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Chirality from quantum walks without a quantum coin
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Quantum walks (QWs) describe the evolution of quantum systems on graphs. An intrinsic degree of freedom—
called the coin and represented by a finite-dimensional Hilbert space—is associated with each node. Scalar
quantum walks are QWs with a one-dimensional coin. We propose a general strategy allowing one to construct
scalar QWs on a broad variety of graphs, which admit embedding in Eulidean spaces, thus having a direct
geometric interpretation. After reviewing the technique that allows one to regroup cells of nodes into new nodes,
transforming finite spatial blocks into internal degrees of freedom, we prove that no QW with a two-dimensional
coin can be derived from an isotropic scalar QW in this way. Finally, we show that the Weyl and Dirac QWs can
be derived from scalar QWs in spaces of dimension up to three, via our construction.
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I. INTRODUCTION

Quantum walks (QWs) on graphs [1–5] describe the evolu-
tion of quantum systems in a discrete arena. Their applications
range from quantum information and computation [6–9]—
where they have been applied to design search algorithms
[10–16]—to discrete approaches for the foundations of rel-
ativistic quantum field theory (QFT) [17–22]—where QWs
are particularly suitable for a reformulation of free QFTs in
a discrete scenario [23–29]. In particular, foundational inves-
tigations have been carried out, focusing on how a continuous
space-time, fermionic dynamics, and Lorentz symmetry can
be reconstructed by a discrete and purely quantum theory
[30–34]. In Ref. [35], it has been proved that, under the
physical assumption of homogeneity of the physical evolution
[36], the graph of the QW must be in fact a Cayley graph,
namely the graphical representation of a group. This allows
one to exploit the group-theoretical machinery, which is of
aid in order to construct the QWs, analyze them, and connect
the graph to the emergent continuous geometry [17,37–39].

Historically [40], QWs have been introduced in the broader
context of quantum cellular automata (QCAs) [41], which
provide a general model for the local unitary evolution of
quantum systems on arbitrary graphs. In the case where the
evolution law is linear in the fields, a QCA reduces to a QW,
representing the quantum counterpart of the classical random
walk model.

So far, the case of a Euclidean emergent space has been
particularly studied as a simplifying restriction of the theory.
It is worth mentioning here that, in fact, non-Euclidean cases
have been hardly treated in the context of QWs, while the
literature focuses on QWs on lattices. The main reason to
focus on the Euclidean case is that lattices have a convenient
embedding in the usual space Rd . Furthermore, this has
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the advantage of allowing one to easily define the Fourier
transform on the lattice and analyze the QWs dynamics in the
wave-vector space, and this in turn provides a straightforward
procedure for taking the continuum limit. Restricting discus-
sion to Cayley graphs which have a Euclidean emergent space
Rd is equivalent to considering groups containing finitely
many copies of Zd [42]: These groups are called virtually
Abelian [39].

A QW is, loosely speaking, a unitary evolution for a wave
function on a graph. Each vertex of the graph is structured
as a local quantum system and thus associated with a finite-
dimensional Hilbert space, usually referred to as the coin
system of the walk at a given vertex. If the QW is homoge-
neous, every vertex is equivalent, and thus all the coin systems
are isomorphic to a prototype Hilbert space called the coin
system of the QW. One can now constructively analyze all
the conceivable QWs on a given graph. This analysis can
be carried out in a twofold way: On the one hand, one can
fix the simplest allowed group, i.e., Zd itself, and investigate
the admissible QWs defined on its Cayley graphs, varying
the coin dimension s; on the other hand, one can fix s and
construct all the admissible groups and graphs complying to
the Euclidean restriction. The first path has been carried out in
Refs. [33,38].

In this paper, we explore the second way, starting with
the minimal coin dimension s = 1, and performing a sys-
tematic analysis of the Euclidean scenario. QWs with a one-
dimensional coin are often referred to as scalar or coin-
less [38,43–46]. Despite the algorithmic simplicity of the
model, finding all scalar QWs for an arbitrary graph is not
a straightforward task. Indeed, the resolution of the unitarity
constraints involves a quadratic system of complex equations,
and it turns out that it is simpler to address the problem as
a matrical one. In Ref. [38], scalar QWs on Cayley graphs
of arbitrary Abelian groups have been classified, finding that
they give rise to trivial dynamics: This result extends the
classical no-go theorem by Meyer [40]. Therefore, the present
approach is to undertake a systematic investigation of QWs
on Cayley graphs of virtually Abelian groups, relaxing the
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Abelianity assumption. This allows them to have nontrivial
dynamics.

The present paper benefits from the work carried out
in Refs. [38,39] and represents their completion. Here, we
construct the first examples of infinite scalar QWs with more
than one space dimension; moreover, we avoid partitions of
the underlying graph or of the QW itself, as opposed to the
literature where the partition is used [43,45,46] to circumvent
the no-go theorem [38], leading to an inhomogeneous evolu-
tion. Furthermore, the scalar QWs constructed here are both
non-Abelian and infinite, unlike those explored in Ref. [44],
where only finite graphs have been considered.

The paper is organized as follows. In Sec. II, we review
the general model of discrete-time QWs on graphs; we then
specialize our treatment to the Euclidean case, establishing a
connection between algebraic and geometrical properties of
groups. In Sec. III, we study the group extension problem
in generality, proving some structure results and reviewing
a coarse-graining technique for QWs on Cayley graphs; we
then apply the aforementioned results and technique to the
Euclidean case. In Sec. IV, we investigate the Euclidean scalar
QWs, proving a no-go theorem in the isotropic case and
then paving the way for the study of a particular class of
QWs in space dimension d = 1, 2, 3. In Sec. V, we apply
the group extension technique to particularly analyze the
case of scalar QWs whose coarse grainings are QWs with a
two-dimensional coin on the simple square and on the BCC
lattices; finally, we derive the Dirac QW in two and three
space dimensions as the coarse graining of a scalar QW on the
Cayley graph of a non-Abelian group. In Sec. VI, we conclude
the paper discussing some (open) aspects of the theory and
drawing our conclusions.

II. DISCRETE-TIME QUANTUM WALKS ON GRAPHS

For the convenience of the reader, we start recalling the
basic notion of a directed graph.

Definition 1. A directed graph or digraph is an ordered
pair � = (V, E ), where V and E are set such that E collects
arbitrary ordered pairs (x1, x2) of elements x1, x2 ∈ V . The
elements in V are called the vertices and those in E the edges
of the graph.

The vertices are graphically represented as dots and are
also called the sites or nodes. The set E of edges defines
the connectivity between the vertices of the graph: an edge
(x1, x2) is graphically represented by an arrow having direc-
tion from x1 to x2. In the following, we define the neighbor-
hood schemes for the sites of a graph.

Definition 2. Let � = (V, E ) be a graph. We define the first
neighborhood of each site x ∈ V as the set

Nx := {y ∈ V | (x, y) ∈ E},
namely all the vertices reached by arrows from x. The el-
ements contained in Nx are called first neighbors of x. The
complement of the first neighborhood of each site x ∈ V is the
set defined as

N−1
x := {y ∈ V | (y, x) ∈ E}.

We are now ready to give the definition of a discrete-time
QW on a graph.

Definition 3. Let � = (V, E ) be a graph and let a finite-
dimensional Hilbert space Hx be associated to each node x ∈
V . A QW on � in H := ⊕

x∈V Hx is a unitary operator W
providing a time-homogeneous evolution defined as follows:

W : H −→ H

|ψ (t )〉 �−→ |ψ (t + 1)〉
for all times t , such that, defining �x as the projection on Hx,
one has

�xW :
⊕

y∈N−1
x

|ψy(t )〉 �−→ |ψx(t + 1)〉 ∀x ∈ V.

This defines a discrete-time evolution on a graph � accord-
ing to its neighborhood schemes. By linearity of the operator
W , one can block decompose the evolution as

�xW
⊕

y∈N−1
x

|ψy(t )〉 =
∑

y∈N−1
x

Ayx|ψy(t )〉, (1)

where the Axy are dimHx × dimHy matrices, called the tran-
sition matrices of the QW. Definition 3 represents the general
definition of a QW, as originally given in Ref. [40], namely
every QW model admits a form (1). We now wish to represent
the QW evolution on the total Hilbert space

Htot :=
⊕
x∈V

|x〉 ⊗ Csx ∼= H .

One can verify that the action of the QW evolution is repre-
sented on Htot by the following operator:

A =
∑
x∈V

∑
y∈Nx

�xy ⊗ Axy :=
∑
x∈V

∑
y∈Nx

|y〉〈x| ⊗ Axy. (2)

We notice that the evolution can be rewritten in terms of the
first neighborhoods, while in expression (1) the sum is on their
complements. Thus, the walk operator can be finally written
in terms of the edges of the graph as

A =
∑
x∈V

∑
f ∈Dx

�xx f ⊗ Axx f , (3)

where the set Dx collects the edges f connecting x to its first
neighbors x f and the �xx f are the shift operators, mapping |x〉
to |x f 〉. Equation (3) represents the most general form of a QW
evolution operator. The graph structure is inferred from the
neighborhood schemes Nx and the evolution may also be inho-
mogeneous in the sites. In the following, as already discussed,
we will restrict to homogeneous QWs, namely such that one
has (i) D := Dx = Dx′ , (ii) |Nx| = |Nx′ |, |N−1

x | = |N−1
x′ |, and

(iii) Axx f = Ax′x′
f

for all x, x′ ∈ V and f ∈ D. Accordingly,
we consider regular directed graphs. Moreover, the edges are
equipped with the same set of associated transition matrices.
Thus, the dimension of the coin system is taken to be the same
at any vertex—say s. Accordingly, Htot = �2(V ) ⊗ Cs, and
one has the following form for the evolution operator:

A =
∑
f ∈D

� f ⊗ A f :=
∑
f ∈D

(∑
x∈V

|x f 〉〈x|
)

⊗ A f , (4)

where D collects the set of edges, x f represents the first
neighbor of x connected by the edge labeled as f , and the
A f are s × s complex matrices.
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Remark 1. Equations (1) and (2) are equivalent expres-
sions providing the evolution of a QW in terms of the tran-
sition matrices. In the literature, it is quite common to present
QWs in terms of a decomposition into a product of (generally
unitary) operators, namely in the following form:

|�(t + 1)〉 =
∑
x∈V

|x〉|ψx(t + 1)〉 = A|�(t )〉

=
∑
x∈V

O1O2 . . . On|x〉|ψx(t )〉. (5)

In general, these operators take the form

Ol =
s∑

i, j=1

cl
i jS

l
i j ⊗ |i〉〈 j|,

where cl
i j ∈ C, {|i〉}s

i=1 is the canonical basis of Cs, and the Sl
i j

act as shift operators, namely

Sl
i j |x〉 = ∣∣π l

i j (x)
〉

for some permutation π l
i j (including the identical one) of the

vertices of an underlying graph. Examples of decomposition
(5) can be found in Refs. [47–49]. It is common to associate
a geometrical meaning to the shift operators appearing in
the definition of the operators Ol , namely to infer the graph
structure from these. Yet this interpretation is in some sense
misleading, since, for a fixed QW, the decomposition in the
form (5) may not be unique. Consequently, the same QW
might be decomposed into “virtual” steps, as in (5), in several
ways. On the other hand, all such different decompositions
correspond to a unique expression of the form (2). Moreover,
the “virtual” steps in (5) are not elementary steps of the walk
evolution: The elementary steps are in any case given by each
application of the total walk operator A = O1O2 . . . On. In the
context of homogeneous QWs, a paradigmatic example of this
fact is given by the three-dimensional Dirac QW. In Ref. [24],
one can find the Dirac QW expressed as a product of three uni-
taries, each involving a translation on one Cartesian axis, cor-
responding to a decomposition on a simple cubic lattice. The
same QW can be expressed in the form (4) on the BCC lattice.
In two recent works [47,49], one can find the two-dimensional
Dirac QWs decomposed into local operators in several ways,
each one with a different “virtual” graph. Nevertheless, each
of them is indeed a different decomposition of the same QW,
namely the two-dimensional Dirac QW on the simple square
lattice [17]. On the other hand, in Ref. [33], a theorem has
been proven stating that, for isotropic QWs on lattices (graphs
embeddable in Rd ) with a two-dimensional coin, expression
(4) identifies a unique graph for d � 3 (namely the integer
lattice in d = 1, the simple square in d = 2, and the BCC
lattice in d = 3). We point out that, however, the different
equivalent decompositions (5) have in fact a relevance with
regard to the concrete implementation and simulation of the
same QW.

