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Threshold effects in electron-positron pair creation from the vacuum:
Stabilization and longitudinal versus transverse momentum sharing
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Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

(Received 19 November 2018; published 2 July 2019)

Momentum distributions of electron-positron pairs created from the vacuum by an oscillating in time electric
field are calculated in the framework of quantum field theory. A pronounced enhancement of those distributions
is observed as the frequency of the electric field passes across the one-photon threshold. Below that threshold the
pairs preferentially carry a longitudinal momentum, while above the threshold they tend to carry a transverse
momentum. Such momentum sharing has an impact on the number of produced pairs: It grows fast with
increasing the field frequency below the threshold but it saturates at a roughly constant value above it. On the
other hand, at the fixed frequency above the one-photon threshold, the number of pairs scales quadratically with
the field strength. This typically perturbative scaling holds even for large electric fields. Thus, the validity of the
perturbation theory is extended here to processes which result in creation of particles with substantial transverse
momenta.
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I. INTRODUCTION

The vacuum instability in the presence of a static electric
field, which results in electron-positron (e−e+) pair creation,
has been predicted decades ago [1–3]. Breaking the vacuum
requires an enormous electric field strength ES = m2

ec3/|e|h̄ =
1.32 × 1018 V/m, where me is the electron rest mass and
e = −|e| < 0 is its charge (here and in what follows, we keep
h̄ = 1) [4]. Here ES is the Sauter-Schwinger critical field.
Since such an electric field cannot be achieved in labora-
tory settings, the Sauter-Schwinger mechanism of electron-
positron pair production has not been verified experimentally
yet. Another disadvantage is that the process is very weak.
Hence, various proposals have been put forward aiming at
enhancing the signal of electron-positron pairs [5–21]. Thus,
raising the question of optimal control of the process [22,23].

In this paper we study the quantum vacuum instability in
the presence of a pulsed electric field, with a frequency tuned
so it passes across the one-photon threshold. This region is
particularly interesting, due to a threshold-related enhance-
ment of probability distributions of created pairs. Similar en-
hancements have been observed before in the context of mul-
tiphoton pair production and channel closing effects [24–26].
It is, however, the one-photon process that is the most efficient
of all, in agreement with the results presented in [25,26].
At this point, let us also note that similar threshold-related
enhancements have been observed in other multiphoton pro-
cesses such as strong-field detachment or ionization [27–30]
and, as such, they are a universal strong-field phenomenon.

A closely related to threshold enhancements is the concept
of an effective mass acquired by particles in strong fields.
Such a concept, depending explicitly on the electric field
parameters, has been discussed in [25]. Its limitation was
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also noted, as the effective mass should vary between dif-
ferent parameter regimes. While [25,26] are related to the
nonperturbative regime of pair creation, most of our results
concern the opposite one. It is commonly believed that in
the perturbative regime, the effective mass approaches the
rest mass of particles. As we demonstrate in our paper, this
happens provided that the transverse momentum of created
particles is negligible.

