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Effective breaking of the action-reaction principle using spatial solitons
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We discuss a class of interactions between self-confined optical beams breaking the action-reaction principle.
The effective force intertwining the beams does not satisfy momentum conservation, paving the way to the
potential existence of situations where both beams are pushed in the same direction, in turn leading to the
so-called diametric drive. In our theoretical proposal the interaction between the two light beams is enabled by
optical nonlinearity. The nonlinearity is assumed to change sign with the light polarization, in turn allowing the
two light beams to be attracted or repelled by an inhomogeneous region according to the photon polarization.
We demonstrate that this exotic type of nonlinear spin-orbit-like interaction can be achieved in nematic liquid
crystals (NLCs). In fact, depending on the input polarization, in NLCs a change in temperature corresponds to a
focusing or defocusing index change. For the polarization seeing a thermal defocusing response (corresponding
to the extraordinary component), the self-confinement is ensured by the simultaneous action of reorientational
nonlinearity.
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Momentum conservation is one of the fundamental prin-
ciples in physics, both in the classical and in the quantum
regime [1]. Generally speaking, the momentum conservation
comes directly from Noether’s theorem [2], in turn stating the
invariance of the laws of physics with respect to translations
in space. In classical physics momentum conservation is ac-
counted for by Newton’s third law: In the interaction between
two bodies, reciprocal repulsion or attraction takes place (see,
for example, the gravitational and Coulombian interactions).
Stated otherwise, the interaction forces acting on each body
are equal in magnitude, but their directions are opposite to
each other. The dynamics of the motion strongly changes if
we suppose a negative mass for one of the two bodies. A
negative mass corresponds to an effective acceleration of the
body in the opposite direction with respect to the applied
force [3,4]. In other words, the interaction is attractive on one
body and repelling on the other, yielding a continuous and
constant (if the absolute value of the two masses is identical)
acceleration between the two bodies [5]. We will refer to
this case as hybrid attraction. This mechanism is called a
diametric drive and it has been proposed as a revolutionary
mechanism for space propulsion [6]. An optical diametric
drive has been demonstrated in optics by using waves with an
effective negative mass in periodic structures [5,7,8]. Beyond
Bloch waves in periodic structures [9], negative mass for
waves can originate from a temporal dispersion of pulses in
optical fibers [10,11], spin-orbit interactions [3,4], nonlinear
effects [12], and hyperbolic dispersion [13]. Negative mass
has been also recently connected with spectral broadening in
the nonlinear regime [14].
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Let us formulate a formal introduction to the problem in the
framework of classical mechanics. The interaction between
two pointlike bodies is described by

d2x1(t )

dt2
= F21

m1
,

(1)
d2x2(t )

dt2
= F12

m2
,

where ml (l = 1, 2) is the inertial mass. The third law of
mechanics prescribes F21 = −F12. In the presence of a neg-
ative mass (m1 > 0, m2 < 0) and time-independent force, the
distance x1(t ) − x2(t ) remains the same for an equal absolute
value of the masses only, but each body moves along the
parabolic path,

xl = x(in)
l + F21

2|ml | t
2, (2)

where the superscript (in) denotes the initial value at t = 0.
The corresponding momenta pl = mldxl/dt are p1 = p(in)

1 +
F21t and p2 = p(in)

2 + F12t ; the total momentum p = p1 + p2
is conserved given that p(t ) = p(in) at any time t [15]. When
m1m2 > 0, the trajectories xl still obey (2), if simultane-
ously the third law is broken according to the relationship
F21 = F12. However, the total momentum is no longer con-
served: In fact, its expression is p(t ) = p(in) + 2|F12|t .

