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We aim to construct tests for evaluating whether policies for adaptive quantum-enhanced metrology are
robust against unknown phase noise and are tractable to construct and to execute. Specifically, one of our tests
determines scaling of phase-estimate precision with respect to photon number; the other two tests concern
resource complexity with respect to the training time required to construct the policy and the execution
time for the policy so constructed. The robustness test is performed on quantum-enhanced adaptive phase
estimation by simulating the scheme under four phase-noise models corresponding to normal-distribution noise,
random-telegraph noise, skew-normal-distribution noise, and log-normal-distribution noise. Control policies are
devised either by an evolutionary algorithm under the same noisy conditions, albeit ignorant of its properties,
or a Bayesian-based feedback method that assumes no noise. We have introduced an approach to evaluating
quantum-control policies for metrology that relies on testing against unusual phase-noise models and accepting
that the policies are robust only if scaling of phase-estimate precision beats the standard quantum limit and
policy-design resource complexity, in the presence of phase noise, is polynomial in the number of photons.
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I. INTRODUCTION

Quantum-enhanced metrology (QEM) employs a quantum
state of N particles as a resource to estimate an unknown
parameter φ with the goal of attaining imprecision,

�φ̃ ∈ O(N−℘), (1)

that asymptotically surpasses the standard quantum limit
(SQL) ℘= 1/2 [1,2] but saturates at or below the Heisen-
berg limit (HL) ℘ = 1 [3,4]. Our expression (1) differs from
usual proportionality expressions in the literature, e.g., �φ̃ ∝
N−℘, by explicitly recognizing the relevance of lower-order
terms [4] through the use of the big-O notation [5].

QEM is vital for high-precision applications, such as
gravitational wave detection [6–8], atomic clocks [9,10], and
magnetometry [4,11] whose systems are operating at the
limit of their power tolerance. Some schemes consider ideal
measurements that typically involve measuring multiple parti-
cles simultaneously [12,13], whereas adaptive QEM (AQEM)
focuses on single-particle measurements augmented by feed-
back such that the SQL is beaten and the HL is approached
[14–16].

AQEM performance critically depends on the choice of
policy � [17], which can be obtained by optimizing a known
mathematical model [18–20] or by a trial-and-error approach
[21–23]. Whereas policies from these methods are resistant
to known noise models [18], whether they are robust against
unknown noise is yet unstudied but critical property of a QEM
scheme as noise can destroy the entanglement advantage and
restore the SQL [24,25].

Our aim is to test the robustness of AQEM policies
in the presence of noise with unknown properties. To this
end, we start with an adaptive procedure that is known
to attain quantum-enhanced precision without noise, then

include Gaussian phase noise as well as skewed, long-tail,
and discrete phase distributions to observe scaling of phase-
estimate precision as the noise level increases. When we
refer to the scaling of phase-estimate precision, it is with
respect to photon number, in accordance with the usual
practice, and we employ numerical simulation up to some
maximum photon number Nmax to determine this scaling.
We use the term “trend” to refer to the apparent extrap-
olation of the plot beyond Nmax. In AQEM, proofs of
asymptotic power-law or otherwise behavior are not now
known.

Our test focuses on quantum-enhanced adaptive phase
estimation (QEAPE), whose policies have been devised using
Bayesian techniques [16,26] and by searching the policy space
using an evolutionary algorithm (EA) [21–23]. Bayesian
technique computes feedback based on a trusted, noiseless
quantum model, whereas evolutionary algorithms [27] devise
policies for feedback based on fitness of policies obtained
through trial and error. This evolution is, by design, ignorant
of the quantum-dynamical nature but employs heuristics to
shrink the search space.

Here both Bayesian techniques and evolutionary al-
gorithms are applied to QEAPE, including phase noise,
which could arise from interferometer path-length fluctu-
ations [28,29]. Sources for these noise processes can be
grouped into mechanical (e.g., vibrations of optical compo-
nents or mounts), acoustic (e.g., sound or air ventilation),
thermal (e.g., heat sources and cooling), optomechanical, and
other categories of fluctuations [30]. As modeling all these
sources ab initio can be computationally expensive, which is
especially daunting for feedback loops due to the simulation
being executed multiple times, we employ simple phase-noise
models to test robustness, time to design, and time to execute
for candidate policies.
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Typically, noise is assumed to be normal as a result of
the central-limit theorem [31]. Periodicity of phase makes
the normal distribution problematic unless the noise is small
compared to 2π radians, which we assume here; technically,
we would use the wrapped-up normal distribution [32]. As our
aim is to test robustness for unknown noise, we consider three
other noise distributions for our test: random telegraph [33],
skew-normal [34], and log-normal [35] noise. The random-
telegraph noise simulates a discrete noise process. Skew-
normal and log-normal distributions represent asymmetric
noise, which serve as distinct generalizations of the normal
distribution. Both distributions are used to simulate noise in
detectors and electronics [36–38].

For AQEM, we seek an efficient procedure that beats the
SQL, and we choose � that requires the least resource to
run. We assess the policy-generating procedure according to
the complexity of its time cost [39], which is evaluated by
the scaling in the number of operations with the number of
particles N . Here we consider two policy-design procedures,
namely, a policy-search method based on differential evo-
lution (DE) [40], which is a variant of evolutionary algo-
rithms, and a method based on Bayesian inference, resulting
in one policy designed by each method. To determine which
policy is superior, we compare the complexity in space and
time cost [5]. Thus, we are able to assess and compare
the costs for generating policies and determine the best
policy.

Through our analysis, we find that both Bayesian feedback
and DE-designed policies are robust in the face of unknown
phase noise. Specifically, the Bayesian method yields impre-
cision that approaches the HL and outperforms DE-designed
policies for most noise models. This performance superiority
is due to the Bayesian method effectively memorizing the
measurement history through the agent’s complete knowledge
of the quantum state. Storing the entire model in the agent
yields better imprecision scaling of phase-estimate precision
but incurs higher space and operational time costs compared
to the DE-derived policy.

In summary, our approach to assessing QEAPE policies
is based on studying scaling of phase-estimate precision
with respect to photon number and, furthermore, analyzing
resource complexity given by the training time required to
construct the policy and also the execution time for the policy
so constructed. We have introduced an approach to evaluating
quantum-control policies for metrology that relies on testing
against unusual phase-noise models and accepting that the
policies are robust only if scaling of phase-estimate precision
beats the standard quantum limit and policy-design resource
complexity, in the presence of phase noise, is polyN .

II. BACKGROUND

In this section, we present essential background knowledge
for assessing robustness of adaptive quantum-enhanced phase
estimation. We cover four key notions as subsections. In
Sec. II A we discuss QEM including AQEM. Subsequently,
in Sec. II B, we address a particular case of AQEM, namely,
QEAPE. As noise is present for any practical QEM proce-
dures, we briefly review the effect of noise on the imprecision
scaling of phase-estimate precision in Sec. II C before we

discuss phase noise models we use to evaluate policy robust-
ness in Sec. II D.

A. Quantum-enhanced metrology

In this subsection, we explain QEM strategies, mainly
collective nonadaptive [2] and adaptive measurements [41],
and lower imprecision bounds attained by using the classical
and quantum resources. Specifically, we focus on strategies
that employ finite N input states. Whereas the collective
nonadaptive strategy is useful to calculate lower bounds for
imprecision, adaptive strategies offer the simpler alternative
of individual-particle measurements that can achieve impre-
cision scaling of phase-estimate precision close to these theo-
retical bounds. Here we focus on single-parameter estimation;
multiparameters QEM [42–44] would be the subject of future
study.