Our paper deals with the quantum vacuum instability in-
duced by a time-varying electric field; known as the dynami-
cal Sauter-Schwinger process. To experimentally explore this
phenomenon, it is necessary that short and intense pulses of
electric field are generated in the laboratory. In this context
it seems promising to use the rapidly developing laser tech-
nology, which allows us to generate very short (i.e., femto-
or attosecond) and relativistically intense (of the order of
1022–1023 W/cm2) light pulses [31]. Actually, the e−e+ pair
creation in electron-light collisions has been already observed
in the experiment [32,33] and interpreted theoretically as an
indirect process [34,35]. Another possibility is to produce
pairs in an all-optical scenario, i.e., in light-light collisions
that result in an electromagnetic standing wave [36,37]. In
this case, by adjusting polarizations of the colliding laser
pulses, one can eliminate the magnetic field component and
deal only with the space- and time-dependent electric field,
at least in a small space domain. As shown in [36,37], the
space dependence of the electric field significantly modifies
the momentum distribution of created pairs. This can be
attributed to the laser-photon momentum, which is neglected
in the dipole approximation. In this scenario, however, for the
Sauter-Schwinger effect to be measurable, the laser-photon
energy has to be large; typically around or larger than the
electron rest energy mec2. Therefore, it is hardly expected
that such laser pulses can be generated in the laboratory
environments in a foreseeable future. Another method of
creating strong electric pulses, but this time in the absence
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of laser fields, are the heavy-ion collisions. This possibility
of investigating the quantum vacuum instability was envi-
sioned already in the 1970s and summarized in the book
[38] or the review articles [39,40] (see also a more general
presentation [41], where aspects related to the generation of
the quark-gluon plasma are also discussed). It seems that
the heavy-ion collisions provide the most effective way of
generating strong electric pulses, necessary for studies of the
vacuum instabilities considered in this paper. Additionally, for
vanishing longitudinal pair momenta (defined with respect to
the electric field direction), the time-dependent electric field
contributes to the time-dependent effective mass of electrons
and positrons. For this reason, the problems studied here can
find applications in the reheating processes that took part after
inflation (see, e.g., Refs. [42,43]). The above mentioned topics
are very fundamental in the areas of relativistic quantum
field theory and cosmology, for which the dynamical Sauter-
Schwinger process has always played the role of trailblazer
of explorations in relativistic physics. Thus, the important
question arises whether the type of investigations presented
in this paper can find practical applications or whether it
can be studied experimentally. The answer to this question is
positive as many relativistic-type phenomena can be explored
in essentially nonrelativistic systems. The best example of
such a system is graphene, in which massive electrons behave
as massless quasiparticles moving with the speed around 300
times smaller than the speed of light. The systems of this type
provide a spectacular avenue to test predictions of relativistic
quantum mechanics. For instance, the Klein paradox can be
probed in transport processes in graphene heterostructures.
It is also possible to create the energy gap in the electron
spectrum, which is equivalent to acquiring a nonzero mass
by quasiparticles. The literature on these and similar top-
ics is enormous (see, for instance, the recent collection of
articles presented in the book [44] and the review article
[45]). Importantly, since the energy gap in such systems is
by many orders of magnitude smaller than the free electron
rest energy, the effects predicted by quantum electrodynamics
(QED) for extremely large fields now become visible already
for moderate fields, for which the space dependence of the
electric field can be neglected. As it has been already realized
in various papers (see, e.g., [14] and references therein), the
corresponding equations for the momentum distribution of
quasiparticles in graphene (to mention only the most popular
solid-state system considered in this context) are very similar
to the ones that we derive within the relativistic QED. Thus,
also their consequences have to be similar. Note that analogs
of the vacuum instability and the pair production induced
by an oscillating in-time electric field has been also realized
experimentally in waveguide superlattices [46]; thus, allow-
ing us to visualize nonperturbative and extreme dynamical
regimes of QED. These examples indicate that a remarkable
prediction of QED, which is the dynamical Sauter-Schwinger
effect, attracts a lot of attention across different disciplines.
Such investigations allow us, for instance, to build a bridge
between problems met in the micro- or mesoworld and those
investigated in astrophysics. Because of analogies to solid-
state and atomic physics, throughout the paper we shall use
the nomenclature typical in these fields. In particular, we
shall use the concept of multiphoton thresholds commonly

met in the detachment and photoinization processes. Also,
the effects related to the modulations or periodicity in time
of the electric field are going to be interpreted in terms of
the photon absorption or emission, as it is routinely done in
quantum mechanics.

In the current paper we provide a detailed study of
the Sauter-Schwinger process in the vicinity of the one-
photon threshold. This threshold marks the border between a
multiple- and one-photon pair production. Thus, it makes for
a qualitatively different behavior of the resulting momentum
distributions and the number of produced pairs in those two
regimes. Our analysis shows, for instance, that the process
is either dominated by the longitudinal or by the transverse
motion of created particles, that is below and above the one-
photon threshold respectively. This also affects the marginal
momentum distributions of created particles, as presented in
the paper. The overall result on the total number of produced
pairs is that while it increases fast with the electric field
frequency below the threshold, it stabilizes above it. While
our conclusions follow from exact numerical calculations,
they are also confirmed by analytical results derived from the
perturbative treatment of pair production.

Note that stabilization by external fields has been ob-
served in other quantum-mechanical problems as well. See,
for instance, the stabilization of atoms or molecules in in-
tense laser fields [47] and the stabilization of electron states
in semiconductor heterostructures by crossed magnetic and
electric fields [48]. Such an effect has also been observed in
the nonlinear Bethe-Heitler process of pair production [49].
This counterintuitive effect seems, therefore, to occur quite
frequently in quantum physics.

The paper is organized as follows. In Sec. II, for con-
venience of the reader, we briefly present the theoretical
formulation of the Sauter-Schwinger pair production by a
time-dependent electric field. This is followed by a detailed
analysis of the resulting momentum distribution and the num-
ber of created pairs in Sec. III. We summarize our results
in Sec. IV. The Appendix presents the analytical explanation
of the momentum sharing of produced particles, observed in
numerical analysis in Sec. III.

Unless otherwise stated, throughout the paper we put
h̄ = 1. In contrast, in all formulas we keep the speed of light
c and the free electron mass me. This is to keep track of quan-
tities which have to be replaced (by the Fermi velocity and by
the electron effective mass, respectively) when applying this
theory to graphene or to other solid-state-based systems used
in this context.