There are thus two options to realize the diametric drive:
Find a two-body problem where the interaction is reciprocal
and the two masses are of opposite signs, or a nonrecipro-
cal interaction where the two masses have the same sign.
In this Rapid Communication, we theoretically demonstrate
the existence in bulk materials of a diametric drive in the
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interaction between spatial solitons, i.e., shape-preserving
waves generated by the interplay between diffraction and
nonlinear self-focusing. The predicted phenomenon requires
an exotic nonlinear interaction providing a hybrid attraction,
that is, F21 = F12. In this case the dynamics is called anti-
Newtonian, and it has been employed to model the evo-
lution of two correlated particles in a lattice [15] and the
predator-prey interaction in biology [16]. This can be achieved
in anisotropic materials where the change in the refractive
index due to a variation in one of the physical parameters
(temperature, density, molecular order, charge, etc.) depends
on the light polarization. We show that the thermo-optic
nonlinearity in nematic liquid crystals (NLCs) [17] provides
a hybrid attraction between the extraordinary and the ordinary
component. The defocusing character of the thermal nonlin-
earity for the extraordinary component is compensated by the
reorientational nonlinearity, thus ensuring the formation of
self-collimated beams in both polarizations [18,19].

In the stationary regime and under the paraxial approxima-
tion, light propagation in the presence of a power-dependent
refractive index n = n(|A|2) satisfies the Schrödinger-like
equation 2ik0n0∂A/∂z + ∇2

xyA + k2
0�n2(|A|2)A = 0, where

n0 = n(A = 0), �n2 ≡ �(n2) = n2(|A|2) − n2
0, and k0 is the

vacuum wave number: Light evolves as a quantum parti-
cle of effective mass n0k0 confined in a two-dimensional
space xy and subject to a nonlinear (i.e., power-dependent)
potential −k0�n2/(2n0). The effective time is given by the
propagation distance z, i.e., the substitution t → z must be
accounted for [20]. Let us now consider the propagation of
two beams, A1 and A2 being the respective electric fields,
in the nonlinear medium. To circumvent the presence of a
phase-dependent interaction due to the formation of fringes
in the overlap region [21,22], we suppose that the two fields
are mutually incoherent (e.g., different wavelengths or or-
thogonal polarizations). The nonlinear refractive index will
be thus in the form n(|A1|2, |A2|2): The two light beams will
undergo a reciprocal interaction mediated by the change in
the refractive index of the material [23]. In fact, applying
Ehrenfest’s theorem [22,24], in the presence of a generic
index inhomogeneity �n the effective force acting on each
beam is F l (z) = k0l

∫ |ϕl |2∇xy�n2dxdy (l = 1, 2), with ϕl =
Al/

√∫ |Al |2dxdy being the normalized wave function, and
where we considered the possibility that the two fields are
at a different wavelength. After taking a nonlinearity capable
of supporting bright spatial solitons (in our case the effective
masses of the beams are always positive, thus we need a posi-
tive nonlinearity [13]), we suppose that the input conditions
are such that they excite two self-trapped waves. Within a
good accuracy, the electromagnetic waves can thus be de-
scribed as particles, in turn providing F l (z) ≈ k0∇xy�n2|x=xl

[25], where xl = ∫ |ϕl |2xdxdy is the soliton position or center
of mass. If the nonlinearity �n2 is linear with respect to the
light intensity I = n|A|2/(2Z0) (Z0 is the vacuum impedance),
we get �n2(|A|2) = �n2(|A1|2) + �n2(|A2|2). The interac-
tion between the two solitons (labeled 1 and 2) is then ap-
proximated by Eq. (1) by setting F l p = k0p∇xy�n2(|Al |2)|x=xp

(p = 1, 2; p �= l). In the last passage we ruled out symmetry
breaking in the nonlinearity, the latter resulting in a self-
interaction force F ll responsible for soliton self-steering [26].

The particle model for the soliton (more precisely, solitary
waves) interaction in general does not conserve the momen-
tum given that Newton’s third law is not fulfilled. We stress
that the conservation law is broken when looking only at
the electromagnetic field distribution [27,28]: The momentum
of the overall system (electromagnetic field plus matter) is
always conserved in agreement with Noether’s theorem, re-
gardless of the optical input and/or of the material response.
If we follow Snyder’s original interpretation of solitons as
linear modes of the self-induced waveguide [29], the effective
breaking of the momentum conservation occurs when the
two beams together write an asymmetric structure, the latter
implying an exchange of momentum between matter and
light. Accordingly, the effects predicted here occur with and
without accounting for the longitudinal nonlocality typical of
diffusive systems [30].