1. Nonadaptive and adaptive strategies

Here we describe collective nonadaptive and adaptive
QEM strategies, which are two of many types of QEM
schemes. Whereas we focus on these two techniques, there
are others, such as the sequential technique [45,46] and the
ancilla-assisted techniques [47,48], which we do not cover.

a. Collective strategy. A collective nonadaptive scheme
utilizes N d-level (typically, d = 2 for standard two-level
atoms or two-path interferometry) particles prepared in a
collective state

ρ ∈ S
(
H ⊗N

d

)
, (2)

which is the space of positive-definite, trace-class, self-adjoint
linear operators acting on a tensor product of N copies of
a d-dimensional Hilbert space Hd [49]. The system, upon
which metrology is performed, is represented as a quantum
channel (completely positive trace-preserving map) I (φ), act-
ing on ρ, with φ being the single-unknown parameter of the
channel [50]. In the special case of an isolated system without
noise, decoherence or loss, the channel is represented by a
unitary transformation [51]

I (φ)ρ = U (φ)ρU †(φ) (3)

for U being a unitary operator acting on H ⊗N
d .

After the particles exit the system, they are measured and
this measurement is described as a positive-operator-valued
measure [52,53], which comprises positive semidefinite oper-
ators

X̂x : H ⊗N
d → H ⊗N

d ,
∑

x

X̂x = 1, (4)

assuming the measurement outcomes {x} is a finite set. We
use the notation 1 to denote an identity operator or identity
matrix. This outcome (4) is random with probability

Px = tr(X̂xI (φ)ρ). (5)

The measurement X̂x is repeated multiple times to sample the
distribution (5) sufficiently well to get good estimates, and
then φ is inferred from these samples.

b. Bundle and individual-particle measurement. Instead of
collective measurement, we can consider measuring subsets
of particles, which we call bundles, and, at the extreme limit,
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which is of interest here, measuring a single particle at a time.
Mathematically, we split the particles into M bundles of L
particles where N = ML [41] so the Hilbert space can be
expressed as ⎛

⎜⎝H ⊗L
d︸ ︷︷ ︸

bundle

⎞
⎟⎠

⊗M

. (6)

In this case, both I (φ) and X̂x act on H ⊗L
d . For localized

measurements on each bundle, the positive operator-valued
measure (POVM) is

M−1⊗
m=0

X̂ (m)
xm

, X̂ (m)
xm

: H ⊗L
d → H ⊗L

d (7)

with outcomes from this tensor-product POVM being concate-
nations of M length L strings of d-dimensional digits,

xM = x0x1 . . . xM−1 ∈ N⊗M
dL , (8)

where

xm ∈ NdL := {0, 1, 2, . . . , dL − 1} (9)

measured from the mth bundle.
In one extreme case, each bundle contains only one parti-

cle, which leads to M = N and L = 1. The string of outcomes
becomes

xN = x0x1 . . . xN−1 ∈ N⊗N
d . (10)

The POVM is
N−1⊗
m=0

X̂ (m)
xm

, X̂ (m)
xm

: Hd → Hd , (11)

which is a tensor product of N qudit POVMs.
For two-level particles, the state (2) is simplified to

ρ ∈ S
(
H ⊗N

2

)
, (12)

and the POVM simplifies from (11) to

N−1⊗
m=0

X̂ (m)
xm

, X̂ (m)
xm

: H2 → H2. (13)

The outcome (10) is simplified to

xN ∈ {0, 1}⊗N , (14)

which is an N-bit string. Henceforth, we restrict to the d =
2 (two-level system), L = 1 (single-particle-per-bundle case)
for simplicity and without loss of generality.

c. Adaptive strategy. The adaptive strategy involves incor-
porating quantum feedback control [54] such that the system
operation depends on both the unknown parameter φ and a
control parameter �m, for some degree of freedom, on the
mth bundle. We assume that incorporating a control preserves
the system acting as a channel and thus we write the channel
acting on the mth bundle as I (φ; �m). Measurement of the
mth bundle leads to an update of the control parameter to
�m+1 for the next bundle.

In control theory a policy � is a procedure the controller
uses to modify the plant (comprises a system, actuators and

sensors) based on feedback from previous actions [55]. The
control-parameter update is determined by a policy

� : (xm,�m) �→ �m+1, xm = x0x1 . . . xm−1, (15)

which uses the string of outcomes xm and the most recent con-
trol parameter �m to obtain the next control parameter �m+1.
This procedure continues until reaching the final particle, i.e.,
the N th particle, at which point the estimate of the unknown
parameter is

φ̃ := �N . (16)

Therefore, the adaptive strategy can be used for single-shot
measurement, i.e., inferring φ from one instance of the mea-
surement procedure.

2. Imprecision limits

Imprecision of the estimate (16) is denoted �φ̃ (1). As-
suming the measurement is optimal and that the quantum
channel is noiseless [7,56], imprecision lower bounds are
calculated for classical and quantum resources. These lower
bounds are the SQL and HL, respectively. In a noisy system,
which pertains in practice, a QEM scheme is unlikely to
saturate the bound. Despite the presence of noise, the SQL
is still the bound that must be surpassed to claim QEM, which
requires using quantum resources. Here we review these limits
as benchmarks for both the robustness test and to compare
AQEM policies.

a. Standard quantum limit. The SQL is the imprecision
lower bound if classical resources are used, which means that
the input state (12) is separable, i.e., unentangled [57]. The
simplest case of such a separable state is a tensor product of
N independent particles [1],

ρ = ρ⊗N
1 . (17)

Interacting this state to the quantum channel leads to the
output state

[I (φ)ρ1]⊗N . (18)

Measuring this state (18) according to the POVM (13) leads
to output governed by the probability distribution,

P(xm) = tr(X̂xmI (φ)ρ1), (19)

which is independent and identically distributed (iid) for
m ∈ {0, 1, . . . , M − 1}. Calculating the imprecision, such as
through the central limit theorem, leads to ℘ = 1/2 because
of this iid condition [58]. The scaling also holds for the
imprecision lower bound, which is calculated from (18) using
the Cramér-Rao lower bound [59], and is irrespective of the
quantum channel.

b. Heisenberg limit. If quantum resources are employed,
e.g., squeezing [60] or entanglement [61], the SQL can be sur-
passed [4,8]. The lower bound to using the quantum resource
can be computed from the quantum version of the Cramér-Rao
lower bound [42], which depends on the input state and the
quantum channel [62]. Therefore, unlike the SQL, the HL is
specific to the QEM scheme [63]. In the case of interferomet-
ric phase estimation, the HL is℘ = 1 [64], although this limit
can only be attained through the use of optimal measurement.
As an optimal POVM could be infeasible, QEAPE schemes
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provides an attractive alternative to achieving close to this
lower bound [65].

B. Adaptive phase estimation

Phase estimation underlies many QEM applica-
tions [1,8,51] and thus is widely used for devising
quantum-enhanced techniques, including several AQEM
schemes [18,21,65]. Here we explain QEAPE controlled
by Bayesian feedback [16,26] or DE-designed policies
[22,23,66], which we compare in terms of robustness and
resource consumption for control.

1. QEAPE

One method of estimating phase is to use an interferometer,
which infers phase shifts from the interference between two
or more modes [67]. In particular, we use QEAPE based on
a Mach-Zehnder interferometer, which has two modes and
therefore we are looking at the case of d = 2 representing
the modes. The mathematics of Mach-Zehnder interferometry
applies to other forms of SU(2) interferometry, such as Ram-
sey, Sagnac, and Michelson interferometry [1,51,68]. Here we
present the input state, adaptive channel, detection, feedback,
inference, and imprecision.

a. Input state. For nonadaptive quantum interferome-
try with collective measurement, the unitary interferometric
transformation is in the Lie group SU(2) with irrep (“irre-
ducible representation,” which is the Casimir-invariant label)
j = N/2. For adaptive quantum interferometry or individual
measurements, the interferometric unitary transformation is
SU(2N ) for N particles and two paths. However, the two
descriptions converge if the input state is permutationally
symmetric; technically, Schur-Weyl duality dictates that the
applicable transformation is SU(2) with irrep j = N/2 [69].