II. THEORETICAL FORMULATION

We consider the electron-positron pair creation from vac-
uum by a homogeneous in space, time-dependent electric
field, E (t ) = E (t )ez. In addition, we assume that the field
satisfies the condition [21]

∫ +∞

−∞
dt E (t ) = 0. (1)

The reason for this extra assumption is that we want to
eliminate any effects that are related to the change of the
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free-particle kinetic energy in the in- and out-states. This also
means that in the classical dynamics of electrons in the pres-
ence of an oscillating in time electric field their initial and final
momenta are equal. In the presence of the time-dependent
electric field, the fermionic field operator can be decomposed
into eigenmodes which are labeled by the linear momentum
p. In the following, we will relate to its longitudinal p‖ and
transverse p⊥ components being defined with respect to the
electric field direction,

p‖ = p · ez, p⊥ = p − p‖ez. (2)

As it was demonstrated in [21,50,51], the momentum distri-
bution of particles f (p) generated in the given eigenmode of
the fermionic field p is determined by solving the system of
equations,

i
d

dt

⎡
⎢⎣

c(1)
p (t )

c(2)
p (t )

A(t )

⎤
⎥⎦ =

⎛
⎝ ωp(t ) i�p(t ) 0

−i�p(t ) −ωp(t ) 0
0 0 0

⎞
⎠

⎡
⎢⎣

c(1)
p (t )

c(2)
p (t )

A(t )

⎤
⎥⎦

−

⎡
⎢⎣

0

0

iE (t )

⎤
⎥⎦, (3)

with the initial conditions that

lim
t→−∞ c(1)

p (t ) = 1, lim
t→−∞ c(2)

p (t ) = 0, lim
t→−∞ A(t ) = 0.

(4)

Namely,

f (p) = lim
t→+∞

∣∣c(2)
p (t )

∣∣2
, (5)

where ∣∣c(1)
p (t )

∣∣2 + ∣∣c(2)
p (t )

∣∣2 = 1. (6)

Moreover, A(t ) in (3) defines the vector potential A(t ) =
A(t )ez, where E (t ) = −Ȧ(t ), and, according to Eq. (1), it has
to satisfy the condition

lim
t→−∞A(t ) = lim

t→+∞A(t ) = 0. (7)

Here we took into account Eq. (4). Moreover, in Eq. (3) we
have introduced

ωp(t ) =
√

[me(p⊥)c2]2 + c2[p‖ − eA(t )]2, (8)

with the electron effective mass,

me(p⊥) = 1

c

√
(mec)2 + p2

⊥. (9)

This is to emphasize that the transverse momentum of the
electron always enters the formulas through the coupling to
mec. This is confirmed by the definition of

�p(t ) = −ceE (t )
me(p⊥)c2

2ω2
p(t )

, (10)

which appears in (3) along with ωp(t ). Note that, for negli-
gibly small transverse momenta of produced particles, their
effective mass (9) reduces to the rest one. As we will show
in the next section, this characterizes the perturbative regime
of a few-photon pair production. In contrast, the one-photon

processes are typically accompanied by a large transverse
momentum gain. Thus, giving a rise to the particles rest mass.

At this point we comment on the function A(t ), which is the
z component of the vector potential A(t ). It has to be stressed
that this is the vector potential in a particular gauge, in which
it is solely determined by the electric field strength E (t ) (the
magnetic field is not present in our discussion),

A(t ) = −
∫ t

−∞
dτ E (τ ). (11)

In addition, it is assumed that the scalar potential vanishes.
Generally speaking, the electromagnetic vector potential may
differ from the above quantities by the four gradient of an
arbitrary and sufficiently smooth function of x = (ct, x). As
it is known, this arbitrariness can be removed, however, from
the Dirac equation by multiplying the Dirac bispinor by the
properly chosen phase factor, which does not affect probabil-
ity currents. Since the system of equations (3) is derived from
the Dirac equation without approximations and the amplitudes
c(1,2)

p (t ) are related to the solution of the Dirac equation by the
algebraic linear transformation, their modulus square is gauge
invariant. Therefore, the results presented in this paper hold
irrespectively of the chosen gauge.

The first two equations of (3) are structurally identical with
the Schrödinger equation of a two-level system. They have to
be solved for the functions c(i)

p (t ), i = 1, 2, which determine
the momentum distributions of created particles [Eqs. (5)
and (6)]. Due to the axial symmetry of the problem, those
distributions will depend only on p‖ and p2

⊥ = p2 − p2
‖, i.e.,

f (p) = f (p‖, p⊥). For our further purposes, we also introduce
the marginal momentum distributions,

f (p‖) = 2π

∫ +∞

0
d p⊥ p⊥ f (p‖, p⊥) (12)

and

f (p2
⊥) = π

∫ +∞

−∞
d p‖ f (p‖, p⊥). (13)

Then, the total number of pairs created in the relativistic unit
volume becomes

f =
∫

d3 p f (p‖, p⊥) = 2π

∫ +∞

−∞
d p‖

∫ +∞

0
p⊥d p⊥ f (p‖, p⊥)

=
∫ +∞

−∞
d p‖ f (p‖) =

∫ +∞

0
d p2

⊥ f (p2
⊥). (14)

Note that these definitions allow us to determine the momen-
tum probability distributions,

P (p‖, p⊥) = f (p‖, p⊥)/ f (15)

and

P (p‖) = f (p‖)/ f , P (p2
⊥) = f (p2

⊥)/ f . (16)