Our approach to the diametric drive requires a nonlinear
interaction featured by F12 · F21 > 0, what we called a hybrid
attraction in the Introduction. This can be achieved by using
thermal nonlinearity in NLCs. NLCs behave as uniaxial mate-
rials with the optical axis n̂ varying in space. Thus, the refrac-
tive index depends both on the wave-vector k direction and
on the polarization of the field. For k · n̂ = 0, the refractive
index is n⊥ and n‖ for electric fields normal (ordinary wave)
or parallel (extraordinary) to the optical axis, respectively.
Due to their dependencies on the order parameter (the latter
measuring the thermal fluctuations of the NLC molecules
around the optical axis), n⊥ and n‖ have an opposite trend
with respect to temperature T [see Fig. 1(a)] [18,19,31]. Thus,
a positive gradient in the NLC temperature will correspond
to a positive or negative index gradient for ordinary (index
n⊥) and extraordinary (index n‖) waves, respectively. If the
change in temperature is due to optical absorption, an ordinary
beam will be attracted by an extraordinary beam, whereas at
the same time an extraordinary wave will be repelled by the
ordinary component. In other words, the thermal nonlinearity
in NLC changes its sign with the input polarization.

The final ingredient to maximize the diametric drive is
to ensure that the extraordinary wave is capable of forming
a spatial soliton. In fact, for k · n̂ = 0 it is dn‖/dT < 0,
thus the thermal nonlinearity is defocusing [18]. Nonetheless,
we can tilt the wave vector k with respect to n̂. Accord-
ingly, we denote yz the plane containing n̂ and k, and we
set θ = ∠(k · n̂). As is well known from optics in uniaxial

FIG. 1. (a) Behavior of n⊥ and n‖ vs temperature T for the NLC
E7, where the transition to the isotropic phase occurs for TNI =
58 ◦C. (b) Extraordinary refractive index ne vs angle θ for three
different temperatures. The wavelength is 1064 nm.
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FIG. 2. First to third column: Distribution of the total intensity on the plane xz for different input powers when the NLC is simultaneously
excited by an ordinary and an extraordinary wave, placed in x = −20 μm and x = 0 μm, respectively. The input beamwidth of the
extraordinary is 4 μm, whereas for the ordinary it is 10 μm. Each row (column) corresponds to fixed extraordinary (ordinary) input power.
Last column: Corresponding beam trajectories on the plane xz computed using the centroid of the intensity distribution. Solid and dashed lines
correspond to the extraordinary and the ordinary waves, respectively. In each panel the extraordinary power is fixed: Accordingly, a largest
bending for the solid curves (extraordinary waves) corresponds to a larger repulsion due to the increasing ordinary power. The three ordinary
trajectories in each panel are almost overlapping given that the extraordinary power is fixed. The wavelength is 1064 nm.

media, the extraordinary component (polarized along y in our
reference system) perceives a refractive index ne(θ, T ) ≈
n⊥(T ) + [n‖(T ) − n⊥(T )] sin2 θ [19], that is, a sort of θ -
dependent weighted average between n⊥ and n‖. The extraor-
dinary refractive index is then dependent both on temperature
T and angle θ [see Fig. 1(b)]. The extraordinary polarization,
unlike the ordinary component, is capable of inducing the
rotation of the optical axis by inducing dipoles in the NLC
molecules, the effect being called reorientational nonlinearity.
Spatial solitons based upon reorientational nonlinearity have
been largely investigated (see Ref. [32] for a review). Here,
the important point is that, for temperatures not too close to
TNI [33], the reorientational nonlinearity is dominant over the
thermal effect [19], thus ensuring the existence of a spatial
soliton for the extraordinary polarization [18]. Finally, to
observe the diametric drive we need the condition dne/dT <

0 to be fulfilled, providing approximately θ > arcsin
(1/

√
3) ≈ 35◦ [Fig. 1(b)].