A. Quantum walks on Cayley graphs

In the present subsection, we shall treat QWs on Cay-
ley graphs in full generality. In Subsec. II C and from

Subsec. III B onward, we shall restrict our attention to Cayley
graphs of virtually Abelian groups (i.e., the Euclidean case).
Throughout this paper, we will write G1 � G2 if G1 is a
subgroup of G2, and G1 � G2 if G1 is normal in G2. Finally,
Z (G) will denote the center of G.

Consider a finitely generated group

G = 〈S+|R〉, (6)

where S+ is a (finite) generating set for G and R is a set of
relators. We will denote the set of inverses of the elements
in S+ by S−. A generating set S+ is called symmetric if S+ =
S− and we define the set of generators S := S+ ∪ S− of G,
which is clearly symmetric. Every group element g ∈ G is a
word defined on the alphabet S. On the other hand, R is a
set of closed paths generating all the cycles in the group by
concatenation or conjugation with arbitrary words. The closed
paths correspond to words of S which amount to the identity
element e ∈ G.

Expression (6) is called a presentation of G. In the fol-
lowing, we will restrict our attention to finitely presented
groups, namely such that also |R| < ∞ holds. Every group
can be presented, in principle, in infinitely many ways, the
presentations being in one-to-one correspondence with Cayley
graphs, as is clear from the following definition.

Definition 4. The Cayley graph �(G, S+) of a group G
with respect to the generating set S+ is the edge-colored
directed graph constructed as follows: (i) G is the vertex set
of �; (ii) for all g ∈ G, a colored edge directed from g to gh is
assigned to each h ∈ S+.

Edges corresponding to some h ∈ S+ are represented as
undirected if and only if h2 = e. In general, we allow e ∈ S+,
whose corresponding edges can be denoted by loops on the
Cayley graph.

We shall consider the right-regular representation T
of a group G on �2(G), given as follows. We will de-
note by {|g〉}g∈G the canonical basis for �2(G) and we
define

Tg′ |g〉 := |gg′−1〉, (7)

from which it follows that TgTg′ = Tgg′ for all g, g′ ∈ G. By
construction, the right-regular representation is unitary. For
finite G one, has �2(G) ≡ C|G|.

Definition 5. Let G be a finitely presented group. A quan-
tum walk on the Cayley graph �(G, S+) with an s-dimensional
coin is the quadruple

W = {G, S, s, {Ah}h∈S},

such that
(1) s ∈ N+;
(2) for all h ∈ S, the transition matrices Ah ∈ Ms(C);
(3) the operator

A =
∑
h∈S

Th ⊗ Ah (8)

defined on �2(G) ⊗ Cs is unitary.
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The walk operator (8) is unitary if and only if all of the
following system of equations holds:∑

h,h′∈S:

hh′−1=g

AhA†
h′ =

∑
h,h′∈S:

h−1h′=g

A†
hAh′ = δg,eIs,

∀g ∈ {
g′ ∈ G

∣∣∃h1, h2 ∈ S : g′ = h1h−1
2

}
. (9)

Equation (9) can be checked just plugging expression (8) into
the unitarity conditions:

A†A = AA† = Te ⊗ Is.

Given a Cayley graph �, the unitarity conditions (9) represent
nontrivial constraints to solve in order to define a QW on �.

The following definition is useful to introduce the gener-
alized notion of isotropy for QWs [17,33]. This feature is
relevant to model the physical law in a theory aiming to
reconstruct relativistic QFTs. Given a group G, the order of
an element g ∈ G is defined as the natural number

rg := min{r ∈ N+ : gr = e}.
If rg does not exist, the order of g is said to be infinite. We are
now ready to define an isotropic QW.

Definition 6. A QW on the Cayley graph �(G, S+) with an
s-dimensional coin is called isotropic if there exists a faithful
unitary representation {Ul}l∈L on Cs of a graph automorphism
group L, called the isotropy group, satisfying the following:

(1) L is transitive on the classes of elements of S+ having
the same order [50];

(2) the following invariance condition holds:∑
h∈S

Tl (h) ⊗ UlAhU †
l =

∑
h∈S

Th ⊗ Ah, ∀l ∈ L. (10)

In the case of a free QFT derived as a QW theory, the
following additional requirement has been demanded:

[Ul , Ah] �= 0 ∀h ∈ S, l ∈ L : l (h) �= h. (11)

Condition (11) is never satisfied in the scalar case, since
both the representation {Ul}l∈L and the transition matrices
are one dimensional. However, as long as the Cayley graph
structure is not derived by the requirement of homogeneity of
the evolution—but rather assumed as in the present context—
condition (11) is dropped. In Subsec. IV A, we will prove
a no-go result for isotropic scalar QWs without assuming
condition (11). This shows that in the Euclidean case, no QW
with a two-dimensional coin can be derived from an isotropic
scalar QW, even using the weak Definition 6 of isotropy.

In Ref. [33], it has been proven that in the case of QWs on
lattices (namely Cayley graphs of Zd ), isotropy entails that all
the generators can be represented with the same length in Rd .
In particular, this implies that one has the following unitarity
constraints:

AhA†
−h = A†

hA−h = 0, ∀h ∈ S. (12)

Equation (12) implies that the transition matrices assume the
following form [39]:

A±h = α±hVh|η±h〉〈η±h|, (13)

where, for all h ∈ S, α±h > 0, Vh is unitary, and {|ηh〉, |η−h〉}
is an orthonormal basis in the coin space for every h. Finally,

in Ref. [17] it is shown that in the case of Abelian G one
has

∑
h∈S Ah = U for some unitary U commuting with the

isotropy group representation {Ul}l∈L. The same happens for
arbitrary group G by a straightforward generalization. There-
fore, for the purpose of classification, one can first solve the
unitarity and isotropy constraints by posing∑

h∈S

Ah = Is (14)

and then obtain the other solutions upon multiplying all the
matrices Ah by an arbitrary unitary U in the commutant of
{Ul}l∈L. We shall make use of Eqs. (12)–(14) in the proof of
our main results in Secs. IV and V.

We conclude this section by recalling a necessary condition
for the existence of a scalar (or coinless) QW on a given
Cayley graph.

Proposition 1 (quadrangularity condition [44]). Given a
Cayley graph �(G, S+), a necessary condition for the exis-
tence of a scalar QW

A =
∑
h∈S

zhTh

is that, for all the ordered pairs (h1, h2) ∈ S × S such that
h1 �= h2, there exists at least a different pair (h3, h4) such that
h1h−1

2 = h3h−1
4 . This is called the quadrangularity condition.

Remark 2. Proposition 1 holds for homogeneous coinless
QWs, according to the definition of the present work and
related literature (see, e.g., Refs. [38,44]); yet, a similar result
must hold, for any two connected nodes, also for inhomo-
geneous QWs. Elsewhere, the homogeneity requirement has
been in general dropped (see, e.g., Refs. [48,51] for the model
of the so-called staggered QW with Hamiltonians, or SQWH).
It is interesting to notice that—imposing homogeneity to the
transition scalars in the one-dimensional (1D) example of
SQWH presented in Ref. [48]—by direct inspection of the
first-neighborhood scheme one easily realizes that this QW
is contained in the family of QWs on the infinite dihedral
group found in Ref. [38]. Again, from the point of view of
a decomposition in the form (5), the “virtual” graph can be
regarded as the integer lattice, while expressing the QW in
the form (4) (which is unique), one realizes that the actual
graph is indeed a Cayley graph of the infinite dihedral group.
Remarkably, it is possible that the present model is actually
contained in the SQWH model. However, both constructions
have been devised in order to overcome the issue of construct-
ing coinless QWs. A no-go theorem proven in Ref. [38], and
generalizing a result by Meyer [40], states that coinless QWs
on Abelian graphs exhibit trivial dynamics. In the present
work, we show how to overcome this issue by considering
more general graphs, while keeping a homogeneous evolution
rule. We point out that generally inhomogeneous models (like
the staggered QW one) find their relevance on the side of
the experimental implementation or also to mimic a curved
space-time [52].

B. The continuum limit

Let G be isomorphic to Zd , for an arbitrary integer d �
1. Let then �(G, S+) be a Cayley graph of G. This case
encompasses the usual lattices, including most of the cases
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treated in the literature where QWs are exploited to simulate
wave equations or to devise algorithms. In particular, in this
case the shift operators commutes. Accordingly, throughout
the present subsection we will use Abelian notation, denoting
the group composition law with the additive notation and the
elements x ∈ G as boldfaced d-dimensional real vectors. In
particular, we will consider G as a space vector.

Now, let the unitary operator

A =
∑
h∈S

⎛
⎝∑

y∈G

|y − h〉〈y|
⎞
⎠ ⊗ Ah =

∑
h∈S

Th ⊗ Ah

represent a QW on the Cayley graph �. The unitary ir-
reducible representations of Zd are one dimensional. We
now constructively show how to decompose the right-regular
representation, which is unitary by definition, into the one-
dimensional unitary irreducible representations of G. The
latter are classified by the joint eigenvectors given by the
relation

Ty|k〉 = eik·y|k〉, y ∈ G, (15)

where k is an element of the dual G∗. Taking the following
expansion for the eigenvectors

|k〉 =
∑
x∈G

c(x, k)|x〉 (16)

and substituting it into Eq. (15), one obtains

Ty|k〉 =
∑
x∈G

c(x, k)|x − y〉

=
∑
x∈G

c(x + y, k)|x〉 =
∑
x∈G

eik·yc(x, k)|x〉.

Accordingly, the relation e−ik·yc(x + y, k) = c(x, k) leads to
eik·xc(0, k) = c(x, k). Substituting the latter into Eq. (16) and
imposing the normalization for the |k〉, we obtain

|k〉 = 1

(2π )d/2

∑
x∈G

eik·x|x〉,
(17)

|x〉 = 1

(2π )d/2

∫
B

dk e−ik·x|k〉,

where B is the first Brillouin zone, which we determine in
the following. In general, the generators in S+ are not linearly
independent; then, we define all the sets

Dn := {hn1 , . . . , hnd } ⊆ S+,

collecting linearly independent elements, where n labels the
specific subset. For every n, we can then define the dual set

D̃n := {h̃n1 , . . . , h̃nd }, h̃nl · hnm = δlm.

We now can expand each x ∈ G and k ∈ G∗ as

x =
d∑

j=1

xnj hn j , k =
d∑

j=1

knj h̃n j ,

for some n, where xnj ∈ N for every j and k ∈ B. Two
eigenstates |k〉, |k′〉 are equivalent if there exists θ ∈ [0, 2π ]
such that

|k〉 = eiθ |k′〉.

Thus, from Eq. (17), one can derive

e−i(k−k′ )·x = eiθ = e−i(k−k′ )·y, ∀x, y ∈ G,

which is equivalent to the condition

∃l ∈ Nd : knj − k′
n j

= 2π l j, j = 1, . . . , d.

Since the choice of Dn, D̃n is arbitrary, defining D̃ := ⋃
n D̃n,

the Brillouin zone B ⊆ Rd is the polytope defined as

B =
⋂
h̃∈D̃

{k ∈ Rd | −π |h̃|2 � k · h̃ � π |h̃|2}.

The evolution operator A can be thus diagonalized as follows:

A =
∫

B
dk |k〉〈k| ⊗ Ak,

where the matrix

Ak :=
∑
h∈S

eih·kAh

must be unitary for every k. Being Ak polynomial in eih·k,
imposing unitarity straightforwardly amounts to find the same
general set of constraints of Eqs. (9).

Clearly, in general Ak ∈ U(s) and its eigenvalues are of the
form eiωl (k), for some integer 1 � l � s. The functions in the
set

{ω1(k), . . . , ωs(k)}, k ∈ B

are called the dispersion relations of the QW. As one can
realize from the unitarity constraints in Eqs. (9), the operator
A is defined up to a global phase factor, and then in particular
one can always choose Ak ∈ SU(s) without loss of generality.
This fact, in the case s = 2, implies that the dispersion relation
of a QW with a two-dimensional coin system is of the form
±ω(k). In particular, this are interpretable as the particle and
antiparticle branches of the dispersion relation.

The Fourier representation allows one to define differential
equations for the evolution of the eigenstates and also study
the continuum limit. Let us introduce the interpolating Hamil-
tonian HI (k) defined by the relation:

exp[−iHI (k)] := Ak.