Notationally, modes are labeled by

εm ∈ {0, 1}, (20)

which conveys which of the two paths, such as input or output
port or intrainterferometric path, pertains. Thus, the state |εm〉
refers to mth photon being in path εm. The multiphoton basis
is the tensor-product state

|εN 〉 =
N−1⊗
m=0

|εm〉 . (21)

For ham ε the Hamming weight, i.e., sum of bits, of ε, the
permutationally symmetric basis is

|n, Na − n〉 =
(

Na

n

)−1/2 ∑
ham εNa

∣∣εNa

〉
(22)

for Na the total number of particles in mode a.
The sine state serves as a symmetric state that minimizes

phase-estimation imprecision [19,20,70], and is expressed
as [16,26]

|ψ〉N =
(

N

2
+ 1

)−1/2 N∑
n,k=0

sin

(
k + 1

N + 2
π

)
eiπ (k−n)/2

× dN/2
n−N/2, k−N/2

(π

2

)
|n, N − n〉 , (23)

for d j
m,m′ (β ) the Wigner d function [71].

This state provides several advantages both from the metro-
logical and computational perspective. First, the state can be
viewed as an extension of the equal-number-photon state,
which has been shown to deliver quantum-enhanced preci-
sion close to the Heisenberg scaling [51,72,73]. Second, this
state also has the advantage of being robust against photon
loss [69], which is a desirable property for practical QEM and
so is used in the QEAPE procedures. This property is due to
the state’s ability to remain approximately invariant when few
photons are lost. Third, the permutational symmetric structure
of the state allows us to lower the computational cost of
simulating the state from a matrix of size 2N × 2N to N + 1.

b. Adaptive channel. The particles in the sine state (23)
are divided into single-particle bundles (L = 1 case), each
of which passes through the Mach-Zehnder interferometer.
For noiseless interferometry, the quantum channel for one
photon is

U1(φ; �m) = exp[i(φ − �m)σ̂y], φ,�m ∈ [0, 2π ) (24)

for σ̂y a Pauli matrix [73]. Therefore, the channel is

U (φ; �m) = U1(φ; �m) ⊗ · · · ⊗ 1(N ) (25)

acting on the state space (12).
In a physical implementation of an interferometer, mechan-

ical disturbances, air-pressure changes, and the thermal fluc-
tuations induce optical-path fluctuations [30]. These effects
randomize the phase difference

φ − �m, (26)

which we assume to be contributed solely by φ according to
the prior distribution p(φ), as φ is determined by a mechanism
that is not completely specified, and the controllable phase
shift �m is always exact. The quantum channel is thus [66]

I (φ; �m) : S
(
H ⊗(N−m)

2

) → S
(
H ⊗(N−m)

2

)

: ρm �→
∫ 2π

φ=0
dφ p(φ)U †(φ; �m)ρmU (φ; �m), (27)

where ρm is the state after the (m − 1)th photon is measured.
c. Detection, feedback, and inference. After the mth photon

passes through the interferometer, the photon is detected by
one of the single-photon detectors positioned outside the out-
put ports. The information about the exit port is xm ∈ {0, 1},
which is given to a controller. The controller then uses this
information to compute �m+1 from � before the next photon
arrives. The procedure is repeated for subsequent photons
until all photons are consumed, and the estimate is inferred
from φ̃ = �N , assuming no loss of photons.

d. Imprecision. Imprecision of the estimate (1) is related to
the Holevo variance [19],

(�φ̃)2 = VH := S−2 − 1, (28)

by the sharpness function

S = 1

K

∣∣∣∣∣
K∑

k=1

exp
[
i(φ(k)

0 − φ̃(k)
]∣∣∣∣∣, (29)

which quantifies the width of a distribution over a periodic
variable. The sharpness (29), hence the Holevo variance (28),
is estimated by repeatedly simulating QEAPE K = 10N2
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times [21], each with an unknown (noiseless) interferometric
phase shift φ0 ∈ [0, 2π ) randomly chosen from a uniform
prior.

In the simulation, φ0 is the mode (most frequent value) of
the unimodal prior distribution p(φ). The sharpness S (29)
is a random variable, which is effectively sampled from a
sharpness distribution Psharp(S) with mean

S̄ =
∑

SPsharp(S). (30)

If the interferometer is free of phase noise, the sharpness
distribution Psharp(S) is sufficiently narrow that S computed
from K = 10N2 samples can be used to estimate the Holevo
variance. Once the phase noise is included, Psharp(S) is not
only shifted but widened and consequently S̄ is used to
estimate imprecision of the QEAPE procedure.

2. Policy design

Here explain how the policy � (15) is obtained. Specif-
ically, we consider two approaches. First we consider the
Bayesian approach, based on Bayes theorem [74], which is
applied if the controller has complete knowledge about the
quantum system and updates this knowledge based on mea-
surement outcomes [75]. The second approach is to execute a
direct policy search for an optimal or feasible � [76], which
has the advantage over the Bayesian approach in that a trusted
model is not required.

a. Bayesian feedback. Early examples of AQEM employ
the Bayesian approach [16,26,75], which involves a fully
trusted and complete model of the quantum dynamics. The
model is used for computationally intensive decision making
as measurement data arrive, leading to updates of the prior.
For each particle exiting the interferometer, the probability for
the particle being detected in output port given by outcome
xm is computed by assuming a perfectly known input state
and known quantum dynamics such as unitary interferometric
evolution (25). The prior for φ0 is then updated using Bayes’s
theorem. The width of this prior is quantified by

√
VH (28) at

each measurement step; the optimal �m that minimizes VH for
the next particle is then computed from this trusted model.
Although the Bayesian method approaches the HL [26], �

might not be robust to input-state variability or to system
noise, which is a problem when designing controllers [77,78].

b. Policy search using differential evolution. Policy search
provides an attractive alternative to the Bayesian approach
when a trusted model is lacking or if the computational over-
head associated with the Bayesian approach is excessive. In
this approach, the policy is given a task-appropriate structure
and the performance is optimized by searching the space of
the policy’s parameters [76,79]. A policy-search method is
called model free if the optimization process does not include
learning a model of the dynamic but directly updates the
policy parameters [76], which can be achieved by employing
a black-box optimization algorithm [80] using only policy
performance. Evolutionary algorithms form a class of black-
box optimization algorithms whose policy update procedure
is inspired by models of biological evolution [27], and DE
(discussed in Appendix A) is one such algorithm that is
capable of finding a feasible policy for QEAPE using many
particles [22].

For the task of QEAPE, we assume a logarithmic-search
heuristic Markovian update rule [21]

�m−1 �→ �m−1 − (−1)xm�m, (31)

with phase-adjustment vector

� := (�1,�2, . . . ,�N ), (32)

optimized during the training stage. This update rule (31)
corresponds to turning the “phase knob” up or down by a fixed
amount �m after the mth photon, subject only to the previous
outcome and ignoring the full measurement history.

The performance of the policy is evaluated using the av-
erage sharpness (30) [66], as the interferometer is assumed
to contain noise and this performance measure averages
out noise. In practice, due to the high cost of sampling
Psharp(S) (30), few runs are performed to obtain S̄. A DE
algorithm then uses this performance to search iteratively for
� such that S̄ is maximized [23].

The use of DE incurs a time cost for generating �, which
is a one-time cost quantified by a loop analysis of the DE
algorithm. Once a feasible policy is generated, the policy can
be used in the QEAPE procedure as long as the dynamics of
the system does not significantly change. The scaling of time
cost with respect to N determines the complexity, which has
been shown to be polyN [22] so the degree of the polynomial
conveys the complexity for generating �.

C. Noisy quantum-enhanced metrology

Quantum-enhanced precision is usually diminished by
experimental imperfections whether inherent in the input-state
generation, loss and decoherence in the quantum channel,
limitations of the measurement devices, or perhaps any com-
bination of all these imperfections. [25,81]. Determining the
imprecision lower bounds for different QEM strate-
gies [82,83] in the presence of imperfection is therefore
important for devising practical QEM procedures. In this
subsection, we focus our discussion on summarizing previous
work that model imperfection as noise in the quantum channel
(as that is the main focus of work in this field), assuming that
the optimal input state for these channels can be generated.
Furthermore we discuss QEM schemes that have been shown
to deliver SQL scaling and discuss schemes capable of
breaking this limit. We do not mean to give a comprehensive
review of the field but rather to discuss factors that could lead
to robust QEM procedures.