A survey of numerical results for nine pairs of input powers
(Pe, Po) (e and o subscripts correspond to extraordinary and
ordinary, respectively) is reported in Fig. 2 for a planar cell
of length 1 mm along the propagation distance z, infinitely
extended along x and of thickness Ly along y. The numer-
ical simulations are carried out using an effective (1 + 1)-
dimensional [(1 + 1)D] model [34]. The powers are related to

the effective (1 + 1)D model (propagation on the plane xz, see
the Appendix), that is, they are 4–10 times smaller than real
powers (see Ref. [34] for further details). In the figure the two
input beams are 20 μm apart, whereas we fix l = Ly = 75 μm
(see the Appendix for their mathematical definition). The
length l corresponds to the amount of nonlocality for the re-
orientational nonlinearity, and it depends on the cell thickness
along y [34] and on the applied bias if present [35]. Despite
our choice of the parameters corresponding to unbiased cells
and a pretilt angle via specific rubbing treatments, our model
is far more general: Our results apply to biased cells as well,
after proper scaling of the beam powers is made. We take the
physical parameters of the NLC mixture E7 [31]. The optical
axis at rest forms an angle θ0 with the axis z. Hereafter we fix
θ0 = 55◦, whereas the sample temperature is 48 ◦C. We also
assume equal absorption coefficients for the two components
setting αe = αo = 0.1 mm−1: In real samples, the absorption
coefficients can be controlled by proper doping of the NLC.
Whereas Pe ≈ 1 mW is enough to excite the extraordinary
soliton, the ordinary soliton requires a much stronger input
power, in our case Po > 30 mW [18]. As predicted, the ex-
traordinary wave is repelled from the ordinary, so the larger
is Po, the stronger is the repulsion (see the top row in Fig. 2).
Ordinary trajectories for different Pe (compare different rows
in Fig. 2) confirm that the ordinary beam, while repelling the

011802-3



ALBERUCCI, JISHA, PESCHEL, AND NOLTE PHYSICAL REVIEW A 100, 011802(R) (2019)

FIG. 3. Evolution along z of the distance between the extraordi-
nary and ordinary wave for a fixed extraordinary power Pe = 10 mW
and four different values of Po. From bottom to top, it is Po = 0.01,
10, 30, and 60 mW.

e beam, is attracted by the extraordinary beam itself. The ratio
between the attractive and the repulsive force can be con-
trolled by varying the two input powers. For example, Fig. 3
graphs the evolution of the distance d between the two beams
along the propagation distance z for a fixed Pe and varying Po.
By controlling the ratio η = Pe/Po, the behavior spans from
a net effective attraction (decreasing distance versus z) to a
net repulsion (increasing distance with z). Regardless of the
ratio η, the distance d follows within a good approximation a
parabolic trend, that is, the forces do not change significantly
owing to the self-collimation. The pure diametric drive given
by Eq. (2) is (almost) achieved when η ≈ 1, in agreement
with the choice we made for θ0: The two beams propagate,
maintaining the distance d constant, whereas their trajectories
are parabolic. The light behavior for η = 1 and Pe = 20 mW
in cells of length 3 mm is plotted in Fig. 4. The two beams
are bounded together while propagating, the common center
of mass following a quasiparabolic trajectory, similarly to
Airy beams in free space [36]. Our model holds valid in
the paraxial regime: When beam deflection angles of about

FIG. 4. Coevolution of the extraordinary (blue) and ordinary
(red) wave for Pe = Po = 20 mW in a cell 3 mm long along z; input
waists are identical to Fig. 2. The initial separation is 10 μm. Left
and central insets: The corresponding intensity distributions on the
plane xz. Right inset: Trajectories of the respective centers of mass;
symbols correspond to parabolic best-fitting.

30◦ are achieved, a vectorial solution of Maxwell’s equations
should be used to model the light propagation [37].