HI (k) generates a discrete-time unitary evolution interpolat-
ing through a continuous time t as

exp[−iHI (k)t]|ψ (k, 0)〉 = |ψ (k, t )〉.
Then we can write a Schrödinger-like differential equation

i∂t |ψ (k, t )〉 = HI (k)|ψ (k, t )〉 (18)

and expand to the first order in k, obtaining

i∂t |ψ (k, t )〉 = [HI (0) + ∇k′HI (k′)|k′=0 · k]|ψ (k, t )〉
+ O(|k|2)|ψ (k, t )〉. (19)

Now, by identifying k with the momentum of the system,
one can interpret Eq. (19) as a wave equation in the wave
vector representation. Let us consider narrow-band states
|ψ (k, t )〉, where small wave vectors |k| � 1 correspond to
small momenta for the system. Then, identifying the lattice
step with an elementary invariant length (e.g., a hypothetical
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Planck scale), the limit of small momenta is equivalent to the
relativistic limit for the QW’s evolution.

In the case s = 2, let |u±(k)〉 be the positive- and
negative-frequency eigenstates of HI (k), namely such
that HI (k)|u±(k)〉 = ±ω(k)|u±(k)〉. Then a so-called
(anti)particle state is defined as

|ψ±(t )〉 =
∫

B

dk
(2π )d

g(k, t )|u±(k)〉〈u±(k)|.

Taking the normalized distribution g(k, t ) smoothly peaked
around a given k0 ∈ B, the evolution given by Eq. (18) leads
to a dispersive Schrödinger dfferential equation for the QW:

i∂t g̃(x, t ) = ±[
v · ∇ + 1

2 D · ∇∇]
g̃(x, t ), (20)

where g̃(x, t ) is the Fourier transform of e−ik0·x+iω(k0 )t g(k, t ).
Equation (20) is a Fokker-Planck equation, with drift vector
and diffusion matrix given respectively by

v = ∇kω(k)|k=k0
, D = ∇k∇kω(k)|k=k0

. (21)

This method is general for the case of Cayley graphs of Zd ,
and in particular it has been exploited—e.g., in Ref. [17]—to
study the Weyl and Dirac QWs dynamics.

In Subsec. III C, via a unitary coarse-graining technique,
we will prove that the Euclidean QWs are strictly contained
in the QWs on Zd . Accordingly, one can apply the Fourier
method and take the continuous limit for all Euclidean QWs,
even in some particular non-Abelian cases, as shown in the
following. This will allow us to reconstruct the Weyl and
Dirac QWs from scalar QWs on non-Abelian groups.

To best of our knowledge, a technique allowing one to
extend a similar Fourier method to the non-Euclidean case is
still unknown. This would be relevant since it would allow
one to study the continuum limit of QWs on graphs with
a nonvanishing curvature, e.g., on Fuchsian groups (which
admit an embedding in the Poincaré disk). On the other hand,
so far in the literature curvature has been implemented on
classical gauge fields encoded in the transition matrices (see,
e.g., Refs. [52,53]).

C. Embedding Cayley graphs into smooth manifolds

In this section, we review some results from geometric
group theory [54] connecting algebraic properties of groups
to geometric ones. The starting point is recognizing that
endowing Cayley graphs with the notion of a distance allows
us to study them as metric spaces.

Definition 7. Let G = 〈S+|R〉 be a finitely generated
group. The word length is the norm defined, for all g ∈ G,
as

lS (g) := min{n ∈ N | g = h1 . . . hn, hi ∈ S}. (22)

The norm lS induces the word metric, defined as

d (S)
G (g, g′) := lS (g−1g′) ∀g, g′ ∈ G. (23)

We are interested in Cayley graphs suitably embeddable in
a Euclidean space Rd , with a notion of embedding resorting
to the following concept of quasi-isometry [55].

Definition 8. Let (G, dG) and (M, dM ) be two metric
spaces. A quasi-isometry is a function E : G → M satisfying,

for some fixed a � 1 and b, c � 0, and ∀g, g′ ∈ G, the two
following conditions:

1

a
dG(g, g′) − b � dM (E (g),E (g′)) � adG(g, g′) + b,

∀m ∈ M ∃g ∈ G : dM (m,E (g)) � c.

The previous definition intuitively states that the two met-
rics are equivalent modulo fixed bounds. Quasi-isometry is
an equivalence relation [56] and two metric spaces G, M are
called quasi-isometric if there exists a quasi-isometry between
them.

Definition 9. Let P be a group property. A group G is called
virtually P if there exists H � G satisfying P and such that the
cardinality of the coset space |G/H | (called the index of H in
G) is finite.

In the following, the property of a group of “being iso-
morphic to G” will be denoted by the same symbol G. For
example, “the group K is virtually Z” means that there exists
a subgroup H of K isomorphic to Z with finite index in K . The
next definition further refines the notion of virtually P group
and shall be useful to the characterization of the groups whose
Cayley graphs are quasi-isometric to Rd .

Definition 10. Let N and Q be two group properties. A
group G is called Q-by-N if there exists N � G satisfying N
and such that the quotient group G/N satisfies Q.

We now provide some useful results to the purpose of
establishing a quasi-isometric equivalence between Rd and
virtually Zd groups.

Theorem 1 (fundamental theorem of finitely generated
Abelian groups). Every finitely generated Abelian group is
isomorphic to a direct product of finitely many cyclic groups.

Lemma 1. Let G be a group and P a group property inher-
ited by subgroups of finite index. Then G is finite by P if and
only if it is virtually P.

Proof. (⇒) It follows by definition.
(⇐) Let H be of finite index in G and satisfying P. Let us

define

NH :=
⋂
g∈G

gHg−1,

namely the normal core of H in G. Clearly, NH � H . Fur-
thermore, by a result due to Poincarè [57], |G/NH | < +∞
holds, and then also |H/NH | < +∞ holds. By hypothesis, NH

satisfies P, and then the thesis follows. �
Corollary 1. A group is finite by Zd if and only if it is

virtually Zd .
Proof. We have to check that the property of “being iso-

morphic to Zd ” is inherited by subgroups of finite index.
By the fundamental theorem of finitely generated Abelian
groups (Theorem 1), every subgroup M of N ∼= Zd must be
isomorphic to Zd ′

with d ′ � d , thus |N/M| = +∞ unless
d = d ′. �

It is easy to see that further properties inherited by sub-
groups of finite index are cyclicity, Abelianity, and freeness.

Theorem 2 (quasi-isometric rigidity of Zd [42]). If a
finitely generated group G is quasi-isometric to Zd , then it
has a finite index subgroup isomorphic to Zd .

Corollary 2. Let G be a finitely generated group. Then G
is quasi-isometric to Rd if and only if G is finite by Zd .
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Proof. This straightforwardly follows from the fact that
quasi-isometry is an equivalence relation and Rd is quasi-
isometric to Zd . �

In the light of Corollary 2, our aim is to provide structure
results for finite-by-Zd groups, along with their presentations,
in order to derive admissible (Euclidean) scalar QWs on them.
The problem of characterizing the class of groups G with fixed
N � G and quotient Q = G/N is called group extension prob-
lem: G is indeed said an extension of Q by N . In Subsec. III A,
the extension problem will be discussed, while in Subsec. III B
we shall focus the analysis on the case N ∼= Zd and |Q| < ∞.
Our aim is to provide necessary and sufficient conditions in
order to explicitly construct every possible extension of Q
by N .

III. THE GROUP EXTENSION PROBLEM

A. Constructing group extensions

Let N, Q be two arbitrary groups and G be a Q-by-N group.
The cardinality |Q| is called order of the group Q, and it
is precisely the index of N in G. The group G can be then
partitioned as follows:

G = {
Ncq1 , Ncq2 , . . . , Ncq|Q|

}
,

where the cqi are called the coset representatives. The identity
of Q will be denoted by ẽ. One has cẽ := cq1 ∈ N and cqi �∈
N for all i �= 1. The elements q ∈ Q are in a one-to-one
correspondence with the cosets representatives cq, which, by
normality of N , follow the same composition rule of the
elements q up to multiplication by elements of N . One has

cq1 cq2 c−1
q1q2

∈ N, ∀q1, q2 ∈ Q. (24)

By definition, every element g ∈ G can be written as g =
ncq, with n ∈ N and cq being the representative of the coset
corresponding to q ∈ Q. Then, the group multiplication can
be obtained as follows:

n1cq1 n2cq2 = n1cq1 n2c−1
q1

cq1 cq2

=: n1ϕq1 (n2) f (q1, q2)cq1q2 ,

where

ϕq(n) := cqnc−1
q , f (q1, q2) := cq1 cq2 c−1

q1q2
,

and clearly ϕq ∈ Aut(N ). Therefore, a piece of information
we need in order to identify the extension G is the assignment
of a composition rule for the coset representatives: This
observation motivates the following definition.

Definition 11. Let G be an extension of Q by N and {cq}q∈Q

be a set of representatives of the cosets of N in G. The function
f : Q × Q → N defined as

f (q1, q2) := cq1 cq2 c−1
q1q2

, ∀q1, q2 ∈ Q

is called a 2-cocycle.
From relation (24), one has

ϕq1 ◦ ϕq2 ◦ ϕ−1
q1q2

∈ Inn(N ).

Defining

φm(·) := m · m−1, ∀m ∈ N,

one indeed obtains

ϕq1 ◦ ϕq2 (·) = (cq1 cq2 ) · (cq1 cq2 )−1

= φ f (q1,q2 ) ◦ ϕq1q2 (·), ∀q1, q2 ∈ Q. (25)

Accordingly, the family {ϕq}q∈Q can be identified, in gen-
eral, as a family of automorphisms which are in cor-
respondence with elements of the outer automorphism
group of N [58]. Since Inn(N ) � Aut(N ) and Out(N ) :=
Aut(N )/Inn(N ), Eq. (25) induces a homomorphism ϕ̃ which
associates an element of Out(N ) to each q ∈ Q. We define

ϕ : Q −→ Aut(N ),
(26)

q �−→ ϕq(·) = cq · c−1
q ,

and

π : Aut(N ) −→ Out(N ),
(27)

ν ◦ ξω �−→ ω,

such that ν ∈ Inn(N ), ξω ∈ Aut(N ) are some coset represen-
tative of the cosets of Inn(N ) in Aut(N ), and the composition
ϕ̃ := π ◦ ϕ is a group homomorphism.

Therefore, in order to identify a group extension G of Q
by N (i.e., in order to give the complete composition rule
for the elements of G) one needs to choose a family of
automorphisms of N and a 2-cocycle, i.e., a pair (ϕ, f ) such
that f satisfies Definition 11 and ϕ is defined as in (26) and
satisfies Eq. (25). We call such a pair (ϕ, f ) data for the
extension G of Q by N . We are now ready to classify the group
extensions in the following lemma.

Lemma 2 (Classification of group extensions). Let Q and
N be two groups and ϕ, f two maps such that ϕ : Q →
Aut(N ), and f : Q × Q → N . Then, there exists an extension
G of Q by N with data (ϕ, f ) if and only if the following
relations are satisfied ∀q1, q2, q3 ∈ Q:

ϕq1 ◦ ϕq2 = φ f (q1,q2 ) ◦ ϕq1q2 , (28)

f (q1, q2) f (q1q2, q3) = ϕq1 ( f (q2, q3)) f (q1, q2q3). (29)

Proof. (⇒) Let G be an extension of Q by N with data
(ϕ, f ). Property (28) has been already shown to hold. It is
easy to check property (29) for a 2-cocycle by imposing the
associativity for the product of coset representatives, namely
by the following computation. On the one hand, one has

(cq1 cq2 )cq3 = f (q1, q2)cq1q2 cq3

= f (q1, q2) f (q1q2, q3)cq1q2q3 .