One important aspect of these studies concerns so-called
“no-go” results, for which noise in the quantum channel leads
to an asymptotic phase-estimate precision corresponding to
the SQL, has been observed by numerical investigation for
both collective [25] and adaptive QEM schemes [84,85].
These studies suggest that the quantum enhancement would
disappear in the limit of many photons in interferometric mea-
surement. Theoretical studies show that noisy QEM channels
described by uncorrelated semigroups lead to SQL scaling
asymptotically as well [86,87]. On the other hand, noise mod-
els that are not described by uncorrelated semigroups, such
as non-Markovian noise [88], is proven to yield a quantum-
enhanced phase-estimate precision that exceeds the SQL in
the asymptotic large-photon-number limit.
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One strategy to surpass the SQL is based on applying time-
dependent control, which is not time-homogeneous and hence
not compliant with the requirements for the no-go result.
One example of controlled QEM uses an ancillary system
comprising many particles that are all entangled to the input
state. These cases exploit quantum error correction [85,89,90],
quantum teleportation [91], and dynamic decoupling [92]. In
these systems, measurement can be performed on ancillae
with the resultant information used to correct the input state
system with respect to any error that might have occurred due
to quantum-channel noise. Similarly, adaptive-measurement
protocols have been applied to noisy QEM procedures without
ancillary systems that show scaling exceeding SQL [10,66].
These quantum-control schemes suggest that adaptive control
is a promising method for attaining quantum-enhanced preci-
sion, i.e., surpass the SQL, provided that appropriate feedback
strategy can be devised.

D. Models of phase noise

In this subsection, we explain the choices of the phase-
noise model for the robustness test. This noise is simulated
by turning φ into a random variable that has a unimodal
probability distribution with the peak at φ0. The mode φ0 is
assumed to be the unknown parameter to be estimated. For
the test, φ follows one of these four distributions: normal,
three-stage random telegraph, skew-normal, or log-normal
distribution. We summarize the relationship between the noise
parameters and the variance and skewness [93] as we use
both in selecting the parameters for the robustness test and
the variance in particular to quantify the noise level.

1. Normal-distribution noise

Normal-distribution noise is important for testing robust-
ness of the search algorithm because the normal distribution is
especially prominent due to the central-limit theorem, which
states that the arithmetic average of a random variable as-
sumes a normal distribution as the number v of data points
increases asymptotically, v → ∞ [31]. Due to the ubiquity of
the normal distribution in nature [94], we assume that typi-
cal mechanical vibrations, acoustic, and thermal fluctuations
contribute to a normal-distribution noise model.

The normal distribution,

p(φ) = e(φ−μ)2/σ 2

√
2πσ

, (33)

is parametrized by the mean μ and standard deviation σ .
As this distribution is symmetric, skewness γ is zero and
thus the mode is at μ, and the variance is V = σ 2. In our
simulations, we set μ ≡ φ0 so the only free parameter is σ ,
which is bounded above by σ < π as otherwise the width
would exceed the domain of φ. We restrict σ � 2 as higher
values of σ would be uninteresting as they would correspond
to almost completely noisy measurements.

2. Random-telegraph noise

Random-telegraph noise [33] is a discrete distribution that,
for each time step, randomly switches between two values,
one being the correct and the other an erroneous value.

Whereas this noise is most relevant to digital electronics, as
it simulates a bit-flip error, this noise simulates other forms
of digitized noise, such as salt-and-pepper noise in image
processing [95].

In an adaptive interferometer, random-telegraph noise can
arise from the control signal or from the stepping motor used
to control the phase shifter. Although, in principle, the control
signal is smooth, computerized control approximates the ideal
signal using small stepwise changes, thereby introducing the
possibility that the controllable phase shifter �m is close to but
not exactly where the ideal �m should be. Similar effects can
also be a result of the stepping-motor error, whose change is
limited to discretized steps [96]. Here we exaggerate the size
of the error in order to study effects of random-telegraph noise
on a QEM scheme.

We modify two-stage random-telegraph noise to have three
stages,

p(φ) =
{

1 − ps, φ = φ0,
ps

2 , φ = φ0 ± δ.
(34)

The probability of switching to an erroneous value is ps, and δ

is the distance between the true and erroneous values leading
to

V = psδ
2, γ ≡ 0 (35)

with the last relation following from the symmetry of the
distribution.

Unimodality of the distribution implies that ps < 2/3.
Furthermore, we restrict δ < π so that the distance between
the two side peaks is less than 2π . To comply with both
constraints and be able to raise the noise level to at least
V = 3 so the result is comparable to other distributions, we
fix ps = 1/2 for the test and then vary only δ.

3. Skew-normal-distribution noise

The skew-normal distribution [34] is modified from a
normal distribution by multiplying with a function whose
skewness parameter is α. Typically, this noise model is used
in simulations of filters and detectors [36,38] but not in
interferometry where noise is approximated to be normally
distributed. However, as the skew-normal distribution auto-
matically includes the normal distribution as a limiting case
(skewness goes to zero), this noise model can be viewed as
a convenient generalization of the normal distribution when
some skewness is suspected or should be treated.

Skewness of the distribution is described by the distribution

p(φ) = e−(φ−μ)2/2σ 2

√
2πσ

[
1 + erf

(
α√
2σ

(φ − μ)

)]
(36)

for erf the error function [97]. Skewness of the distribution is

γ = 4 − π

2

2β

π − 2β
, β = α2

1 + α2
, (37)

and the variance is

V = σ 2

(
1 − 2β

π

)
. (38)

The mode, however, does not have a closed form although it
remains close to μ as α/σ increases. For our simulations of
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phase noise, we treat the mode as being at μ, so μ is always set
to φ0. The parameters α and σ are set to the desired skewness
and variance for testing robustness.

4. Log-normal-distribution noise

Log-normal [35] noise has a heavy-tailed skewed distribu-
tion that provides another approach to generalizing the normal
distribution (without including the normal distribution itself in
the class). The log-normal distribution appears prominently
in the study of biological [98] and electrical [99] networks, of
electrical noises [37], and of many other fields of sciences [35]
including astronomy [100]. The prevalence of the distribution
in finite, positive data is often attributed to the “multiplicative
central limit theorem,” which states that the distribution of
the geometric mean tends to a log-normal distribution for
data size v → ∞ [35,100]. As such, random data generated
through nonlinear random processes tends to have a log-
normal distribution.

Although no obvious multiplicative mechanism exists in an
optical interferometer [30], physical phenomena that create φ0

may play a role in adding noise and that noise, depending on
the physics of the phenomena have a likely chance of being
log-normally distributed if nonlinear multiplicative random
processes are involved. As such, we include this noise dis-
tribution as one of the models we use for the robustness test.

In this case, the logarithm of the random variable has a
normal distribution, leading to the distribution

p(φ) = e−(lnφ−μ′ )2/2σ ′2

√
2πσ ′φ

(39)

with mode and variance

φ0 = eμ′−σ ′2
, V = (eσ ′2 − 1)e2μ′+σ ′2

, (40)

respectively, and skewness

γ = (eσ ′2 + 2)
√

eσ ′2 − 1.

As this distribution is defined for φ ∈ (0,∞), we first generate
a random number within the compact phase domain given μ′
and σ ′ and then apply the shift

φ �→ φ + φ0 − eμ′−σ ′2
(41)

so that the mode of the distribution is centered at φ0 (40).

III. APPROACH

In this section, we devise a test to determine whether
quantum-enhanced precision is feasible in the presence of
unknown noise. We then assess whether power-law scaling
of phase imprecision vs particle number N is valid asymp-
totically and establish a method to determine this power ℘.
Finally, we define the resource for generating and executing
the control policies in terms of how space and time costs
scale with N . This scaling analysis is based, as we explain in
the Introduction, on numerical analysis up to some maximum
photon number Nmax, determining the trend of the log-log plot
for Holevo variance VH vs N based on statistical methods, and
extrapolating to larger N to make scaling claims.