While in the following we will calculate f (p‖, p⊥) along with
the longitudinal and transverse momentum distributions of
created particles f (p‖) and f (p2

⊥), their functional depen-
dence on p‖ and p2

⊥ remains the same as for the probability
distributions mentioned above. Thus, it will be justified to talk
about the particle’s momenta for which the pair creation will
be the most and least probable, even though formally we will
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FIG. 1. Time dependence of the electric field E (t ) [Eqs. (17) and
(18)] and the corresponding vector potential A(t ) for different values
of the parameter N = 1 (blue), 2 (red), 3 (green), 4 (magenta), and
5 (black). With increasing N the carrier frequency of the electric
field oscillations ω increases as well. On the other hand, we keep the
amplitude of the electric field fixed, E0 = −0.1ES . Hence, while the
number of modulations in the pulse increases with N , the amplitude
of the vector potential decreases like 1/N .

not calculate the probability distributions given by Eqs. (15)
and (16).

We will perform calculations for the following model of a
pulsed electric field:

E (t ) = E0F (t ), (17)

with

F (t ) = N0

cosh(βt )
sin(ωt ). (18)

Here E0 is the amplitude while ω is the carrier frequency
of field oscillations. The parameter β in (18) determines the
bandwidth of the pulse. In the following we will fix β = mec2

and E0 to either E0 = −0.1ES or E0 = −ES . On the other hand,
we will change the frequency ω such that ω = Nω0, with
ω0 = 0.2π mec2 and the value of N varying continuously. To
fix the amplitude of the electric field while changing its carrier
frequency, we will adjust N0 such that

max
t

|F (t )| = 1. (19)

This means that the number N0 has to be changed appropri-
ately for different values of N . For E0 = −0.1ES , the time
dependence of the electric field E (t ) and the corresponding
vector potential A(t ) are shown in Fig. 1. Note that the
maximum of the vector potential scales like 1/N , and so it
decreases with increasing N . Similar behavior of E (t ) and
A(t ) is observed if we change the electric field amplitude to
E0 = −ES . As we will demonstrate in the next section, this
will have an impact on the momentum distributions of created
pairs.

III. NUMERICAL ILLUSTRATIONS

In Fig. 2 we present the color mappings of the momen-
tum distribution f (p‖, p⊥) as a function of the longitudinal
momentum p‖ and a real number N = ω/ω0. The results
are for E0 = −0.1ES and p⊥ = 0, with the remaining pa-
rameters given in the previous section. While in the upper
panel we plot the results in the linear scale, their details
become more visible in the logarithmic scale, which is used
in the lower panel. As one can see, there is a region in the
(p‖, N ) plane where the e−e+ pair creation is most probable.
This region is characterized by a roughly zero longitudinal
momentum of created pairs p‖ ≈ 0, and by the value N ≈ 3.
For ω0 = 0.2π mec2, the latter corresponds to the electric field
carrier frequency of roughly ω ≈ 2mec2. This is the energy
necessary to be absorbed from the external field in order to
produce an electron-positron pair at rest. This agrees with the
fact that the corresponding momentum distribution peaks at
p = 0. It also shows that the most probable process is via
absorption of a single photon. Other order processes, i.e.,
processes which occur via absorption of multiple photons,
are possible but they are less likely to happen. This is even
more clear in Fig. 3 for E0 = −ES . The additional stripes in
the distribution, which are visible already in the linear scale
in the upper panel, correspond to different order processes.
In these cases, the carrier frequency of the electric field is
smaller than 2mec2 and, hence, the one-photon pair production
is forbidden. Nevertheless, it is possible to absorb additional
photons from the field, which leads to the above-threshold
pair production. With increasing ω (or, equivalently, N) we
pass through the one-photon threshold at ωth = 2mec2. Since

FIG. 2. Color mappings of the momentum distribution of created
particles f (p‖, p⊥), for E0 = −0.1ES and p⊥ = 0 as a function of p‖
and N = ω/ω0. While in the upper panel we plot the results in the
linear scale, in order to emphasize the details of the distribution the
same but in the logarithmic scale is plotted in the lower panel.
The distribution is maximum roughly for p‖ ≈ 0 and ω ≈ 2mec2

which, together with p⊥ = 0, define the threshold for the one-photon
pair production.
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FIG. 3. The same as in Fig. 2 but for E0 = −ES .

for the n-photon process the energy conservation law is nω =
2
√

[me(p⊥)c2]2 + c2 p2
‖ , one can anticipate that in the current

case (n = 1 and ω ≈ ωth) it is energetically preferable to
produce particles at rest. With still increasing ω, there will
be a portion of energy in excess to the threshold energy ωth

that will be available to the particles. As it is already indicated
by Figs. 2 and 3, which are for p⊥ = 0, this portion of energy,
which will be equally redistributed between an electron and a
positron, is hardly converted into their longitudinal motion. A
more detailed analysis of the excess energy sharing between
the longitudinal and the transverse motion of the particles can
be based upon the color mappings presented in Fig. 4.