On the other hand, also

cq1 (cq2 cq3 ) = cq1 f (q2, q3)cq2q3

= ϕq1 ( f (q2, q3)) f (q1, q2q3)cq1q2q3

holds, proving the first implication.
(⇐) We now explicitly construct the extension G of Q by

N having (ϕ, f ) as data. Let G′ be the set of ordered pairs
N × Q and denote its generic element by g = (n, q). Let us
also equip G′ with the following composition rule:

(n1, q1)(n2, q2) := (n1ϕq1 (n2) f (q1, q2), q1q2).
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Moreover, let the inverse of g ∈ G′ be given by

(n, q)−1 := (
ϕ−1

q (n−1 f (q, ẽ)−1) f (q−1, q)−1, q−1
)
, (30)

and the identity element of G′ by e := ( f (ẽ, ẽ)−1, ẽ). We
now show that G′ is isomorphic to an extension of Q by N
with data (ϕ, f ). First, we need to show that G′ is actually a
group. Associativity of the composition can be proved using
the properties (28) and (29). Now, we can prove that e ∈ G′
actually behaves as an the identity as follows. By property
(28), we have

ϕẽ = φ f (ẽ,ẽ). (31)

Moreover, by choosing q1 = q2 = ẽ and using Eq. (31), rela-
tion (29) reads

f (ẽ, ẽ) = f (ẽ, q), ∀q ∈ Q. (32)

Relation (29) with the choice q2 = q3 = ẽ reads

ϕq( f (ẽ, ẽ)) = f (q, ẽ), ∀q ∈ Q. (33)

Using Eqs. (31)–(33), it is now easy to check that e(n, q) =
(n, q)e = (n, q). Equations (28) and (29) with the choice q1 =
q3, q2 = q−1

1 read

ϕq = φ f (q,q−1 ) ◦ ϕẽ ◦ ϕ−1
q−1 , (34)

ϕq( f (q−1, q)−1) f (q, q−1) = f (q, ẽ) f (ẽ, q)−1. (35)

To prove that the inverse of (n, q) is well defined by relation
(30), one has to use (32) and (35) for the right multiplication
and relations (33) and (34) for the left multiplication. We
can now show that the group G′ is Q by N . Let us define
rn := (n f (ẽ, ẽ)−1, ẽ). The subset N ′ := {rn|n ∈ N} forms a
subgroup of G′, and thus rmrnr−1

m ∈ N ′. Let now define cq :=
(eN , q). One has

cqrnc−1
q = (ϕq(n) f (ẽ, ẽ)−1, ẽ) ≡ rϕq (n), (36)

where we used Eqs. (32), (33), and (35). Thus, since the
general element (n, q) ∈ G′ can be expressed as rncq, Eq. (36)
shows that the subgroup N ′ is normal in G′. Moreover, we
have that

cq1 cq2 = ( f (q1, q2) f (ẽ, ẽ)−1, ẽ)cq1q2 ≡ r f (q1,q2 )cq1q2 . (37)

Moreover, one verifies that N ′ is indeed isomorphic to N :

rn1 rn2 = (n1 f (ẽ, ẽ)−1, ẽ)(n2 f (ẽ, ẽ)−1, ẽ)

= (n1n2 f (ẽ, ẽ)−1, ẽ) = rn1n2 .

On the other hand, the quotient G′/N ′ is clearly isomorphic
to Q. We have then proven that G′ is Q by N . Finally, we can
now define an isomorphism ζ : G′ → G by setting ζ (rn) =
n and ζ (cq) = cq, where N is now a normal subgroup of G
with quotient G/N ∼= Q. Thus, G is an extension of Q by N .
Moreover, since relation (28) holds, and by Eqs. (36) and (37)
one has

ζ
(
cqrnc−1

q

) = cqnc−1
q = ζ (rϕq (n) ) = ϕq(n),

ζ (cq1 cq2 ) = cq1 cq2 = ζ (r f (q1,q2 )cq1q2 ) = f (q1, q2)cq1q2 ,

then the group G has data (ϕ, f ). �

Lemma 2 extends the result proven in Ref. [59] for the case
where N is Abelian. By Lemma 2, in order to construct and
classify the extensions of Q by N one has to choose (i) a map
ϕ defined as in (26) and (ii) a map f : Q × Q → N , such that
properties (28) and (29) are satisfied. In particular, in the case
where N is Abelian, by Eq. (28) one has that the map ϕ : Q →
Aut(N ) is a group homomorphism, since in this case Inn(N )
is trivial.

Yet, in general two extensions with different choices of
data (ϕ, f ) may still be isomorphic. We shall now prove
a sufficient condition, implying that two extensions having
different data are indeed isomorphic.

Definition 12. Let G, G′ be two extensions of Q by N
and of Q′ by N ′, respectively. G and G′ are called pseudo-
congruent extensions if there exist (i) an isomorphism ψ :
G′ → G, (ii) two isomorphisms α : N ′ → N and β : Q′ → Q,
and (iii) a family {nq|q ∈ Q′, nq ∈ N ′}, such that

ψ (n) = α(n), ψ (c′
q) = α(nq)cβ(q), ∀n ∈ N ′,∀q ∈ Q′.

(38)
Lemma 3 (classification of pseudocongruent extensions).

Let N, N ′, Q, Q′ be groups such that N ∼= N ′, Q ∼= Q′, and
G′ an extension of Q′ by N ′ with data (ϕ′, f ′). Then,
there exists an extension G of Q by N with data (ϕ, f )
and pseudocongruent to G′, if and only if there exist two
isomorphisms α : N ′ → N and β : Q′ → Q and a family
{nq|q ∈ Q′, nq ∈ N ′}, such that

ϕβ(q1 ) = φα(n−1
q1

) ◦ α ◦ ϕ′
q1

◦ α−1, (39)

f (β(q1), β(q2))

= ϕβ(q1 ) ◦ α
(
n−1

q2

)
α
(
n−1

q1
f ′(q1, q2)nq1q2

)
, ∀q1, q2 ∈ Q.

(40)

Proof. (⇒) Let N, N ′, Q, Q′ be groups such that N ∼= N ′
and Q ∼= Q′. Let then G′, G be two extensions of Q′ by N ′
and of Q by N with data (ϕ′, f ′) and (ϕ, f ), respectively.
By hypothesis, there exists an isomorphism ψ : G′ → G, two
isomorphisms α : N ′ → N and β : Q′ → Q, and a family
{nq|q ∈ Q′, nq ∈ N ′}, satisfying the following:

ψ (n) = α(n), ψ (c′
q) = α(nq)cβ(q), ∀n ∈ N ′,∀q ∈ Q′.

For all n ∈ N ′ and q1, q2 ∈ Q′, one has c′
q1

nc′
q2

=
ϕ′

q1
(n) f ′(q1, q2)c′

q1q2
. Then, letting ψ act on both sides

of the latter relation, it follows, ∀n ∈ N ′,∀q ∈ Q′, that

α(nq1 )cβ(q1 )α(nnq2 )cβ(q2 )

= α(nq1 )ϕβ(q1 ) ◦ α(nnq2 ) f (β(q1), β(q2))cβ(q1q2 )

= α ◦ ϕ′
q1

(n)α( f ′(q1, q2)nq1q2 )cβ(q1q2 ). (41)

Choosing n = e in Eq. (41), one obtains

f (β(q1), β(q2))

= ϕβ(q1 ) ◦ α
(
n−1

q2

)
α
(
n−1

q1

)
α( f ′(q1, q2)nq1q2 ). (42)

Using condition (42), Eq. (41) finally gives relation (39).
(⇐) By hypothesis, G′ is an extension of Q′ by N ′ with

data (ϕ′, f ′). Moreover, there exist two groups N, Q, a map ϕ :
Q → Aut(N ), two isomorphisms α : N ′ → N and β : Q′ →
Q, and a family {nq|q ∈ Q, nq ∈ N}, satisfying Eqs. (39) and
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(40). Then, using relations (28) and (39) for the data (ϕ′, f ′),
we have

φ f ′(q1,q2 ) ◦ ϕ′
q1q2

= ϕ′
q1

◦ ϕ′
q2

= φnq1
◦ α−1 ◦ ϕβ(q1 ) ◦ α ◦ φnq2

◦ α−1 ◦ ϕβ(q2 ) ◦ α

= α−1 ◦ φα(nq1 ) ◦ ϕβ(q1 ) ◦ φα(nq2 ) ◦ ϕβ(q2 ) ◦ α

= α−1 ◦ φα(nq1 )ϕβ(q1 )◦α(nq2 ) ◦ ϕβ(q1 ) ◦ ϕβ(q2 ) ◦ α,

∀q1, q2 ∈ Q (43)

that reads

ϕβ(q1 ) ◦ ϕβ(q2 )

= φϕβ(q1 )◦α(n−1
q2

)α(n−1
q1

) ◦ α ◦ φ f ′(q1,q2 ) ◦ ϕ′
q1q2

◦ α−1

= φϕβ(q1 )◦α(n−1
q2

)α(n−1
q1

)α( f ′(q1,q2 )) ◦ α ◦ ϕ′
q1q2

◦ α−1

= φϕβ(q1 )◦α(n−1
q2

)α(n−1
q1

f ′(q1,q2 )nq1q2 ) ◦ ϕβ(q1q2 )

= φ f (β(q1 ),β(q2 )) ◦ ϕβ(q1q2 ), ∀q1, q2 ∈ Q. (44)

Therefore, by Eq. (44), the maps ϕ, f satisfy property (28).
Moreover, expressing f ′ in terms of ϕ′, f by Eqs. (39) and
(40) and writing property (29), it is straightforward to verify,
using Eq. (43), that property (29) also holds for ϕ, f . Thus,
Lemma (2) guarantees the existence of an extension G of Q
by N with data (ϕ, f ). Let ψ : G′ → G be map defined by
ψ (nc′

q) = α(n)α(nq)cβ(q) ∀n ∈ N ′,∀q ∈ Q′. On the one hand,
one has

ψ
(
n1c′

q1
n2c′

q2

)
= ψ

(
n1ϕq1 (n2) f ′(q1, q2)c′

q1q2

)
= α(n1)α ◦ ϕ′

q1
(n2)α( f ′(q1, q2)nq1q2 )cβ(q1q2 ).

On the other hand, also

ψ (n1c′
q1

)ψ (n2c′
q2

) = α(n1nq1 )cβ(q1 )α(n2nq2 )cβ(q2 )

= α(n1nq1 )ϕβ(q1 ) ◦ α(n2nq2 ) f (β(q1), β(q2))cβ(q1q2 )

holds. Using relation (39) and Eq. (40), one finally con-
cludes that ψ (n1c′

q1
n2c′

q2
) = ψ (n1c′

q1
)ψ (n2c′

q2
) ∀n1, n2 ∈ N ′,

q1, q2 ∈ Q′. Consequently, ψ is an isomorphism and then the
two extensions G′ and G are pseudocongruent. �

Corollary 3. One can always choose

cẽ = f (ẽ, ẽ) = f (ẽ, q) = f (q, ẽ) = e, ∀q ∈ Q (45)

up to pseudocongruence.
Proof. We have already proven that f ′(ẽ, ẽ) =

f ′(ẽ, q) ∀q ∈ Q [see Eq. (32)]. Then, by choosing α, β to be
the identical maps, nẽ = f ′(ẽ, ẽ), q1 = ẽ, q2 = q, and using
Eq. (31), relation (40) reads f (ẽ, ẽ) = f (ẽ, q) = e ∀q ∈ Q.
Moreover, by Eq. (33), one has e = ϕq( f (ẽ, ẽ)) =
f (q, ẽ) ∀q ∈ Q. �

Lemmas 2 and 3, along with Corollary 3, imply the follow-
ing result.

Proposition 2 (construction of group extensions up to
pseudocongruence). Let N and Q be two groups and π be
the projection map in (27). The following procedure allows
one to explicitly construct all the extensions of Q by N up to
pseudocongruence:

(1) Classify all the homomorphisms ϕ̃ : Q → Out(N ) up
to the equivalence relation defined as follows:

ϕ̃(1) ∼ ϕ̃(2) ⇔
∃ α ∈ Aut(N), β ∈ Aut(Q), ϕ : Q → Aut(N ) :

ϕ̃(1)
q = π ◦ α−1 ◦ ϕβ(q) ◦ α, ϕ̃(2)

q = π ◦ ϕq, ∀q ∈ Q.

(46)

For each chosen homomorphism ϕ̃∗ (modulo the equivalence
defined above), choose a map ϕ∗ such that ϕ̃∗ = π ◦ ϕ∗.

(2) Classify all the maps f : Q × Q → N satisfying prop-
erties (28) and (29) with ϕ = ϕ∗, and (45) up to the following
equivalence relation:

f (1) ∼ f (2) ⇔ ∃{nq |q ∈ Q, nq ∈ N},
∃ α ∈ Aut(N), β ∈ Aut(Q), ϑ : Q → Aut(N ) :

f (1)(β(q1), β(q2))

= ϑβ(q1 ) ◦ α
(
n−1

q2

)
α
(
n−1

q1
f (2)(q1, q2)nq1q2

)
, ∀q1, q2 ∈ Q.

(47)

Choose a map f ∗ (modulo the equivalence defined above).
Each pair of maps ϕ∗, f ∗ obtained in this way provides,

up to pseudocongruence, a different extension G of Q by N ,
whose data are (ϕ∗, f ∗).

Although a general criterion allowing one to classify and
construct extensions up to an arbitrary isomorphism is not
known, the structure of the particular groups N, Q under study
can possibly help us to recognize whether two extensions are
isomorphic while being not pseudocongruent. Such a structure
can also help us to explicitly construct the equivalence classes
defined in relations (46) and (47) of Proposition 2, and we give
an example of this in the next subsection.