A. Robustness test

The robustness of QEAPE policies is determined by testing
the policies in the presence of noise whose model is not
recognized by the policies and the method that designs the
policies, although DE-designed policies are learned in training
that includes the noise. Here we define the test for QEAPE,
including phase noise from Sec. II D. We specify the domain
of N for simulating the phase estimation schemes to obtain VH

in noisy conditions. The noise parameters are variance V and
skewness γ (Sec. II D), but here we fix γ for the asymptotic
distributions, and we obtain the robustness-test threshold in
terms of V , which is the maximum for each noise model such
that the SQL is violated.

1. Varying N

To ascertain the asymptotic value for ℘, we simulate
QEAPE for

N ∈ {4, 5, . . . , 100}, (42)

as VH computed from this domain is sufficient to show a
power-law relationship at high N (approaching Nmax). Fur-
thermore, increasing N further requires changing double-
precision arithmetic to quadruple-precision arithmetic to gen-
erate and manipulate the sine state without rounding error.
Consequently, this increase in precision leads to a 15-fold
increase in run time at N = 100, which is a large expense for
generating a single data point. Therefore, we do not attempt
to verify the robustness beyond this 100 particles.

2. Skewness

We fix skewness γ to a single value for all runs and only
vary V because V is the dominant term in our noise models
and γ has a small effect [101]. We fix the skewness for the
asymmetric distribution to

γ = 0.8509, (43)

which is sufficiently large to distinguish between the various
noise models; otherwise all noise looks Gaussian. This value
of γ (43) corresponds to α = 5 for the skew-normal distri-
bution where we are able to observe its effect on ℘ when
compared to symmetric noise distributions. This same level
of skewness corresponds to

σ ′ = 0.2715 (44)

in the log-normal distribution.

3. Robustness threshold

Our � is robust if the SQL-breaking condition ℘ > 1/2 is
satisfied for all four noise models in Sec. II D. As discussed
in Sec. III A 2, we fix γ , and we ignore higher cumulants;
thus, the � robustness threshold is in terms of V , i.e., the
maximum V such that ℘ > 1/2 holds for all four noise
models. This optimization problem is hard so we adopt a sim-
pler characterization procedure instead to get insight into the
robustness threshold. Our approach is to run the simulations
for V ∈ {1, 2, 3} for symmetric noise and V ∈ {1, 3, 5, 7} for
asymmetric noise, and we do not push beyond V = 7 to keep
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below an imprecision width of 2π . We use these data to
determine whether QEAPE policies pass the robustness test.

B. Determining asymptotic power-law scaling

To ascertain the robustness of QEAPE policies, the asymp-
totic℘ is estimated from a subset of VH at sufficiently high N ,
and determining this subset is done by fitting piecewise linear
equations to a log-log plot of VH vs N . In this subsection,
we introduce five piecewise functions that are constructed
from (numerical) observations regarding the trend of VH vs
N . We then explain the method of finding the break points
between segments in the piecewise function and fitting the
functions to the data. Using the criteria in Appendix B, we
create a majority-vote method for selecting the function that
best represents the data and thus ℘ from the last segment of
the fit is used to estimate the asymptotic scaling.

1. Piecewise models

The power-law trend between VH and N , which manifests
as a linear relation between lnVH vs lnN , differs under noisy
conditions. Here we describe the trends we have observed
that lead to piecewise linear functions. We construct five such
functions, containing one to three segments that are then fitted
to VH vs N .

When the interferometer is noiseless, the relationship ap-
pears to be a power law captured in a linear equation, although
the accept-reject criterion in the policy-search algorithm can
lead to a different℘ for N > 93. Once the noise level becomes
high, typically V > 1, the relationship does not appear to be
linear for low N . Therefore, we include segmented models that
fit linear interpolation to the data in the first segment.

Combining these observations, we construct five
piecewise-linear models that can potentially represent lnVH

as a piecewise function of lnN . The models have one to
three segments, each segment connected at the break points
determined by the fitting methods. Three of the models are
one, two, and three linear models, whereas the other two are
a two-segment model, where the first segment (low N) is a
linear interpolation, and a three-segment model where the
first segment is a linear interpolation and the second and third
segments are linear.

2. Fitting method

Our method for fitting linear equations is based on the
least-squares method [102]. However, because the functions
in Sec. III B 1 are segmented, we include a step to optimize
the break points depending on the specific function.

The full model for the regression analysis is the three-
segment linear function, which is fitted using the linear-square
method and the segments determined by a heuristic global op-
timization algorithm [103]. The two-segment linear function
is also fitted using the same least-square method although a
brute-force search is used to find the break point starting from
N = 4.

The method for finding the break points for models with
interpolation are different as the linear interpolation leads
to a small residual. Thus, optimizing using the least-squares
method can lead to a single segment of linear interpolation.

For this reason, we first find the stop point for the first
segment by fixing the latter segments to a single linear line
and search for break point that results in a large decrease in
sum square error. As for the single-segment linear model, we
use a standard library to fit to the data.

3. Fitting figures of merit and model selection

After the functions are fitted to VH(N ), the criteria R2,
AICc, the F value, and Mallows’s Cp (Appendix B 2) are
calculated for each of the function and the fits are visually
inspected. These criteria are used to select the function that
best fits the data. Here we explain how the best function is
chosen.

After the functions are fitted and the criteria are calculated,
each fit is visually presented and inspected to ascertain that the
segmentation fits the pattern. If corrections are unnecessary,
the functions are then ranked for each of the criteria. Note
that we do not perform the full F test as we discovered that
reduced models typically fail the test even though there is no
discernible difference when compared to the full model. How-
ever, the F value can still be used to quantify the difference be-
tween using the full and reduced model, so we use the F value
to rank the functions instead of conducting a pass-fail test.

After the functions are ranked, the function that is voted as
best by most of the criteria is chosen to represent the data.
In the case where the full model, the three-segment linear
function, is voted according to the criteria, the value of ℘

from the last segment and the subset of N where this value
is computed is compared to the next alternative function to
determine whether the function overfits the data. If ℘ from
the two functions differs more than 0.001, then the full model
is chosen; otherwise, the alternative function is chosen. The
limit we use here is specified based on the precision used in
this paper and can be changed based on the desired precision
of ℘.

C. Resource complexity

To compare and select between policies and methods of
generating policies, we determine the complexities for design-
ing and for executing � using the loop-analysis method [39]
to determine both of these complexities. We begin this sub-
section by explaining the time complexity for designing poli-
cies. We then explain execution complexity by describing
the controller’s actions and concomitant resources, which are
quantified by the space and time required for executing � with
N particles.

1. Design complexity

When an optimization algorithm is used to design �, there
is a time cost associated with the use of the algorithm. The
scaling of the upper bound of this cost is called design
complexity. We assume that the calculation is performed on
a simulation of the AQEM task, as is common practice in
policy design in quantum control [104], and, therefore, the
time cost includes the cost of simulating the AQEM task. We
assume that only a single processor is used for the purpose of
comparing policy-design methods, although this cost can be
reduced by parallelizing the optimization on multiple CPUs.
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The design complexity for the policies in Sec. II B 2 is
shown to be O(N6) through loop analysis [22], and this
complexity does not change when noise is included. For
policies that are devised through analytical optimization, such
as Bayesian feedback, the cost is zero as no design algorithm
is used.