The two-dimensional momentum mappings in Fig. 4 are
for E0 = −ES and for different values of N (i.e., for different
carrier frequencies ω). Such strong electric field has been
chosen, as the features of the momentum distributions we
want to discuss next are very pronounced in this case. First, we
note that for N = 1, 2, and 3, the corresponding frequencies
of the field oscillations ω = Nω0 are below the one-photon
energy threshold ωth. In other words, these processes corre-
spond to the above-threshold pair production. In this regime,
the pairs are mostly created with a zero transverse and a
nonzero longitudinal momentum components. For this strong
field, already in the linear scale, the multiphoton modulations
in the pair creation momentum distributions are visible. More
importantly, with increasing N toward the one-photon thresh-
old (Nth = 10/π = 3.18) the maximum of those distributions
shifts toward zero longitudinal momentum. At the same time,
when looking at the magnitude of the distributions, those will
be the most pronounced of all. While still increasing N , the
pair creation remains the one-photon process. Such a process
typically occurs with a nearly zero longitudinal momentum
of created particles but the excess energy absorbed from the
field is converted into the particles transverse motion. Thus,
with increasing N (and, hence, with increasing the available
excess energy), the maximum of the momentum distribution
is shifted toward larger transverse momenta.

FIG. 4. Color mappings of the momentum distribution of created
particles f (p‖, p⊥) as a function of their longitudinal and transverse
momenta. The results (in the linear scale) are plotted for E0 = −ES

and for different values of N , as denoted in each panel. For N = 1,
2, and 3, the process occurs via absorption of multiple electric field
quanta. In this case, the most probable is to produce the e−e+ pair
with a roughly zero transverse and nonzero longitudinal momentum
components. With increasing N (N � 4), the pair creation occurs
via a one-photon process. In such a case, the maximum of the
distribution shifts toward larger values of the transverse momentum.
At the same time, the distribution remains maximum around the
zero longitudinal momentum, even though it becomes increasingly
more spread around that value. Above the threshold most of pairs are
created perpendicularly to the electric field.

As it follows from our analysis, the energy sharing between
the transverse and longitudinal motion of created particles
strongly depends on whether the pair creation is due to a
single- or to a multiphoton transition. In either case, the
energy absorbed from the field seems to be redistributed
such that the particles have minimal energy. Specifically, for
small N , in which case the vector potential takes large values
(see Fig. 1), it has to be balanced by a large longitudinal
momentum. This follows from the definition of ωp(t ) [Eq. (8)]
which enters the system of equations (3). It also explains why
with decreasing N , the respective longitudinal momentum
for which we observe maximum pair creation shifts toward
larger values. At the same time, to minimalize the energy of
created particles, the transverse momentum remains roughly
zero. Taking into account the definition (9), one can conclude
that multiphoton pair creation occurs with no increase of the
particles effective mass. According to Eq. (8), the resulting
momentum distributions should not be symmetric with respect
to the momentum reflection p‖ → −p‖, or, consequently,
p → −p. This is confirmed by Fig. 4 for substantial values of
the vector potential, i.e., for small values of N . However, for
larger N and, hence, for smaller values of the vector potential
describing the external field, this asymmetry vanishes. As
already discussed, close to the one-photon threshold, the pairs
are created with roughly a zero momentum p ≈ 0. With still
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FIG. 5. The same as in Fig. 4 but for E0 = −0.1ES .

increasing N , the coupling to the vector potential practically
does not play a role. In this case, it is energetically preferable
that the excess energy absorbed from the field contributes to
the transverse motion of created particles. Hence, the one-
photon pair creation typically is accompanied by an increase
of the particles effective mass (9).

To illustrate the transition between the pair creation while it
occurs with multiple versus single photon absorption we have
used a rather strong electric field E0 = −ES . For weaker fields,
such as E0 = −0.1ES , the general features of the momentum
distributions remain however the same (see Fig. 5). The dif-
ference is that in this case the multiphoton modulations of the
momentum distributions are not as pronounced as in Fig. 4.
This will affect detailed features of the marginal momentum
distributions presented below.

In Fig. 6 we show the transverse momentum distribution
f (p2

⊥) of pairs generated from the vacuum by the electric field
considered in this paper. This time the amplitude of the elec-
tric field oscillations is E0 = −0.1ES . Each curve corresponds
to a different carrier frequency of the electric pulse determined
by N . As the effect of the integration of the two-dimensional

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

N=1
N=2
N=3
N=4
N=5
N=6

FIG. 6. The transverse momentum distribution f (p2
⊥) for E0 =

−0.1ES while changing the carrier frequency of the electric field, as
pointed out by different values of N . The thick lines correspond to
processes either just below (N = 3) or above one-photon threshold
(N = 4).
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FIG. 7. The longitudinal momentum distribution of created pairs
f (p‖) (upper panel) and the total number of pairs created in the
relativistic unit volume f (lower panel) for E0 = −0.1ES and for
chosen values of, in principle, real parameter N . Similar to Fig. 6, the
thick lines correspond to just below (N = 3) or just above one-photon
threshold (N = 4).