B. Finite-by-Zd extensions

Our aim is to study the Euclidean scalar QWs, namely
walks on Cayley graphs quasi-isometric to Rd . By Corollary
2, this can be accomplished without loss of generality, con-
structing the extensions of some finite group Q by N ∼= Zd .
Notice that, in the case where the group N is Abelian, one
has Inn(N ) = {id}, namely Aut(N ) ∼= Out(N ). Consequently,
being the projection map π trivial, we shall set ϕ̃ ≡ ϕ.

Theorem 3 ([54]): The group of automorphisms of Zd is
isomorphic to GL(d,Z).

By relation (46) in Proposition 2 combined with Theorem
3, for each fixed finite group Q, one can consider the equiva-
lence classes of maps ϕ : Q → GL(d,Z) up to precomposi-
tion with arbitrary β ∈ Aut(Q) and to conjugation by arbitrary
α ∈ GL(d,Z).

Lemma 4. Every element q of a finite group Q has a finite
order rq.

Lemma 4, using property (28) along with the fact that
Inn(N ) is trivial, implies that

∀q ∈ Q ∃rq ∈ N : ϕ
rq
q (n) = n, ∀n ∈ N.

Such an automorphism ϕq is called rq involutory. Since ϕ is a
group homomorphism, we need the conjugacy classes of finite
subgroups of GL(d,Z), whose elements will be rq-involutory
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matrices. This fact will also help us in finding the equivalence
classes defined in Eq. (47) in Proposition 2.

In the following, we shall focus our attention in particular
on the extensions by Zd with index |Q| = 2, since it allows
us to reconstruct QWs with a two-dimensional coin. In this
case, by Corollary 3, the problem reduces to choosing the
only nontrivial value of the 2-cocycle f , namely f (q̃, q̃) =
c2

q̃ =: c2, which by property (29) is invariant under the au-
tomorphism ϕq̃. Accordingly, one can calculate the invariant
space of ϕq̃ and then use Eq. (47) to find all the inequivalent
2-cocycles. We notice that Eq. (40) and Corollary 3 imply
nẽ = e. Furthermore, for Q ∼= Z2, Aut(Q) = {id}. Therefore
in this case, for a chosen c2, by Eq. (47) one looks for solutions
n, c′2 ∈ N ∼= Zd to the following equation:

c2 = n + ϕq̃(n) + c′2 (48)

(where we used the Abelian additive notation). We will ne-
glect the trivial homomorphism ϕ (from Q ∼= Z2 to Id ), since it
gives rise to Abelian extensions, implying a trivial scalar QW
dynamics [38]. The explicit construction of all the extensions
for the cases d = 1, 2, 3 and Q ∼= Z2 will be performed in
Sec. V, along with two extensions with Q ∼= Z2 × Z2.

C. Coarse graining of QWs on Cayley graphs

Let G be a finitely generated group and N be a subgroup
of G. One can define a unitary mapping between H = �2(G)
and K = �2(N ) ⊗ �2(G/N ) in the following way:

UN : H −→ K ,

|ncq〉 �−→ |n〉|q〉,
We notice that N is not to be necessarily normal in G.
For all n ∈ N , h ∈ G, and q ∈ G/N , there exist n′ ∈ N and
q′ ∈ G/N such that ncqh−1 = n′cq′(h,q). In particular, n′ =
n(cq′(h,q)hc−1

q )−1, and cq′(h,q)hc−1
q ∈ N for all q ∈ G/N . One

can then provide a representation for G in terms of the right-
regular representation of N :

T̃h = UN ThU
†
N =

∑
q∈G/N

Tcq′ (h,q)hc−1
q

⊗ |q′(h, q)〉〈q|. (49)

The abovementioned change of representation has been
used in Ref. [39] to define the so-called coarse graining of
QWs. Suppose we have a finitely generated group G with a
finite-index subgroup N . In the following lemma, we prove
that a QW on the Cayley graph �(G, S+) with a s-dimensional
coin can be represented as a QW on the Cayley graph of N
having the following set of generators

SN := {
cq′(h,q)hc−1

q

}q∈G/N

h∈S , (50)

and with an enlarged coin of dimension s · |G/N |.
Lemma 5 (characterization of coarse grainings of QWs).

Let G be a group, S be a set of generators for G, and N
be a subgroup of G. Let the coset representatives of N in G
be denoted by {cq}q∈G/N with cq1 ∈ N . Then, SN is a set of
generators for N .

Proof. Let S̃N be a set of generators for N � G. For all
h̃ ∈ S̃N , by hypothesis there exist h1, h2, . . . , hn ∈ S such that

h̃ = h1h2 . . . hn.

Using elements in the set SN , we can now recursively con-
struct all the elements of the form

cq′(h1,q′(q′(...)))h̃c−1
q1

:= cq′(h1,q′(q′(...)))h1 . . . hn−1c−1
q′(hn,1)cq′(hn,1)hnc−1

q1
,

which are in N by construction (since cq′(h,q)hc−1
q ∈ N for

all h ∈ G and q ∈ G/N). Then, it must be cq′(h1,q′(q′(...))) ∈
N , meaning that q′(h1, q′(q′(...))) = q1. We thus constructed
cq1 h̃c−1

q1
for all generators h̃ of N . Hence, the thesis fol-

lows, noticing that the set {cq1 h̃c−1
q1

∈ N |h̃ ∈ S̃N } generates the
whole N . �

In Lemma 5, we have proven that the coarse graining of
QWs on Cayley graphs preserves the whole subgroup N � G;
namely, the coarse-grained walk is rigorously defined on a
Cayley graph of N . Moreover, being a unitary mapping, this
coarse graining does not erase information of the original
walk: Some degrees of freedom are just encoded in the new
enlarged coin. This circumstance was verified for particular
cases in Ref. [39]. Notice that the coarse graining is well
defined with no need to assume the normality of N in G.

Let now G be an extension of Q by N . For an arbitrary
h = xhcqh ∈ G, expression (49) reads

T̃h = UN ThU †
N =

∑
q1,q2∈Q

∑
n,n′∈N

|n〉〈n′| ⊗ |q1〉〈q2|δncq1 ,n′cq2 c−1
qh

x−1
h

.

Accordingly, one obtains

q2 = q1qh, n = n′cq1qh c−1
qh

c−1
q1

ϕq1

(
x−1

h

)
,

and the following holds:

T̃h =
∑
q′∈Q

Tϕq′ (xh )Tf (q′,qh ) ⊗ |q′〉〈q′|Tqh .

One can thus give the following representation of the scalar
QW evolution operator (8) on �(G, S+) in terms of the right-
regular representations of N and Q:

Ã =
∑
h∈S

∑
q′∈Q

Tϕq′ (xh )Tf (q′,qh ) ⊗ zh|q′〉〈q′|Tqh , (51)

where zh ∈ C and h = xhcqh ∈ G. Finally, the transition matri-
ces corresponding to the coarse-grained generators h̃ ∈ SN are
given by (see Ref. [38])

(Ah̃)i j =
∑
h∈S

δh̃,cqi hc−1
q j

δqi,q j q
−1
h

zh. (52)

Notice that each transition scalar is associated to one and
only one coarse-grained matrix element. Finally, via the above
construction we have proven the following.

Proposition 3. Let P be a group property. The set of QWs
on Cayley graphs of virtually P groups is contained in the set
of QWs on Cayley graphs of groups satisfying the property P.

Corollary 4. The Euclidean QWs are contained in the set
of QWs on Zd . The Euclidean coinless QWs are contained in
the set of QWs on Zd with a s-dimensional coin, for s � 2.

IV. EUCLIDEAN SCALAR QUANTUM WALKS

In the following, when we consider the elements of N ∼=
Zd as vectors embedded in Rd , we use the boldfaced notation,
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indicating by n the vector corresponding to the element n ∈
N ∼= Zd . Depending on the context and without loss of clarity,
in the index-2 case where Q = {ẽ, q̃} ∼= Z2, we adopt the
identification ϕq̃ ≡ ϕ.

A. Isotropic scalar QWs

In the present subsection, we treat the isotropic case. We
start by proving some useful results.

Proposition 4. Let N ∼= Zd be an index-2 subgroup of a
non-Abelian group G = {N, Nc}. Then N is characteristic in
G, namely N is invariant under the action of every automor-
phism l ∈ Aut(G). In particular, N � G.

Proof. By contradiction, suppose that

∃l ∈ Aut(G), ∃n ∈ N : l (n) = n′c.

Accordingly,

l (n2) = n′ϕ(n′)c2 ∈ Z (G) (53)

but n �∈ Z (G), since every automorphism l maps Z (G) to itself
and l (n) = n′c �∈ Z (G). On the other hand, for all r ∈ N+ and
g ∈ N , one has that

gr ∈ Z (G) �⇒ ϕ(g)rg−r = e,

implying g ∈ Z (G), since N is free Abelian. However, by
Eq. (53), it must be n2 ∈ Z (G) and then also n ∈ Z (G), which
is absurd. Then N is characteristic in G. �

Using Proposition 4, we can now construct the automor-
phism group of a Z2-by-Zd group.

Proposition 5. Let G be a Z2-by-Zd group. Then
Aut(G) ∼= Zd

� GL(d,Z).
Proof. Let us pose G = {N, Nc} and N ∼= Zd . By Propo-

sition 4, any automorphism of G acts separately on the two
cosets. Let LN , Lc be the proper subgroups of Aut(G) such
that, for all lN ∈ LN , lc ∈ Lc, n ∈ N , then

lN (n) ∈ N, lN (c) = c,

lc(n) = n, lc(c) = ncc, nc ∈ N.

Then, for all l ∈ Aut(G) and for all n ∈ N , one can define the
two automorphisms lN ∈ LN , lc ∈ Lc by

lN (n) := l (n), lc(c) := l (c),

so that l = lN ◦ lc. Furthermore, Lc ∩ LN = {e} clearly holds.
Moreover, for all lN ∈ LN , lc ∈ Lc, n ∈ N , the following hold:

lN ◦ lc ◦ l−1
N (n) = n,

lN ◦ lc ◦ l−1
N (nc) = nlN (lc(c)) = nlN (nc)c =: l ′

c(nc),

where l ′
c ∈ Lc. This means that Lc � Aut(G). We conclude

that Aut(G) ∼= Lc � LN . Finally, LN
∼= Aut(N ) ∼= GL(d,Z)

(by Theorem 3), while Lc
∼= Zd : It is easy to verify that

Lc is free Abelian and the cardinality of a minimal set of
generators is d (the elements of Lc are the d-dimensional
translations). �

In Ref. [33], it is proven that the isotropy group L (Defini-
tion 6) of a QW must be indeed a finite subgroup of Aut(G).
Moreover, a technique for constructing Cayley graphs starting
from L is presented. For an isotropic QW, the generating set
coincides with the orbit of an element h under the isotropy
group L, denoted by OL(h). Our aim is now to characterize

the isotropic presentations of Z2-by-Zd groups G, in order to
investigate the admissible isotropic scalar QWs on them.

By Proposition 5, we know that the isotropy groups of
a Z2-by-Zd group are isomorphic to the finite subgroups
of LN

∼= GL(d,Z), since Lc
∼= Zd has no nontrivial finite

subgroups. The finite groups L � GL(d,Z) are reported in
Ref. [33]. In particular, as long as the (isotropic) Cayley
graphs of Zd are embedded in Rd , the elements in the orbit
OL(h) can be represented having all the same length [33]. We
shall use the above results to prove the following no-go result.

Proposition 6 (no-go for Euclidean isotropic scalar QWs).
In dimensions d � 2, there exists no isotropic scalar QW on a
Z2-by-Zd non-Abelian group G. In other words, for d � 2 no
QW on Zd with a two-dimensional coin can be derived from
an isotropic scalar QW by coarse graining. For d = 1, there
exists a family of QWs on the infinite dihedral group D∞ =
Z �ϕ Z2, with ϕ(n) = −n, containing the 1D Weyl and Dirac
QWs.