2. Execution complexities

In this subsection, we explain the requisite resource com-
plexity to implement AQEM policies, quantified by the scal-
ing of the space and time costs with the number of particles
N [5]. We begin by explaining the connection between an
AQEM policy and an algorithm by viewing the controller as a
computer, allowing us to use the method of algorithm analysis
to calculate the complexities [39]. We then define the space
and time cost for implementing policies and how these costs
are calculated.

a. Controller. The controller holds � (15) and implements
� to execute decisions based on feedback from detection of
outgoing particles. The controller is essentially an agent who
receives input from detectors and transmits a control signal
to an actuator that shifts the interferometric phase. Thus, � is
represented as a computer algorithm expressed as a computer
program. Computer memory is required to store � and time to
execute �. The candidate � can be designed by various means
including Bayesian feedback (Sec. II B 2 a) and policy-search
method (Sec. II B 2 b). Space and time costs are discussed in
the next two paragraphs.

b. Space complexity. We determine the upper bound for
space cost, which is the worst-case amount of memory used
by an algorithm reported as a big-O function of the size of the
problem [5]. As � is executed by an algorithm, this worst-case,
or maximum-size, memory corresponds to how much space is
required to hold the critical information required to execute
the feedback. For �, the computer’s space cost for memory
depends on the type of �. For Bayesian feedback, the size of
the stored � is O(N2), which is calculated from the size of
the array used to store the quantum state transformation, and
is shown in Sec. IV C and specifically in Table II. The size
of the stored � from the policy-search method is O(N ) [22].
This linear scaling of the policy size, with respect to the num-
ber N particles, is due to the generalized-logarithmic-search
heuristic leading to the size N phase-adjustment vector (32).

c. Time complexity. Time complexity refers to the scaling
of the upper bound for the time cost required to implement
a single AQEM shot, i.e., the cost for using all N particles at
once. This cost is calculated by assuming the time a particle
takes to pass through an interferometer is constant, mimicking
the physical implementation of the control procedure. We
then use loop analysis, which counts the number of loops that
perform operations, and we assume all take the same constant
time [39]. For a shot of AQEM task using N particles, �m

is computed N times, corresponding to each particle passing
through the interferometer and being detected. For each
particle, nested loops for computing �m+1 exist according to
�. The complexity is reported as the scaling of this time cost
with N .

We determine the execution cost for DE-designed policies
by recognizing that the update of �m according to Eq. (31) is

constant in time. Therefore, QEAPE consists of only one loop
over the number of particles, and the execution complexity
is thus O(N ). Bayesian feedback, on the other hand, has
nested loops for updating the quantum state, which is O(N2)
in time complexity for every computation of �m. Hence, the
execution complexity is O(N3).

IV. RESULTS

In this section, we report results for the robustness test and
the resources based on sampling from simulated QEAPE. We
present and compare VH(N ) (28) obtained by a policy-search
method discussed in Sec. II B 2 b and by Bayesian feedback
discussed in Sec. II B 2 a. Our analysis considers all four types
of noise discussed in Sec. II D. We report values of ℘ (1)
from the regression procedure discussed in Appendix III B
and resource complexities discussed in Sec. III C for both the
DE-designed policies and the Bayesian feedback.

A. Variance vs number of particles

In this subsection, we present results for VH as a function
of number N of particles. Specifically, we present plots of
VH vs N from 4 to 100 particles, which is enough to deter-
mine scaling as discussed in Sec. III C. Both cases of using
DE-designed policies and of using Bayesian feedback are
presented as log-log plots (base 10) and compared to the SQL,
with these plots obtained by computing from simulations
of noiseless phase estimation using a product state |0, 1〉⊗N

following the notation of Eq. (22). The HL is generated based
on the intercept of the SQL data using the scaling of 1/N2 to
provide a benchmark.

1. Policy search

Here we present the log-log plots of VH vs N (base 10)
from QEAPE using DE-designed policies, as shown in Fig. 1.
Figs. 1(a)–1(d) present VH for inclusion of normal-distribution
noise, random-telegraph noise, skew-normal noise, log-
normal noise, respectively.

Figure 1(a) also includes VH from noiseless interferometry.
This locus appears as a straight line in the plot, indicating
a power-law relationship between VH and N . As the noise
variance V increases, this power-law relationship breaks into
two parts, clearly visible in the VH vs N plot from V = 3. This
trend also appears at V = 2 as the model selection procedure
Sec. III B 3 selects the two-segment model for this data set.
The observation that the power-law relationship fails when
noise is included is also evident in Figs. 1(b)–1(d). In these
cases, the plots are fit to two- or three-segment linear equa-
tions as VH appears to have a bump at low N as V increases.

The increase in phase noise V also results in an increase
in the intercepts of VH power-law lines; however, the rate of
change appears to depend on the noise model. The difference
is shown in Figs. 1(a) and 1(b); both include symmetric noise
distributions but with different spacing of the intercepts. The
same observation holds for Figs. 1(c) and 1(d), which are from
asymmetric distributions. Comparing the four plots shows that
the intercepts appear to increase more slowly for asymmetric
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FIG. 1. Logarithmic plots (base 10) of Holevo variance from simulation of QEAPE. The policies are designed using policy-search method
implemented in the specified noise condition, namely, (a) normal-distribution noise, (b) random-telegraph noise, (c) skew-normal-distribution
noise, and (d) log-normal-distribution noise. The plot for the normal-distribution noise also includes the data from the noiseless simulation
(brown side-facing triangle) and its linear fit (green solid). The blue circles are data when V = 1, the red triangles when V = 2, the green
squares when V = 3, the brown plus when V = 4, the brown crosses when V = 5, and the purple diamonds when V = 7. The lines shown are
the piecewise linear fits of the data whose scaling is reported. The solid black line is the HL and the dashed purple line in the SQL is generated
from noiseless QEAPE.

distributions than for the symmetric distributions, being close
to 1 for V = 3 in the former and V = 2 for the latter.

2. Bayesian feedback

Log-log plots of VH (base 10) as a function of N , shown
in Fig. 2, are computed from simulations of QEAPE con-
trolled by Bayesian feedback. Figures 2(a)–2(d) present VH in
the presence of normal-distribution noise, random-telegraph
noise, skew-normal noise, and log-normal noise respectively.

Similar to Fig. 1, the trend of VH vs N in Fig. 2 shows that
the power-law relationship also breaks into parts. Instead of
a bump, VH from Bayesian feedback exhibits noise for low
N . For this reason, the model-selection procedure Sec. III B 3
favors the model with linear interpolation in the first segment.
The subsequent segment appears straight in the log-log plots,
although some, such as V = 7 in Fig. 2(c), shows a break into
two linear segments.

The intercepts of the VH vs N plots increase with the
increase of V , and the observation of the changes are similar
to when DE-designed policies are used (Sec. IV A 1). The
asymmetric noise shows a slow increase in intercept when
compared to symmetric noise, and the rate of change depends
on the noise model.

B. Power-law scaling

In this subsection, we present values of ℘, summarized in
Table I, that are estimated by fitting VH plots in Sec. IV A.
These ℘’s are from the last segment of the selected piecewise
linear models (Sec. III B 1), which changes with the increase
in V . We also include R2 (B2) to show the goodness of fit.

The power-law scaling for DE-designed policies, namely,
℘S, shows a decrease as the noise level V increases, starting
from the noiseless phase estimation at 2℘S = 1.459. The
DE-designed policies fail to deliver ℘S > 1/2 when V = 3
for the symmetric noise distributions. This limit increases
with asymmetric noise models to V = 7 in log-normal noise.
Skew-normal noise only shows a scaling at approaches the
SQL but does not breach it at all.

Similar trends are observed for Bayesian feedback. The
scaling℘B from noiseless interferometer closely approximates
the HL at 2℘B = 1.957 and approaches SQL when V = 4
for normal-distribution noise. This limit drops to V = 3 when
random-telegraph noise is included. This limit also appears
at V = 7 for log-normal noise, whereas the same noise
level just leads to ℘B approaching SQL when skew-normal
noise is present. This trend, aside from the case of normal-
distributed noise, is the same as the trend for the DE-designed
policies.
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FIG. 2. Logarithmic plots (base 10) of Holevo variance from simulation of QEAPE using Bayesian feedback method. The simulation
includes one of the four noise models, namely, (a) normal-distribution noise, (b) random-telegraph noise (c), skew-normal-distribution noise,
and (d) log-normal-distribution noise. The plot for the normal-distribution noise also includes the data from the noiseless simulation (brown
side-facing triangle) and its linear fit (green solid). The blue circles are data when V = 1, the red triangles when V = 2, the green squares when
V = 3, the brown plus when V = 4, the brown crosses when V = 5, and the purple diamonds when V = 7. The lines shown are the piecewise
linear fit of the data whose scaling is reported. The solid black line is the HL and the dashed purple line in the SQL generated from noiseless
QEAPE.