momentum maps with respect to the longitudinal momentum
component, for those frequencies which are below the one-
photon energy threshold, f (p2

⊥) has a maximum at the zero
perpendicular momentum. With increasing N , the maximum
of the distribution grows in magnitude to become the most
pronounced at the threshold value Nth = 10/π . Above the
threshold, however, which is illustrated in Fig. 6 for N = 4,
5, and 6, the distribution exhibits an off-axis maximum. With
increasing N , this maximum shifts toward larger values of
p⊥. While it spreads in p⊥, the magnitude of the distribution
drops down. The exact same behavior of f (p2

⊥) is observed for
stronger electric fields. Interestingly, as we have checked this
for E0 = −ES , the off-axis maxima of the transverse momen-
tum distributions occur at the exact same values of p⊥ for the
given N . The respective values of p⊥ can be estimated from
the energy conservation relation. Namely, taking into account
that the pairs produced in the one-photon process have most
likely a zero longitudinal momentum, we estimate that p⊥ =√

(Nω0/2c)2 − (mec)2. This predicts quite accurately the po-
sitions of the off-axis maxima in Fig. 6 and is independent of
the amplitude of the electric field oscillations E0.

In Fig. 7 we plot the longitudinal momentum distribution
f (p‖) (upper panel) and the total number of created pairs f
per unit volume (lower panel) for E0 = −0.1ES . While all
curves in the upper panel are bell shaped, their maximum is
shifted to positive values of p‖ for small N . This asymmetry
is lifted with increasing N , which was already noted in re-
lation to the two-dimensional distributions f (p‖, p⊥). If we
perform similar calculations for E0 = −ES , the bell-shaped
curves centered at p‖ ≈ 0 represent the results for N > Nth

only. For small N , the marginal momentum distribution f (p‖)
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FIG. 8. Dependence of the total number of e−e+ pairs f on
the electric field strength E0. Each curve corresponds to a different
value of N , which translates into a different carrier frequency of the
external field according to ω = Nω0.

exhibits multiple maxima for p‖ > 0, which result from the
multiphoton modulations observed in Fig. 4. Rather than that,
the overall behavior of f (p‖) is the same, irrespectively of
the electric field strength. In the lower panel of Fig. 7, we
present the total number of pairs f calculated for discrete
values of N between 1 and 20. Below the one-photon thresh-
old (N < Nth), f takes rather small values which, however,
increase quickly around Nth. Above the one-photon threshold
(N > Nth), on the other hand, the number of created particles
seems to saturate and even slightly decreases with N . One
can conclude that, while the excess energy absorbed from the
field in the one-photon process increases the effective mass
of created particles me(p⊥), it hardly affects their number.
Similar stabilization is observed for E0 = −ES , even though
the number of pairs in this case is by two orders of magnitude
larger. In light of this result, it is interesting to study more
closely the dependence of the number of created particles on
the electric field strength.

In Fig. 8 we plot the total number of created pairs f
[Eq. (14)] as a function of E0. The results are for differ-
ent N , as denoted in the figure. We have checked that,
above the one-photon threshold, the curves fit well to the
functional dependence f = 3.5(E0/ES )2. In other words, for
N > Nth, the number of created pairs per relativistic unit
volume depends quadratically on the external field strength,
as observed already in relation to Fig. 7. This indicates the
perturbative character of the process. The same conclusion
is reached when considering the Keldysh parameter γ =
ωES/(mec2|E0|). Specifically, we would also like to note that
γ = 2πN for E0 = −0.1ES and γ = πN/5 for E0 = −ES ,
which are the cases thoroughly studied in this paper. This
shows that most of our results relate to the perturbative regime
of electron-positron pair creation, with γ � 1. Let us also note
that, for fixed E0, we go even more deeply into this regime
when increasing N . Going back to Fig. 8, we note that neither
of the curves can be fitted to the Schwinger tunneling formula
f ∼ (E0/ES )2 exp(−πES/|E0|), as the latter is applicable for
γ 	 1.

In light of these conclusions, let us go back to Eq. (3) and
treat the first two equations perturbatively. This can be done
assuming that

max
t

|�p(t )| 	 min
t

|ωp(t )|, (20)

which means that

E0

2ES
	

[
me(p⊥)

me

]2

. (21)

Therefore, the perturbation theory can be applied when either
the electric field is weak compared to the Sauter-Schwinger
critical field, or when the transverse momentum of created
particles is substantial [i.e., me(p⊥) 
 me]. The latter is par-
ticularly important from the point of view of this paper, as
it characterizes the one-photon processes. As we have shown
numerically, beyond the one-photon threshold, the particles
will be produced with a significant transverse momentum ir-
respectively of the electric field strength. This justifies the per-
turbative treatment of such processes, in agreement with (21).
In this case, the original system of equations (3) reduce to

iċ(1)
p (t ) = ωp(t )c(1)

p (t ), (22)

iċ(2)
p (t ) = −i�p(t )c(1)

p (t ) − ωp(t )c(2)
p (t ), (23)

and it can be solved analytically. Accounting for the initial
conditions (4), we obtain that in the lowest order perturbation
theory with respect to �p(t ), the momentum distribution of
created pairs (5) becomes

f (p) ≈
∣∣∣∣
∫ ∞

−∞
dt �p(t )e−2i

∫ t
−∞ dτ ωp(τ )