Proof. Let us suppose that S = {(glc)±1|2 � l < ∞} is a
set of generators for the non-Abelian group G = {N, Nc},
with N ∼= Zd and d ∈ N+. Take gl1 , gl2 such that the length-2
path gl1 c(gl2 c)−1 = gl1 g−1

l2
, for gl1 c, gl2 c ∈ S, is of maximal

length in N among all paths of the form glg
−1
l ′ . Following the

argument of the proof of Proposition 1 in Ref. [38], the pair
(gl1 , gl2 ) is unique in N . Accordingly, by the quadrangularity
condition (Proposition 1), we have to include gic, g jc ∈ Nc in
S such that

gl1 g−1
l2

= gig
−1
j

and with gi = g−1
l2

and g j = g−1
l1

. This implies that g±1
l1

c ∈
S. Imposing isotropy, and using Proposition 4 and 5 along
with aforementioned characterization of the isotropic presen-
tations of Ref. [33], we see that all the gl are all equal in
length. Accordingly, gl1 c(g−1

l1
c)−1 = g2

l1
has maximal length

in N , and there cannot exist a different pair (gi′c, g j′c)
such that gi′c(g j′c)−1 = g2

l1
. Then, by quadrangularity (see

Proposition 1), the set of generators for the group G must
have the form S = {g±1

n , (gmc)±1|n ∈ I, m ∈ J, |I| � 1, |J| �
1}, with ‖gn1‖ = ‖gn2‖ and ‖gm1‖ = ‖gm2‖ for all n1, n2 ∈ I
and m1, m2 ∈ J . Moreover, by isotropy, the gmc cannot have
infinite order, implying that they must have order 2. Take now,
for n1 ∈ I , gn1 (g−1

n1
)−1 = g2

n1
: There must exist two different

gm1 c, gm2 c ∈ S such that gm1 g−1
m2

= g2
n1

. Then, |J| � 2. Now,
by the same above argument of the maximal length, there
exists gm′ ∈ N such that g±1

m′ c ∈ S. This implies that gm′ ∈ S
and finally, by isotropy, also

S = {
OL

(
g±1

m′
)
, OL

(
g±1

m′
)
c
}
.

Therefore, one has

e = (
g±1

m′ c
)2 = g±1

m′ ϕ
(
g±1

m′
)
c2 = (gm′ϕ(gm′ ))±1c2,

implying c2 = e and ϕ(gm′′ ) = g−1
m′′ for all gm′′ ∈ OL(gm′ ).

By Eq. (50), {OL(g±1
m′ ), OL(ϕ(gm′ )±1)} is a set of generators

for N , and then G must be then isomorphic to Zd
�ϕ Z2,

with ϕ(n) = −n. By isotropy, denote now by z± and zc the
transition scalars associated to the elements in OL(g±1

m′ ) and
in {OL(gm′ )c, OL(g−1

m′ )c}, respectively. Computing the transi-
tion matrices of the coarse-grained QW on �(N, SN ) using
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Eq. (52), these are equal to

A±h =
(

z± zc

zc z∓

)
∀ ± h ∈ SN . (54)

For d � 2, it is easy to see that |OL(gm′ )| � 2. Accordingly, in
this case, in Eq. (9) one has at least one term with h, h′ ∈ SN

and h �= ±h′. Let us take the path h − h′ with maximal length,
which is unique: This fact, using Eq. (9) with Eq. (54), implies
the condition

|z+|2 + |zc|2 + |z−|2 + |zc|2 = 0,

which is clearly impossible to satisfy. This proves the impos-
sibility for all dimensions d � 2. In the case d = 1, namely
N ∼= Z, the only possible extension is isomorphic to D∞ =
Z �ϕ Z2. The most general family of scalar QWs on D∞ has
been studied in Ref. [38]. Imposing isotropy to these QWs,
one straightforwardly finds that the resulting QWs contain the
Weyl and Dirac QWs in one dimension. �

We conclude this investigation on the isotropic scalar QWs
with the following theorem, which can be of aid in the attempt
of generalizing the construction performed above.

Theorem 4 ([54]). Let G be a finitely generated group.
Then every finite index subgroup H in G contains a subgroup
N which is finite index and characteristic in G.

Remark 3. Accordingly, a finite-by-Zd group has, in gen-
eral, the following structure:

G = {N, Nc2, . . . , Nci},
with the subgroup N ∼= Zd characteristic and of finite index
i in G. This, in particular, means that classifying finite-
by-Zd groups up to pseudocongruence (see Proposition 2)
is equivalent to classifying virtually Abelian groups up to
general isomorphisms. Moreover, Proposition 5 can be easily
generalized to groups G finite by Zd : In this case, Aut(G) ∼=
LQ � GL(d,Z), where LQ is the group acting on the coset
representative as a pseudocongruence. This fact, albeit not
leading to a straightforward generalization of Proposition 6,
can help to construct the Euclidean isotropic scalar QWs with
index greater than 2.

B. Spinorial walks from scalar QWs

In Subsec. IV A, we imposed isotropy to those scalar QWs
which reconstruct the QWs with a two-dimensional coin on
lattices, finding that they exist in dimension d = 1 only. In
the present subsection, we address the problem to provide
necessary and sufficient conditions in order to reconstruct a
class of known spinorial QWs. In particular, we aim to derive,
without imposing isotropy, QWs with a two-dimensional coin
on the simple square lattice and on the BCC lattice. In fact, as
already well understood in the Abelian case, unitarity alone in
general does not allow to perform a tight a priori selection
on the admissible Cayley graphs. For this reason, in the
following we restrict discussion to the case of coarse-grained
presentations exhibiting generators all with the same length in
Rd (a necessary, but still not sufficient, condition for isotropy,
as already pointed out). However, the one-dimensional case
has been broadly studied in Ref. [38]. Accordingly, as already
mentioned, the cases which will be studied in generality shall
be the simple square lattice and the BCC lattice.

Lemma 6. Suppose that, for d ∈ N+ and N ∼= Zd , a QW
on �(N, S+), with a two-dimensional coin and having genera-
tors which can be embedded in Rd having all the same length,
is the coarse graining of a scalar QW on �(G, S′

+), with G a
Z2-by-N non-Abelian group. Then, G ∼= Zd

� Z2.
Proof. Let us fix a set of generators gi ∈ SN for N ∼= Zd ,

with ‖gi1‖ = ‖gi2‖ for all i1, i2. Denoting again G = {N, Nc}
and using Eq. (50), one can easily see that the following
statements hold:

hi ∈ SG ∩ N ⇒ hi, ϕ(hi ) ∈ SN , (55)

hi = gic ∈ SG ∩ Nc ⇒ gi, ϕ(gi ) + c2 ∈ SN . (56)

We can then follow the same argument in the first part of
the proof of Proposition 6, since the same hypotheses hold.
Therefore, we have that ∃gi′ ∈ N : g±1

i′ c, gi′ ∈ SG, and then
also (

g±1
i′ c

)−1 = ϕ
(
g±1

i′
)
c−2c ∈ SG.

Then, from Eq. (56), ϕ(g±1
i′ )c−2 ∈ SN . Using also Eq. (55),

we obtain ‖ϕϕϕ(gi′ ) − c2‖ = ‖ − ϕϕϕ(gi′ ) − c2‖ = ‖ϕϕϕ(gi′ )‖, im-
plying c2 = 0 (i.e., c2 = e). Then, G is a semidirect
product. �

We will consider two lattices for �(N, S+): The simple
square and the BCC. The simple square lattice is generated
by

h1 =
(

1
0

)
, h2 =

(
0
1

)
, (57)

while the BCC lattice is generated by

h1 =
⎛
⎝1

1
1

⎞
⎠, h2 =

⎛
⎝−1

−1
1

⎞
⎠, h3 =

⎛
⎝−1

1
−1

⎞
⎠, h4 =

⎛
⎝ 1

−1
−1

⎞
⎠.

(58)

Following the same arguments of the proofs of Proposition
6 and Lemma 6 [in particular, using Eqs. (55) and (56)],
by direct inspection it is easy to see that the only set of
generators for G satisfying the quadrangularity condition (see
Proposition 1) is of the form

S′ = {g, gc}g∈S, (59)

S being the set of generators corresponding to the simple
square or the BCC lattices.

Our strategy is the following. On one hand, in Appendix
A we derive the most general QWs with a two-dimensional
coin on the simple square and BCC lattices. These are shown
in Eqs. (A2) and (A30). On the other hand, in Subsecs. V B
and V C we construct the admissible groups (according to
Lemma 6) supporting the scalar QWs whose coarse graining is
a spinorial one on the two chosen lattices. Clearly, their coarse
graining is contained in the spinorial QWs derived there. We
will derive the form of the coarse-grained QWs and impose
that form to the spinorial QWs (A2) and (A30) modulo unitary
equivalence. This will allow us to find the most general family
of scalar QWs on the extensions of Z2 by Zd (d = 2, 3),
whose coarse grainings are QWs with a two-dimensional coin
on the simple square and BCC lattices.
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V. RELATIVISTIC WAVE EQUATIONS
FROM COINLESS QWS

A. One-dimensional case

For completeness, we here briefly treat the one-
dimensional case, namely N ∼= Z. The only nontrivial finite
subgroup of Aut(N ) ∼= GL(1,Z) is isomorphic to Z2 itself.
Accordingly, the only non-Abelian index-2 extension by Z
is isomorphic to the infinite dihedral group D∞. The most
general family of admissible scalar QWs on D∞ has been
studied in Ref. [38]. This contains the one-dimensional Weyl
and Dirac QWs.

We here outline a generalization of these results for higher
indices.

Theorem 5 (Lagrange [60]). Let G be a finite group and
G′ � G. Then, |G′| divides |G|.

This means that if we choose |Q| to be odd, then the order
rq of each element of q ∈ Q will be odd. If we look for
a nontrivial homomorphism ϕ : Q → {1,−1}, with |Q| odd,
then for some q we will have

1 = ϕ
rq
q = (−1)rq = −1,

which is impossible. As a consequence, all the extensions of
some group Q of odd order by Z must satisfy

ϕq = 1, ∀q ∈ Q. (60)

Example 1 (Z3-by-Z groups). Let us pose Q =
{ẽ, q̃, q̃2} ∼= Z3. Having chosen a 2-cocycle f , one has

f (q̃, q̃)cq̃2 = c2
q̃ = (cq̃)c2

q̃(cq̃)−1

= ϕq̃( f (q̃, q̃))cq̃cq̃2 c−1
q̃ = f (q̃, q̃)cq̃cq̃2 c−1

q̃ ,

where we used Eq. (60). This implies

cq̃2 cq̃ = cq̃cq̃2 .

However, by Eq. (60), one also has

cq̃n = ncq̃, ∀n ∈ N,∀q̃ ∈ Q,

whence it follows that an extension G of Z3 by Z must be
Abelian. Namely, G is isomorphic to either Z or Z × Z3 (by
the fundamental theorem of finitely generated Abelian groups;
see Theorem 1).

B. Two-dimensional case

In Ref. [61], one can find a complete classification of the fi-
nite subgroups of GL(2,Z) up to conjugation. The subgroups
of order 2 are three, clearly isomorphic to Z2 = {ẽ, q̃}. These
are, respectively, generated by

−I2, σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
.

The simple square lattice is generated by the canonical ba-
sis for R2, i.e., the set of vectors (57). Regardless of the
homomorphism ϕ chosen, one has that c2

q̃ ∈ N ∼= Z2 will be
invariant under ϕq̃. For each automorphism, then, one has to
fix the only nontrivial 2-cocycle value f (q̃, q̃) = c2

q̃ among
the invariant vectors of the chosen automorphism. In the
following, we provide an application of the group-extension
technique developed in Sec. III. We construct all the index-2
non-Abelian extensions of N ∼= Z2 below.

(a) Case ϕq̃ = −I2. The only invariant element is the zero
vector. Then the only possibility is J1

∼= Z2
�−I2 Z2.

(b) Case ϕq̃ = σx. The invariant space in Z2 is rx(h1 +
h2), with rx ∈ Z. Let us choose rx = 0: Using Eq. (48), we
have

(I2 + σx )(nq̃,0h1 + nq̃,1h2) + r′
x(h1 + h2)

= (nq̃,0 + nq̃,1 + r′
x )(h1 + h2) = 0,

namely ∀r′
x ∃nq̃,0, nq̃,1 ∈ Z such that the extension with c′2

q̃ =
r′

x(h1 + h2) differs from that with c2
q̃ = 0 for a change of coset

representative. Then, the only possibility is again J2
∼= Z2

�σx

Z2.
(c) Case ϕq̃ = σz. The invariant space is rzh1, with rz ∈ Z.

Choosing rz = 0, again from Eq. (48) we have

(I2 + σz )(nq̃,0h1 + nq̃,1h2) + r′
zh1 = (2nq̃,0 + r′

z )h1 = 0,

namely, ∀r′
z even, ∃nq̃,0, nq̃,1 ∈ Z such that the extension with

c′2
q̃ = r′

zh1 differs from that with c2
q̃ = 0 for a change of coset

representative. Then, J3
∼= Z2

�σz Z2. Choosing rz = 1, one
has

(2nq̃,0 + r′
z )h1 = h1

and ∀r′
z odd ∃nq̃,0, nq̃,1 ∈ Z such that the extension with c′2

q̃ =
r′

zh1 differs from that with c2
q̃ = h1 for a change of coset

representative. In this last case, the extension J4 is not a
semidirect product.