TABLE I. Power-law scaling from QEAPE under noisy condi-
tions using DE-designed policies ℘S and Bayesian feedback ℘B.

V γ 2℘S R2
S 2℘B R2

B

SQL 1 1
HL 2 2
No noise 1.459 0.9998 1.957 0.9993

1 0 1.302 0.9999 1.512 0.9985
Normal 2 0 1.267 0.9999

3 0 0.954 0.9992 1.190 0.9997
4 0 1.004 0.9948

1 0 1.266 0.9999 1.526 0.9991
Random telegraph 2 0 1.186 0.9997 1.277 0.9967

3 0 0.935 0.9993 0.919 0.9892

1 0.8509 1.296 0.9999
Skew-normal 3 0.8509 1.246 0.9999 1.343 0.9987

5 0.8509 1.118 0.9998 1.116 0.9927
7 0.8509 1.039 0.9996 1.041 0.9964

1 0.8509 1.290 0.9999
Log-normal 3 0.8509 1.217 0.9998 1.258 0.9919

5 0.8509 1.058 0.9997 1.086 0.9961
7 0.8509 0.981 0.9994 0.9209 0.7965

The goodness-of-fit for these fits are reported in term
of R2, where R2 = 1 indicates a perfect fit. The values of
the goodness R2

S > 0.999 for VH delivered by DE-designed
policies and R2

B > 0.99 for Bayesian feedback except for
when a log-normal noise of V = 7 is present. Overall, the
models chosen using the method in Sec. III B 3 provide good
fits to the data, and the DE-designed policies always deliver
fits with R2

S > R2
B.

C. Bounds on time and space costs

The result from calculating space and time complexities
for both designing and implementing DE-designed policies
and Bayesian feedback is shown in Table II. Here we compare
these results.

TABLE II. Upper bound in policy space and time cost of the
policy from DE algorithm (DE) and Bayesian feedback (BF).

Complexity DE BF

Design time O(N6)
Policy space O(N ) O(N2)
Execution time O(N ) O(N3)
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Time complexity for generating policies, named here de-
sign time, is polyN but of a high polynomial degree when
the DE algorithm is used. Bayesian feedback, which is de-
signed through an analytical process, incurs no time cost for
the design. When the execution time is compared, the time
complexity goes from O(N ) for the DE-designed policy to
O(N3) for Bayesian feedback as shown in Table II. Space
complexity for the DE-designed policy is also linear with
respect to the number of particles whereas Bayesian feedback
requires a memory of O(N2), also shown in Table II.

V. DISCUSSION

In this section, we discuss policy robustness and why
QEAPE policies are so strongly noise resistant. We explain
the difference between the scaling parameter ℘ attained by
DE-designed policies and Bayesian feedback. Our analysis
enables a user to choose policy-design methods that minimize
resource complexity for design and for execution as appropri-
ate.

A. Robustness of QEAPE policies

In this subsection, we discuss robustness of QEAPE poli-
cies and the robustness threshold based on ℘ in Table I.
Both DE-designed policies and Bayesian feedback are able
to deliver ℘ > 1/2 for all four noise models until V = 3
at which point scaling in the presence of random-telegraph
noise fails to exceed the SQL. For noise models that are
asymmetric, quantum-enhanced precision is observed up to
V = 7 at skewness γ = 0.8509. This high level of robustness
is surprising, especially so for Bayesian feedback, as the
interferometer dynamic no longer agrees with the noiseless
assumption.

The skewness in the phase-noise distribution appears to
make QEAPE more robust at least up to γ = 0.8509 as
observed in the robustness thresholds from the normal-
distributed noise and the skew-normal noise. The normal
distribution is a special case (γ = 0) of the skew-normal
distribution, and when a normal-distributed noise is added,
the robustness threshold is V = 3 whereas the presence of a
skewed distribution increases the threshold to V = 7. The ro-
bustness threshold, of course, cannot increase with skewness
indefinitely and would have to either reach an asymptote or
decrease, although predicting the outcome is difficult as the
phase shift is a periodic variable and the wrapping of the
phase-shift distribution has to be taken into account.

The robustness of QEAPE appears to come only in small
part from the feedback-control policy. The role of the feed-
back policy is highlighted by the threshold for normal-
distribution noise, where the threshold for DE-designed poli-
cies is at V = 3 as opposed to Bayesian feedback at V =
4. However, for other noise distributions, the threshold are
comparable, which indicates that other factors are of greater
importance in determining the robustness of QEAPE.

One possible factor that creates robust QEAPE is the input
state, which, in this work, is the sine state (23). We know
that the permutational symmetry enables the state to be robust
against loss [69], and we speculate that this symmetry maybe
a necessary property for robustness against phase noise as

well. However, permutational symmetry alone is insufficient
to determine whether the quantum state is able to deliver
quantum-enhanced precision. An example of this is the prod-
uct state, which shows no quantum enhancement whatso-
ever [41], as expected intuitively when quantum resources
such as entanglement or squeezing are not employed. The
structure of the permutational symmetric state itself has to
be studied to determine the key features that enables both
quantum-enhanced precision and practical metrology.

B. Space cost and power-law scalings

Table I shows that power-law scaling delivered by
Bayesian feedback is consistently superior to those scalings
delivered by the DE-designed policies before the robustness
threshold is reached. Here we use the space complexity of
the policies in Table II to explain the reason behind this
difference.

Table II shows that Bayesian feedback has a polyN space
cost that scales one polynomial degree higher than for DE-
designed policies, which indicates that Bayesian feedback
utilizes more information and hence is more complex than
the DE-designed policies. By using a trusted quantum-state
model, Bayesian feedback effectively uses the history of
measurement outcomes x1x2 . . . xm to determine �m+1 instead
of using just the current outcome xm, which is the approach
used by DE-designed policies in (31). As such, DE-designed
policies are restricted by the generalized-logarithm-search
strategy (Sec. II B 2) and so cannot deliver a value of ℘S that
approaches the HL. Improvement of DE-designed policies is
done by changing the update rule, i.e., the structure of the
policy, so that � uses a part of the measurement history.

C. Choosing a QEAPE policy

In this subsection, we explain how the space and execution
time complexity (Sec. III C 2) is used to decide between
competing policies and method of generating the policies.
In particular, we discuss choosing between the DE-designed
policies and Bayesian feedback.

The consideration of the space and time complexity of the
policies comes after ascertaining that the candidate policies
are able to deliver the target performance. In the case of
QEAPE, the target is to attain ℘ > 1/2, which both the DE-
designed policies and Bayesian feedback are able to deliver.
Both methods also have the same robustness threshold against
phase noise of unknown distribution. Based on these compar-
isons, both policies appear to be equally suitable.

When comparing space and execution complexity
(Sec. IV C), DE-designed policies show an advantage as
scaling of both costs are bound to linear scaling with respect
to particle number N , whereas Bayesian feedback is quadratic
in space complexity and cubic in time complexity. For this
reason, we favor DE-designed policies for robust QEAPE.

We do not consider design complexity as this cost can be
offset by parallelizing the training. This cost may be of interest
when learning occurs in a physical setup where parallelizing
is not possible and one shot of the experiment is expensive.
In this case, there could be an upper bound to the number of
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experiments and hence time that can be invested in training �.
In that case, design complexity becomes relevant.