∣∣∣∣
2

. (24)

Note that the same formula can be derived using the quantum
kinetic approach and the low-density approximation [51,52].
Taking into account the definition of �p(t ) [Eq. (10)], it
becomes clear that the minima of ωp(t ) contribute the most to
the above integral. Those minima are determined by the con-
ditions p⊥ = 0 and p‖ = eA(t ). The latter means that the tem-
poral longitudinal momentum of created particles oscillates in
time following the vector potential and, hence, asymptotically
it becomes zero. A trivial conclusion is that the most probable
process would result in generation of particles at rest, which
can be accomplished by absorbing a photon of energy
ωth = 2mec2. This has been seen in our numerical results. In
such a case, �p(t ) = −eE0F (t )/(2mec) and, consequently,
the momentum distribution (24) scales like E2

0 . Going beyond
the one-photon threshold, one can use the same argument.
The difference is that there will be the excess energy absorbed
from the field that will contribute to the effective mass of
particles. In such a case, �p(t ) = −eE0F (t )/[2me(p⊥)c],
which surely indicates a quadratic scaling of the number of
produced pairs f [Eq. (24)] with the electric field strength E0.
A more detailed qualitative analysis of the perpendicular and
parallel momenta sharing is presented in the Appendix.

IV. SUMMARY

Our results for the momentum distributions and the number
of electron-positron pairs created in the dynamical Sauter-
Schwinger process show dramatic changes with varying the
frequency of the electric field oscillations in the vicinity of the
one-photon threshold. Specifically, this concerns the energy
sharing between the longitudinal and the transverse motion
of created particles. While below the one-photon threshold
the particles are created with a nearly zero transverse and a
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substantial longitudinal momentum, this tendency is reversed
above the one-photon threshold. The latter is particularly
surprising, as it is commonly believed that particles are mostly
created along the electric field. As we have shown, with
increasing the field frequency above the one-photon threshold,
the field effect is exclusively to increase the effective mass of
produced particles (9). Their total number, however, remains
roughly the same. Moreover, it scales quadratically with the
strength of the electric field, which is typical for the perturba-
tive regime of e−e+ pair creation. Note that such perturbative
scaling of the number of produced pairs with the electric field
strength has been demonstrated in this paper for arbitrarily
strong electric fields. Thus, the validity of the perturbation
theory has been extended in this paper to processes with
substantial transverse momenta of created particles.

Our results are in line with the previous claim that the
effective mass of produced particles has to be redefined in
different regimes of pair creation [25]. In this paper we have
proposed the effective mass description that is applicable in
the perturbative regime. This involves the transverse momen-
tum of created particles (9). While below the one-photon
threshold it approaches the rest mass, it can be substantially
larger than that above the one-photon threshold. One can
conclude, therefore, that the transverse momentum of particles
can be a direct signature of their effective mass.
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APPENDIX: QUALITATIVE ANALYSIS OF THE
MOMENTUM SHARING OF PRODUCED PARTICLES

The common tool of analyzing the pair production by alter-
nating in time electric fields is the saddle-point approximation
[53,54]. It was shown in these papers that the momentum
distribution of created particles is mostly concentrated at the
origin, i.e., for small values of p, and as exemplified by
Eq. (3) in Ref. [54], is of the Gauss-type form. Our anal-
ysis demonstrates that such a pattern is not always present,
as for sufficiently rapidly oscillating electric fields nonzero
transverse momenta are favored against longitudinal ones; the
latter being still centered around small values. This means that
the interpretation of our numerical results should be based
on a different approach. Let us note that it would be very
difficult, if not impossible, to develop a general approach
describing different regimes of electric-field interaction with
vacuum. Therefore, we shall dwell on our particular findings
that seem to be not adequately well described by the saddle-
point analysis applied in [53,54] (and references therein).