We list some possible presentations of all the non-Abelian
extensions of Z2 by Z2:

J1 = 〈
h1, h2, c

∣∣h1h2h−1
1 h−1

2 , c2, ch1c−1h1, ch2c−1h2
〉
,

J2 = 〈
h1, h2, c

∣∣h1h2h−1
1 h−1

2 , c2, ch1c−1h−1
2 , ch2c−1h−1

1

〉
,

J3 = 〈
h1, h2, c

∣∣h1h2h−1
1 h−1

2 , c2, ch1c−1h−1
1 , ch2c−1h2

〉
,

J4 = 〈
h2, c

∣∣c2h2c−2h−1
2 , ch2c−1h2

〉
.

We now construct the admitted scalar QWs on the derived
extensions. Lemma 6 excludes J4, since it is not a semidirect
product. The admissible presentations are of the form (59),
S = {h1,−h1, h2,−h2} being the set of generator associated
to the simple square lattice. We write the coarse-grained tran-
sition matrices, derived using Eq. (52), for the three cases:

(1) Case of J1, for x ∈ {h1, h2}:

A+x =
(

zx zxc

zx−1c zx−1

)
, A−x =

(
zx−1 zx−1c
zxc zx

)
.

(2) Case of J2, for x, y ∈ {h1, h2} : x �= y:

A+x =
(

zx zxc

zyc zy

)
, A−x =

(
zx−1 zx−1c
zy−1c zy−1

)
.

(3) Case of J3:

A±h1 =
(

zh±1
1

zh±1
1 c

zh±1
1 c zh±1

1

)
, A±h2 =

(
zh±1

2
zh±1

2 c

zh∓1
2 c zh∓1

2

)
.

One can check the conditions under which the above
coarse-grained matrices are unitarily equivalent to those of
(A4).

(1) Every QW obtained as the two-dimensional Weyl QW
[17], multiplied on the left by an arbitrary unitary commuting
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FIG. 1. We report here the primitive cell of the coinless QW on the extension J2 [Fig. 1(a)], and that of the same walk on J2 represented as
a spinorial coarse-grained QW on Z2 [Fig. 1(b)].

with σy, can be viewed as a coarse graining of a scalar QW on
the Cayley graph corresponding to presentation J1.

(2) Every isotropic 2D QW with a two-dimensional coin
[33] can be viewed as a coarse graining of a scalar QW on the
Cayley graph corresponding to presentation J2.

(3) No QW with a two-dimensional coin simple square
lattice can be viewed as a coarse graining of a scalar QW on
the Cayley graph corresponding to presentation J3.

Both families of coinless QWs on J1 and on J2 strictly
contain the Weyl QW in two space dimensions [17,33]. The
presentations corresponding to the QWs on the Cayley graphs
of J2 and its coarse graining, along with, respectively, the as-
sociated transition scalar and matrices, are reported in Fig. 1.

C. Three-dimensional case

In Ref. [62], one can find a complete classification of the
finite subgroups of GL(3,Z) up to conjugation. One can
exploit the same methods provided in the two-dimensional
case (Subsec. V B) in order to construct all the extension of
Z2 by Z3.

The subgroups of order 2 are five, clearly isomorphic to
Z2, and are respectively generated by

−I3, �± := ±
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠, �± := ±

⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠.

(61)

Lemma 6 excludes the extensions which are not semidirect
products. Accordingly, all the admissible non-Abelian exten-
sions of Z2 by Z3 are derived as follows:

(1) K1
∼= Z3

�−I3 Z2,
(2) K2

∼= Z3
��+ Z2,

(3) K3
∼= Z3

��− Z2,
(4) K4

∼= Z3
��+ Z2,

(5) K5
∼= Z3

��− Z2.
The BCC lattice is generated by the set of vectors (58). The

presentation of the groups Ki admitting a scalar QW is given
by (59), with S collecting the generators (58) and the element
c realizing the automorphisms (61) by conjugation. Adopting
the same arguments used in Subsec. V B, one finds that K4

and K5 do not support a scalar QW whose coarse graining is a

QW with a two-dimensional coin on the BCC lattice. On the
other hand, K1, K2, and K3 admit scalar QWs, which can be
found directly checking unitary equivalence. In particular, the
transition matrices in the case of K2 are

A±h1 =
(

zh±1
1

zh±1
1 c

zh±1
4 c zh±1

4

)
, A±h2 =

(
zh±1

2
zh±1

2 c

zh±1
3 c zh±1

3

)
,

A±h3 =
(

zh±1
3

zh±1
3 c

zh±1
2 c zh±1

2

)
, A±h4 =

(
zh±1

4
zh±1

4 c

zh±1
1 c zh±1

1

)
.

Accordingly, there exists a unitary W such that WA±h1W
† =

A±h4 and WA±h2W
† = A±h3 , and the family of scalar QWs on

K2 strictly contains the Weyl QW in three space dimensions
[17,33].

D. The 2D and 3D Dirac QWs from coinless walks

For one space dimension, we already saw in Proposition 6
that the 1D Weyl and Dirac QWs are the coarse-graining of
isotropic scalar walks on D∞ (see the analysis carried out in
Ref. [38]).

We conclude the present work constructing two extensions
of Z2 × Z2 by Zd for d = 2, 3. This is needed to implement
the coinless Dirac QWs [17]. Clearly, the coin dimension of
the coarse-grained QWs must be of dimension 4, and this is
the reason why we take an index-4 extension by Zd .

Let Gd be an extension of Q ∼= D2 = Z2 × Z2 by Nd ∼=
Zd , with

Gd = {N, Nc1, Nc2, Nc1c2}
and

c2
1 = c2

2 = e, c1c2 = c2c1.

Accordingly, Gd
∼= Zd

�ϕ D2. The associated automorphisms
realizing the semidirect product are denoted by ϕ1, ϕ2 and
ϕ12 = ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1.

We choose the following presentation for Gd :

S′
d = {h, hc1, c2 |h ∈ Sd},

where Sd is the set of generators corresponding to the simple
square lattice for d = 2 and to the BCC lattice for d = 3 [see
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Eqs. (57) and (58)]. Let {ϕ1, ϕ2} be represented in dimension
d = 2 by

{σz, −σz}, σz =
(

1 0
0 −1

)
,

while in dimension d = 3 by

{�+, �′
+}, �+ =

(
1 0
0 −I2

)
, �′

+ =
(−I2 0

0 1

)
.

It is immediate to check that the associated Cayley graphs
satisfy the quadrangularity condition (Proposition 1). Accord-
ingly, via Eq. (52), the coarse-grained transition matrices are
given by

AD
h =

(
nAh 0

0 nBh

)
, AD

e =
(

0 zc2 Id

zc2 Id 0

)
,

Ah = 1

n

(
zh zhc1

zϕ1(h)c1 zϕ1(h)

)
, Bh = 1

n

(
zϕ2(h) zϕ2(h)c1

zϕ12(h)c1 zϕ12(h)

)
,

(62)

where n ∈ (0, 1] and AD
e is associated to the identity element

(i.e., the mass term). Since the form of the matrices (62) is the
same of those of the Dirac QWs [17], we can choose the Ah

to be the transition matrices of Subsecs. V B and V C for the
two- and three-dimensional Weyl scalar QWs, with Bh = A†

h
and zc2 = im, with m � 0 and n2 + m2 = 1. We notice that
one can perform a change of basis only on the diagonal
blocks, attaining the desired form. These choices guarantee
unitarity and select the d-dimensional Dirac scalar QWs for
d = 2, 3.

VI. DISCUSSION AND CONCLUSIONS

In this work, we addressed the problem of providing a
constructive procedure to obtain all the possible QWs on
Cayley graphs quasi-isometric to Euclidean spaces—i.e., of
virtually Abelian groups. The latter are exhausted by groups
that are extensions of finite groups by free Abelian groups.
The problem has then been tackled starting from a thorough
characterization of all extensions of finite groups by arbitrary
groups, providing (partial) criteria for checking isomorphism
of a priori different extensions. The piece of theory thus
constructed is then applied in the special case of interest, i.e.,
where the extension is by a free Abelian group.

We then constructed all the extensions of Z2 by Z and Z2.
As to the case of Z2 by Z3, the analysis has been restricted
to semidirect products, even though there exist also different
extensions. However, extensions of the latter kind would lead
to embeddings in R3 where the nearest neighbours of a given
node need to have different distances from the node. We then
neglected extensions that are not semidirect products, since
the subsequent analysis focused on the simple square and the
BCC, where all the nearest neighbors of a given node have the
same distance from the node.

We then proved that there are no isotropic scalar QWs
on (non-Abelian) extensions of Z2 by free Abelian groups
of dimension larger than 1. Our main results consist in pro-
viding criteria to find the families of QWs with s = 2 on
the simple square and BCC lattices that can be obtained by

coarse graining a QW on Z2 by Zd with d = 2, 3. Among
those, interestingly, there are the Weyl QWs in two and three
dimensions. Finally, in a very special case of the extension
(Z2 × Z2) by Zd with d = 2, 3, we show that the Dirac QWs
in d = 2, 3 can be obtained by coarse graining.

This line of research has a relevance within our approach
to QFTs, where that all the nontrivial structures can be derived
from very simple evolution algorithms. In particular, internal
degrees of freedom like spin or chirality can be viewed as
obtained by coarse graining of QWs with trivial coin, i.e.,
originally describing the dynamics of particles with trivial
internal structure. A big problem that remains open in this re-
spect is the origin of symmetries like isotropy in this scenario.
One of the possible developments might consist in studying
how isotropy of coarse grained QWs can follow from other
requirements for the coinless underlying QWs, e.g., those
considered in Ref. [63]. Along these lines, one can imagine
a relaxation of isotropy where the symmetry involves only a
family of subgraphs.

We characterized Euclidean QWs in d dimensions, proving
that these are exhausted by the QWs on Zd via a unitary
coarse-graining procedure. One possible future line of re-
search is the investigation of the properties of the Euclidean
QWs which are not coarse graining of any (scalar) QW, e.g.,
a subfamily of those derived in the Appendix of the present
work. In particular, the dynamics and space-time symmetries
of these can be in principle different from the ones exhib-
ited by the Weyl and Dirac QWs. Moreover, one could ask
whether there exist Euclidean scalar QWs on Cayley graphs
of (non-Abelian) groups with no cyclic element (i.e., without
torsion) under the hypothesis of coarse-grained generators
having all the same length. Finally, the next step is a char-
acterization and study of QWs on Cayley graphs which are
not embeddable in Euclidean spaces, i.e., carrying a nontrivial
curvature.
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APPENDIX: DERIVATION OF THE QWS

In Appendixes A 1 and A 2, we derive the most general
families of QWs with a two-dimensional coin on the simple
square and BCC lattices.

1. Simple square lattice

The presentation of Z2 corresponding to the simple
square lattice is given by 〈h1, h2|h1h2h−1

1 h−1
2 〉. The unitarity
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conditions (9) are given by

A+iA
†
−i = A†

−iA+i = 0,

A+iA
†
∓ j + A± jA

†
−i = 0,

A†
−iA± j + A†

∓ jA+i = 0,

(A1)

for i, j ∈ {h1, h2} and i �= j. Let us introduce the polar decom-
position for the transition matrices: For ∀A ∈ GL(n,C) there
exists V unitary and P positive semidefinite such that A = V P.
The first of Eqs. (A1) implies

A±i = α±iVi|±i〉〈±i|,
where {| − i〉, | + i〉} are on an orthonormal basis and α±i >

0 ∀i and we posed V+i = V−i =: Vi: It is easy to verify it in
view of the nonuniqueness of the polar decomposition when
the matrix is not full rank (we refer the reader to Ref. [39]).

The second and third of Eqs. (A1) imply

A+iA
†
± jA+i = A−iA

†
± jA−i = 0,

reading

〈+i|∓ j〉〈∓ j|V †
j Vi|+i〉 = 〈−i|± j〉〈± j|V †

j Vi|−i〉 = 0.

