)
q R(2). R(2)T (2)

q and T (1)
q R(2) are given

respectively as

R(2)T (2)
q = 1

2

[
2T 2 + RT (1 + q) R2 + T 2 + 2RT (2 − q) 2T 2 + RT (1 + q)

2T 2 + RT (1 + q) R2 + T 2 + 2RT (2 − q) 2T 2 + RT (1 + q)

]
(27)

and

T (1)
q R(2) = 1

2

(
2T 1 2R

2R 1 2T

)
. (28)

From this, it is clear that no-interaction condition is satisfied if
and only if q = 1. The GPT version of general quon statistics
fails to satisfy both the double stochasticity condition and the
no-interaction condition.

VII. CONCLUSION

The nonlocal nature of quantum correlations is one of the
salient features that dramatically deviates from our under-
standing of classical correlations which purely originate from
human ignorance. Maximal nonlocality beyond QM exhibited
by the PR box has laid the foundation for exploring the pos-
sibility of finding physical principles behind many properties
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of QM and provided a methodological application in terms of
device-independent characterization of information-theoretic
tasks.

The indistinguishable nature of quantum identical particles
deviates our worldview of nature from a classical descrip-
tion. Recent computational advantages in the case of boson
sampling [47] have solely emerged from the indistinguishable
nature of identical quantum particles. Formulating and study-
ing identical particles in GPT and identifying more general
principles that single out quantum mechanical statistics are
important.

In this work, we consider an elementary setting of two
noninteracting identical particles in two modes, in which
we provide a class of transformations that satisfies a well-
defined notion of physicality conditions yet cannot be realized
in QM. The principle proposed by Karczewski et al. [30],
where they considered three particles in three modes, has
been applied in this work for the case of a more elementary
system of two identical particles in two modes to rule out
such an impossible process. Any statistical process involving

two identical particles in two modes that satisfies all the three
physicality conditions is shown to be realizable in QM by
using a suitable BS configuration. The physicality condition
is identified by its general applicability in a wide range of
theories. We investigate the physicality conditions on a broad
range of physical theories involving generalized statistics of
identical particles interpolated between fermions and bosons
called quons. Although bosons satisfy all three conditions, the
general statistics of two quons in two modes satisfies the evo-
lution principle but fails to satisfy the double-stoachasticity
condition and the no-interaction condition. This provokes
more general questions to identify the physicality conditions
which will be necessary and sufficient for realizing the statisti-
cal process of many identical particles in multimode settings.
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