Namely, for sufficiently rapidly oscillating fields, when the
condition | − 2eA(t )p‖ + e2A2(t )| 	 m2

e (p)c2 with m2
e (p) =

m2
e + p2/c2 is fulfilled (see Fig. 1), one can approximate ωp(t )

by the Taylor expansion,

ωp(t ) ≈ me(p)c2 + −2eA(t )p‖ + e2A2(t )

2me(p)
≈ me(p)c2,

(A1)

provided that |eA(t )/me(p)c| 	 1. Moreover, within this ap-
proximation we have

�p(t )

me(p)c2
≈ |e|E (t )me(p⊥)

2m3
e (p)c3

. (A2)

Therefore, if we define the momentum-dependent Sauter-
Schwinger electric field strength (temporarily we restore the
Planck constant h̄),

ES (p) = m2
e (p)c3

|e|h̄ , (A3)

and consider electric fields such that |E (t )| 	 ES (p), then

|�p(t )| 	 ωp(t ) ≈ me(p)c2, (A4)

and the perturbative approach (24) is applicable. Moreover,
for the rapidly oscillating electric fields (i.e., for ω 
 β [see,
Eq. (18)]) the slowly varying envelope approximation is justi-
fied. Since in our case the electric field is E (t ) = E0(t ) sin ωt
[see Eqs. (17) and (18)] and the slowly changing envelope
approximation requires that Ė0(t ) 	 ωE0(t ), therefore, in all
time-integrals containing the electric field we can consider the
envelope E0(t ) to be constant. As the result, we arrive at the
following approximations:

A(t ) = −
∫ t

−∞
E (t )dt ≈ E0(t )

ω
cos ωt,

∫ t

−∞
A(t )dt ≈ E0(t )

ω2
sin ωt,

∫ t

−∞
A2(t )dt ≈ E2

0 (t )

2ω2
t + E2

0 (t )

4ω3
sin 2ωt . (A5)

Thus, the phase in (24) becomes

2
∫ t

−∞
[ωp(τ ) − me(p)c2]dτ ≈ a1(p, t ) sin ωt

+ a2(p, t ) sin 2ωt + U (p, t )t,

(A6)

where

a1(p, t ) = − 2eE0(t )p‖
me(p)ω2

, a2(p, t ) = e2E2
0 (t )

4me(p)ω3
,

U (p, t ) = e2E2
0 (t )

2me(p)ω2
. (A7)

Accounting for these approximations, which for parameters
considered in this paper are quite well satisfied, the momen-
tum distribution of created pairs (5) becomes

f (p) = |A(p)|2, (A8)

with

A(p) ≈ − me(p⊥)c3

(2me(p)c2)2

∫ ∞

−∞
dt eE0(t )[ei(ω−2me (p)c2 )t

− e−i(ω+2me (p)c2 )t ] exp[−ia1(p, t ) sin ωt

− ia2(p, t ) sin 2ωt − iU (p, t )t]. (A9)

012104-8



THRESHOLD EFFECTS IN ELECTRON-POSITRON PAIR … PHYSICAL REVIEW A 100, 012104 (2019)

Note that the dominant contribution to this integral is for such
momenta for which ω ≈ 2me(p)c2, or

p2
⊥ + p2

‖ ≈ (ω/2)2 − (mec2)2

c2
. (A10)

Thus, we obtain that the one-photon process is the most
probable, and Eq. (A10) expresses the respective energy con-
servation condition. As a result, we clearly observe the ring
pattern (see Figs. 4 and 5) for ω/2 significantly larger than the
electron rest energy. Furthermore, for parameters considered
here and for ω larger than 2mec2 the functions a1(p, t ),
a2(p, t ), and U (p, t )/ω are smaller than 1. Therefore, in the
leading approximation we can ignore the last exponential
function in Eq. (A9). In this case, for the momenta that satisfy
Eq. (A10), we obtain

A(p) ≈ −i
me(p⊥)c3

ω2

∫ ∞

−∞
dt eE0(t ). (A11)

This formula supports our numerical findings that within the
one-photon ring (A10) the momentum distributions reach
their maxima for small values of longitudinal momenta p‖.
Since for large ω also the vector potential A(t ) is small (see,
e.g., Fig. 1), therefore, one can conclude that for the above-
threshold pair production the most favorable momentum shar-
ing is such that p‖ − eA(t ) ≈ 0. This result contradicts what
one could expect from the standard tunneling theory, which
was discussed already in the original Sauter paper [1].

Our qualitative analysis also explains the existence of
secondary rings in the momentum distributions of created
particles; the latter being hardly visible for the parameters
chosen in this paper. Namely, by applying the Fourier decom-
position

exp[−ia1(p, t ) sin ωt − ia2(p, t ) sin 2ωt]

=
∞∑

L=−∞
eiLωt B−L[a1(p, t ), a2(p, t )], (A12)

where B−L(x, y) are the so-called generalized Bessel functions
[55], we find out that the secondary rings for L = 1, 2, . . . are
defined by the equation

(L + 1)ω − 2me(p)c2 ≈ 0. (A13)

This is provided that U (p, t ) can be neglected with respect to
ω, which leads again to the circular rings in the momentum
distribution of created particles. Similarly, one can derive
formulas analogous to (A11). In particular, for L = 1, the am-
plitude A(p) behaves like E2

0 , in accordance with perturbation
theory.

In conclusion, let us note that the qualitative predictions
concerning the momentum sharing in pair creation by oscil-
lating in time electric fields presented in this Appendix could
be valid even beyond the domain of validity of approximations
applied. In such cases, however, it would be rather difficult to
devise an analytical approach for the reliable interpretation of
numerical results. Meaning that one would have to rely only
on the numerical analysis.
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