VI. CONCLUSION

We have tested quantum-enhanced adaptive-phase esti-
mation (QEAPE) policy robustness based both on Bayesian
feedback and on direct policy search. We compare perfor-
mance with respect to resource complexities for designing
and for implementing policies by numerical simulation and
extrapolating beyond the maximum photon number Nmax us-
ing the final function of our five fitted piecewise functions. By
this method, we observe that both the DE-designed and the
Bayesian-feedback policies are robust against phase noise up
to the noise level characterized by V = 3. Although scaling
of phase-estimate precision provided by Bayesian feedback is
superior to the policies designed by direct policy search, direct
policy search consumes far less time and space resource than
does Bayesian feedback for policy execution.

Our methods for robustness testing and for comparing
policies based on resource complexity could have applica-
tions to AQEM and quantum-control applications in general.
Robustness is a necessary property of any QEM schemes
so our tests are valuable and, moreover, can be adapted to
quantify robustness of nonadaptive procedures and investigate
the role of the input state to the robustness of QEM generally.
Quantifying the resource used by control policies can be used
to show efficacy of the policies not only in AQEM but in other
quantum control tasks, and the comparison of the resource
complexity can be used to select a policy that is most efficient
in accomplishing a task.

In summary, we have introduced an approach to evaluating
quantum-control policies for metrology that relies on testing
against unusual phase-noise models and accepting that the
policies are robust only if scaling of phase-estimate precision
beats the standard quantum limit and policy-design resource
complexity, in the presence of phase noise, is polyN . We have
made explicit what is known in this field—that power-law
behavior is observed by numerical simulation up to some Nmax

and extrapolated to claim asymptotic scaling—and introduced
fitting the log-log plot of VH vs N so that only the final
(applicable for the largest values of N in the domain) of
the piecewise-fitted functions is used to extrapolate large
N behavior. We have also explained why time-homogenous
analysis, which is used to prove no-go no-go results for QEM
asymptotically for large N [86], does not evidently apply to
our case.
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APPENDIX A: DIFFERENTIAL EVOLUTION

Differential evolution is an optimization algorithm based
on a heuristic from a biological evolutionary process [40]. As
such, differential evolution is an evolutionary algorithm [27].
This class of optimization algorithms operates by performing
a global heuristic search in the solution space and selects or
rejects solution candidates based on the candidate’s fitness

Algorithm 1. Noise-resistant differential evolution.

1: procedure INITIALIZE CANDIDATES

2: for all candidate in population of size Np do
3: Generate random vector V (p)(G = 1) of size N
4: Calculate average fitness of V (p)(G = 1) from 2 samples of fitness
5: end for
6: end procedure
7: procedure FIND A FEASIBLE SOLUTION

8: while termination condition not yet met do
9: for each candidate do
10: Calculate fitness of V (p)(G)
11: Update average fitness
12: end for
13: Procedure CREATING (G + 1) POPULATION

14: for each candidate do
15: Randomly select 3 members from population(V (p,1)(G),V (p,2)(G),V (p,3)(G))
16: for each dimension i of V (p)(G) do

D(p)
i (G) =

{
V (p,1)

i (G)+F[V (p,2)
i (G) − V (p,3)

i (G)] if rand � Cr,
Vi(G) otherwise

17: end for
18: Calculate average fitness of D(p)(G) using 2 samples of fitness
19: Select V (p)(G) or D(p)(G) to be V (p)(G + 1) whichever gives higher average fitness
20: end for
21: end procedure
22: end while
23: Select V (p) with the highest average fitness as the solution
24: end procedure
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value, which indicates how well the solution solves the op-
timization problem. Here we summarize a variant of noise-
resistant DE [23] (Algorithm 1 that we devised based on one
of the original variants of DE [40].

As in other evolutionary algorithms, the solution candidate
p in a population of Np candidates for the Gth generation is
represented by a vector

V (p)(G) = (
V (p)

1 (G),V (p)
2 (G), . . . ,V (p)

N (G)
)
, (A1)

where N is the size of the solution space, which in the case
of QEAPE is the number N of photons. A candidate’s ability
to solve the optimization problem is quantified using a fitness
function such that the maximum fitness value corresponds to
the optimal solution. The heuristic of an evolutionary algo-
rithm typically only uses these fitness values in the optimiza-
tion process, and so the algorithm can be applied to control
problems where the system’s dynamic is not fully known but
the fitness of the control procedure can be observed.

What distinguishes DE from other evolutionary algorithms
is the procedure for creating the offspring,

D(p)(G) = (
D(p)

1 (G), D(p)
2 (G), . . . , D(p)

N (G)
)

(A2)

(line 16 of Algorithm 1), and the selection rule (line 19 of
Algorithm 1). The term “differential” refers to the difference
term [V (p,2)

i (G) − V (p,3)
i (G)]. Randomness introduced in the

selection of

[V (p,1)(G),V (p,2)(G),V (p,3)(G)] (A3)

enables the algorithm to execute the search of the solution
space whereas the greedy-selection rule enables the algorithm
to converge quickly to an area with good solutions [107]. This
rapid convergence on good solutions makes DE an attractive
algorithm for global optimization problems.

We note that DE can perform poorly when noise is included
in the fitness function [108,109], which is important for our
application. Thus, we devise a variant of the DE algorithm
that is noise-resistant (Algorithm 1) based on the idea that
averaging reduces the noise in the fitness landscape and thus
enables the algorithm to determine the quality of the solution
with accuracy. Hence, we use the average fitness value in the
selection procedure, which enables us to find policies that are
able to break the SQL in the presence of phase noise [23].

APPENDIX B: REGRESSION ANALYSIS

The imprecision �φ̃ and N are asymptotically power-law
related (1). However, when the system is noisy, this relation-
ship fails for low N , with the actual bound on N depending
on the noise model. We employ regression analysis to select
the subset of VH at high N that scales as N−℘ and estimate the
corresponding ℘ by building piecewise functions and select-
ing the best candidate to represent the data. In this section, we
explain our regression-analysis procedure for fitting a model
given a set of data.

1. Fitting the model

Regression analysis aims to determine the mathematical
relationship between dependent (VH here) and independent
variables (here N) [110]. The process of building this math-
ematical model begins with selecting a function f (N ) based
on the knowledge of the mechanism and observations of the
trends [111]. The function is only a best guess as the discerned
trend could be subjective.

After a function is selected, the function is then fitted to
the data by finding the parameters that minimize the error
between the predicted VH and the data VH [112]. The method
we employ is the least-squares estimation [102], used in
linear regression to calculate the variables by constraining
the gradients to zero and solving the resulting system of
linear equations. We choose this method as we fit linear and
piecewise linear equations to a log-log plot of VH and N .

2. Consistency of the fit

As the fitted function is only an educated guess, the fitting
result must be examined for inconsistencies with respect to the
model’s assumptions [112]. An alternative function can then
be proposed, fitted, and compared to the previous function in
order to find one that best represents the data. Deciding on the
best model from the set is done using statistical criteria that
either estimate the goodness of the fit to the data or between
two models fitted to the same data [113]. The model that is
consistently shown to fit well according to each of the criteria
is then selected to represent the data.

Common linear-regression criteria include
(1) Coefficient of determination:

R2 = 1 −
∑

N

(
V (N )

H − f (N )
)2

∑
N

(
V (N )

H − V̄H
) , (B1)

adjusted to

R2 = R2 − b

v − b − 1
(1 − R2), (B2)

with v the number of data points in the fit.
(2) Corrected Akaike information criteria: AICc quantifies

information lost due to the discrepancy between the model
function and the true function g(N ), and is “corrected” to
avoid overfitting,

(3) F test assesses a full model (maximum number of
parameters b), as the null hypothesis, vs a reduced model
(reduction from the full model) as the alternative hypothe-
sis [111,114], and

(4) Mallows’s Cp [111,113] (but we use b rather than the
traditional p for the number of parameters) estimates the
mean-square prediction error [113] to compare a reduced
model to the full model, where the reduced model with the
smallest Cp close to b is chosen.

Each of these criteria is designed to penalize functions with
many parameters b to avoid overfitting the data [111].
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