It is easy to see that at least one among 〈∓ j|V †
j Vi| + i〉 and

〈± j|V †
j Vi| − i〉 must be vanishing. The cases are just two:

(1) 〈± j|V †
j Vi| ± i〉 = 0 ⇒ | ± i〉 = | ± j〉 := |0〉, |1〉,

(2) 〈∓ j|V †
j Vi| ± i〉 = 0 ⇒ | ± i〉 = | ∓ j〉 := |0〉, |1〉

(up to a phase factor which is not relevant in defining the
transition matrices). Then V †

j Vi is antidiagonal in the basis

{|0〉, |1〉}, say V1 =: W = V (0 μ

ν 0 ), where V := V2. Using
the second and third of Eqs. (A1) and Eqs. (9) for g = e
(i.e., the normalization condition), one gets in both cases
μ = −ν∗, α+1 = α−1 =: α, and α+2 = α−2 = √

1 − α2. Sub-
stituting and changing basis to set ν = 1, one gets

A+1 = αV |1〉〈0|, A−1 = −αV |0〉〈1|,
(A2)

A+2 =
√

1 − α2V |0〉〈0|, A−2 =
√

1 − α2V |1〉〈1|,
for the first case, while the second case is recovered just by
swapping +2 ↔ −2.

Now, one can check that the unitarity conditions

AhA†
e + AeA†

−h = 0,

A†
eAh + A†

−hAe = 0 (A3)

cannot be satisfied for all h ∈ S+.
Finally, we can impose the condition (14), finding V =

(
√

1 − α2 α

−α
√

1 − α2 ). By plugging this into the transition matri-

ces (A2), one obtains

A+1 =
(

α2 0

α
√

1 − α2 0

)
, A−1 =

(
0 −α

√
1 − α2

0 α2

)
,

A+2 =
(

1 − α2 0

−α
√

1 − α2 0

)
, A−2 =

(
0 α

√
1 − α2

0 1 − α2

)
,

(A4)
with α ∈ (0, 1), and up to a left multiplication by an arbitrary
unitary commuting with the symmetry group giving the in-
variance condition (10).

2. BCC lattice

The presentation of Z3 corresponding to the BCC lattice
is given by 〈h1, h2, h3, h4|hih jh

−1
i h−1

j , h1h2h3h4〉. There are
three kinds of different paths of length 2 giving rise to the
unitarity conditions:

± 2hi, (A5)

± hi ∓ h j, (A6)

± (hi + h j ), (A7)

for hi, h j ∈ S+. Similar to the two-dimensional case, from the
first family of paths (A5) we obtain the following general
expression for the transition matrices:

A±i = α±iVi|±i〉〈±i|, (A8)

with {|−i〉, |+i〉} being an orthonormal basis and α±i > 0 ∀i.
On the other hand, the condition associated to (A6) amounts
to

A+iA
†
+ j + A− jA

†
−i = 0,

A†
+iA+ j + A†

− jA−i = 0. (A9)

Exploiting the form (A8) and using Eqs. (A9), we get

A+iA
†
+ jA+i = 0 ⇒ A+iA

†
+ j = 0 ∨ A†

+ jA+i = 0. (A10)

Accordingly, one of the two following cases hold:

A±i = α±iVi|±i〉〈±i|,
A± j = α± jVj |∓i〉〈∓i|; (A11)

A†
±i = α±iV

†
i Vi|±i〉〈±i|V †

i ,

A†
± j = α± jV

†
j Vi|∓i〉〈∓i|V †

i . (A12)

In case (A11), A+ jA
†
+i = A+l A

†
+i = 0 implies A+ jA

†
+l �= 0,

while in case (A12) A†
+iA+ j = A†

+iA+l = 0 implies A†
+ jA+l �=

0: Since there are four elements in S+, it is easy to see that, for
a fixed +i, conditions in (A10) can be satisfied at most for two
different values of + j. The possible couples are six, and then
either the first or the second condition must be satisfied for
at least two couples with a fixed +i. Thus, one has (modulo
relabeling the hl ) three sets of conditions:

A+1A†
+2 = A+1A†

+3 = A+2A†
+4 = 0,

A†
+2A+3 = A†

+1A+4 = A†
+3A+4 = 0, (A13)

or

A+1A†
+2 = A+1A†

+3 = A+2A†
+4 = A+3A†

+4 = 0,
(A14)

A†
+2A+3 = A†

+1A+4 = 0,

or the previous one modulo the exchange of A+i and A†
+i, i.e.,

equivalently modulo the PT transformation Ak �→ A†
k. It is

then sufficient to solve the first two sets of equations.
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Imposing the conditions which are common to Eqs. (A13)
and (A14), we obtain

A+1 = α+1V1M, A−1 = α−1V1(1 − M ),

A+2 = α+2V2(1 − M ), A−2 = α−2V2M,

A+3 = α+3V3(1 − M ), A−3 = α−3V3M,

A+4 = α+4V4M, A−4 = α−4V4(1 − M ),

where M := |0〉〈0|, 1 − M := |1〉〈1| are arbitrary one-
dimensional projectors, and V †

1 V4,V †
2 V3 have vanishing

diagonal elements. This form of the solutions is equivalent to
the set of constraints (A14). Imposing (A9), we find

α+1α+4V1MV †
4 + α−1α−4V4(1 − M )V †

1 = 0,

α+2α+3V2(1 − M )V †
3 + α−2α−3V3MV †

2 = 0,

implying that

α+1α+4 = α−1α−4,

α+2α+3 = α−2α−3,

V †
1 V4,V †

2 V3 ∈ SU(2).

(A15)

Also, we have

α+1α+2MV †
1 V2(1 − M ) + α−1α−2MV †

2 V1(1 − M ) = 0,

α+1α+3MV †
1 V3(1 − M ) + α−1α−3MV †

3 V1(1 − M ) = 0,

α+2α+4(1 − M )V †
2 V4M + α−2α−4(1 − M )V †

4 V2M = 0,

α+3α+4(1 − M )V †
3 V4M + α−3α−4(1 − M )V †

4 V3M = 0,

(A16)

implying (V †
i Vj )01 = −(V †

i Vj )∗10 for the pairs (i, j) =
(1, 2), (1, 3), (2, 4), (3, 4). Then, we can pose

V †
i Vj :=

⎛
⎝ ρi jeiθi j

√
1 − ρ2

i je
iϕi j

−
√

1 − ρ2
i je

−iϕi j ρi je
−iθ ′

i j

⎞
⎠,

ρ14 = ρ23 = 0. (A17)

Notice that, from Eqs. (A16), ρi j �= 1 and this implies

θi j = θ ′
i j, α+iα+ j = α−iα− j, ∀(hi, h j ) ∈ S+ × S+. (A18)

Using the equality V †
i Vl = V †

i VjV
†
j Vl , it is easy to show that

ρ12 =
√

1 − ρ2
13 =

√
1 − ρ2

24 = ρ34, (A19)

and, recalling Eqs. (A15) and (A18) and considering the
determinants, one also realizes that

V †
i Vj ∈ SU(2) ∀(i, j) ∈ S+ × S+.

In particular, this holds ∀ρi j ∈ [0, 1] and one has θi j = θ ′
i j in

Eq. (A17).
Accordingly, the only three possible cases are

ρ12 �= 0, 1; (A20)

ρ12 = 1; (A21)

ρ12 = 0. (A22)

From paths of the form (A7), the following conditions
follow:

α+1α−2V1MV †
2 + α−1α+2V2(1 − M )V †

1 + α−3α+4V3MV †
4 + α+3α−4V4(1 − M )V †

3 = 0, (A23)

α+1α−2MV †
1 V2M + α−1α+2(1 − M )V †

2 V1(1 − M ) + α−3α+4MV †
3 V4M + α+3α−4(1 − M )V †

4 V3(1 − M ) = 0, (A24)

α−1α+3V3(1 − M )V †
1 + α+1α−3V1MV †

3 + α+2α−4V4(1 − M )V †
2 + α−2α+4V2MV †

4 = 0, (A25)

α−1α+3(1 − M )V †
3 V1(1 − M ) + α+1α−3MV †

1 V3M + α+2α−4(1 − M )V †
4 V2(1 − M ) + α−2α+4MV †

2 V4M = 0, (A26)

α−1α+4MV †
4 V1(1 − M ) + α+1α−4MV †

1 V4(1 − M ) + α+2α−3MV †
3 V2(1 − M ) + α−2α+3MV †

2 V3(1 − M ) = 0. (A27)

We shall use the previous equations in order to show that
cases (A21) and (A22) lead to nontrivial solutions con-
nected via a swap 2 ↔ 3, while case (A20) does not satisfy
unitarity.

Case (A20). Recalling that in this case ρi j �= 1 ∀(i, j),
then from Eqs. (A15) and (A18) it is easy to derive that
α+i = α−i =: αi ∀hi ∈ S+. We can use this condition in
Eq. (A24), along with ρ12 = ρ34, obtaining α1α2 = α3α4.
Similarly, since ρ13 = ρ24, from Eq. (A26) also α1α3 = α2α4

follows. One thus straightforwardly has α1 = α4 and α2 = α3.
Then, again from Eqs. (A24) and (A26), it follows that eiθ12 =
−eiθ34 , eiθ13 = −eiθ24 . Finally, multiplying Eq. (A23) by V †

1 to
the left and by V2 to the right and using the two identities on

the phases just found, the first matrix element reads

1 − (
1 − ρ2

12

) − ρ2
13 + ei(θ14−θ23 ) = 0

�⇒ 2ρ2
12 − 1 = −ei(θ14−θ23 ),

meaning that either ρ12 = 1 or ρ12 = 0, which is absurd.
Case (A21). Recalling Eq. (A19), from Eq. (A24) one

obtains α±1α∓2 = α∓3α±4 and V †
1 V2 = −V †

3 V4, while from
(A23) one gets

α±1α∓2 = α±3α∓4, (A28)

V †
1 V4 = −V †

2 V3. (A29)
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Plugging the latter equation into Eq. (A27), one gets
α+1α−4 + α+2α−3 = α−1α+4 + α−2α+3. The latter equation
found, using conditions (A28), reads

α+1α−4

α+1α−2
+ α+2α−3

α+4α−3
= α−1α+4

α−1α+2
+ α−2α+3

α−4α+3
,

which in turn implies

α+4α−4 + α+2α−2

α−2α+4
= α+4α−4 + α+2α−2

α+2α−4
,

namely α−2α+4 = α+2α−4. Combining this condition with
those already found, we just end up with α+i = α−i =: αi and
α1α2 = α3α4.

Posing now θ := θ21, ϕ := ϕ31,V := V1, we notice that
V †V4 = −V †

2 V3 = −V †
2 VV †V3 [where we used Eq. (A29)] and

that it can be set eiϕ = 1 via a change of basis. We finally find
the transition matrices:

A+1 = α1V |0〉〈0|, A−1 = α1V |1〉〈1|,
A+2 = α2eiθV |1〉〈1|, A−2 = α2e−iθV |0〉〈0|,
A+3 = −α3V |0〉〈1|, A−3 = α3V |1〉〈0|,
A+4 = −α4e−iθV |1〉〈0|, A−4 = α4eiθV |0〉〈1|,

(A30)

along with the condition α1α2 = α3α4 and being V an arbi-
trary unitary.

Case (A22). Similarly to the previous derivation, from
Eq. (A26) we get V †

1 V3 = −V †
2 V4, while from Eq. (A23)

we have V †
1 V4 = V †

2 V3. Then, from the form of V †
1 V3

and V †
1 V4, the identity V †

1 V2 = V †
1 V3V

†
3 V2 = V †

1 V3V
†

4 V1 =
V †

4 V1V
†

3 V1 holds. Moreover, using Eqs. (A25), (A26), and

(A27), one likewise can derive the conditions α+i = α−i =: αi

and α1α3 = α2α4. At this point, one easily realizes that this
solution is connected to the previous one via a swap 2 ↔ 3.

We can now check that the unitarity conditions

AhA†
e + AeA†

−h = 0,

A†
eAh + A†

−hAe = 0

cannot be satisfied for all h ∈ S+.
Finally, we can impose condition (14), finding

V =
(

α1 + α2eiθ α3 − α4eiθ

−α3 + α4e−iθ α1 + α2e−iθ

)
=:

(
β γ

−γ ∗ β∗

)
.

(A31)

Plugging this into the transition matrices (A30), one obtains

A+1 = α1

(
β 0

−γ ∗ 0

)
, A−1 = α1

(
0 γ

0 β∗

)
,

A+2 = α2eiθ

(
0 γ

0 β∗

)
, A−2 = α2e−iθ

(
β 0

−γ ∗ 0

)
,

A+3 = −α3

(
0 β

0 −γ ∗

)
, A−3 = α3

(
γ 0
β∗ 0

)
,

A+4 = −α4e−iθ

(
γ 0
β∗ 0

)
, A−4 = α4eiθ

(
0 β

0 −γ ∗

)
,

(A32)

with αi > 0, α1α2 = α3α4,
∑4

i=1 α2
i = 1, β, and γ defined as

in Eq. (A31), and up to a left multiplication by an arbitrary
unitary commuting with the symmetry group giving the in-
variance condition (10).
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