In conclusion, we demonstrated that the interaction be-
tween spatial solitons in nonlinear materials does not nec-
essarily obey the principle of action-reaction, if the light-
induced changes in the medium are not accounted for. Starting
from this consideration, we searched for a nonlinear inter-
action capable of supporting the so-called diametric drive,
corresponding to a self-accelerating state. A diametric drive
requires that the first beam is attracted by the second one, but
the second beam being vice versa repelled by the first [6].
We showed that nematic liquid crystals support this type of
phenomenon owing to their peculiar polarization-dependent
nonlinearity, including both reorientational and thermal ef-
fects. On the one side, we demonstrated diametric drive action
for light beams in the spatial domain and in a nonperiodic
structure, that is, without involving Bloch waves [5,7,8]. A
fundamental advantage of our approach with respect to the
negative mass case is that both the beams are localized, thus
allowing a longer interaction length. On the other side, our re-
sults confirm the suitability of liquid crystals for the investiga-
tion of exotic nonlinear phenomena owing to the simultaneous
presence of different nonlinear mechanisms and of a strong
polarization-dependent dielectric permittivity [38,39]. With
respect to possible applications, our results can be directly
employed to maximize the power-dependent steering of light-
written waveguides for future all-optical networks [40].

This research has been funded by Deutsche Forschungsge-
meinschaft (DFG) through the International Training Program
GRK 2101.

APPENDIX: MATHEMATICAL MODEL

In our (1 + 1)D geometry the electric fields of the ordinary
(Eo) and the extraordinary (Ee) waves are polarized respec-
tively along x and y, perceiving a refractive index no = n⊥(T )
and ne(θ, T ). The corresponding slowly varying envelopes
Ao(x, z) and Ae(x, z) are defined through Eo = Aoeik0n(0)

o zx̂
and Ee = Aeeik0n(0)

e zŷ, where the superscript (0) means that
the index needs to be evaluated in the linear regime. Light
propagation in the paraxial approximation is then given by

2ik0n(0)
o

∂Ao

∂z
+ ∂2Ao

∂x2
+ k2

0�n2
o(T )Ao + 2ik0n(0)

o αoAo = 0,

(A1)

2ik0n(0)
e

∂Ae

∂z
+ Dx

∂2Ae

∂x2
+ k2

0�n2
e (θ, T )Ae

+ 2ik0n(0)
e αeAe = 0, (A2)

where Dx is the diffraction coefficient related with the medium
anisotropy. Equations (A1) and (A2) are two coupled non-
linear Schrödinger equations (NLSEs) encompassing a non-
local response [39]. Coefficients αo and αe are losses due to
the absorption, whereas our model neglects scattering losses
for the sake of simplicity. In writing Eqs. (A1) and (A2)
we assumed that the power on the ordinary component is
below the Fréedericksz threshold [19], that is, the ordinary
alone cannot induce rotation in the optical axis. To rule
out molecular rotation by the combined effect of ordinary
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and extraordinary, we also assume that the two components
are not overlapping in space, or that they are mutually in-
coherent. The nonlinear change �n2

o(T ) = n2
o(T ) − (n(0)

o )2

is given by no(T ) = A − BT − [(�n)0/3](1 − T/TNI )β [A =
1.5766, B = −0.0005 K−1, (�n)0 = 0.2224, β = 0.253]
[31], plotted in Fig. 1(a). We also used n‖(T ) = A − BT +
[2(�n)0/3](1 − T/TNI )β .

We now need the equations providing T and θ once the
optical intensity is given, thus determining the nonlinear
response of the NLC. The dynamics of the reorientation angle
θ = θ0 + θopt is dictated by

∇2
xzθopt −

(π

l

)2
θopt + ε0εa

4K
sin[2(θ0 + θopt)]|Ae|2 = 0,

(A3)

where for Ae = 0 it is θ = θ0, i.e., θopt is the optical per-
turbation. We solved Eq. (A3) supposing hard anchoring,
i.e., θ = θ0 for any excitation. In Eq. (A3) we also defined
the two-dimensional Laplacian ∇2

xz = ∂2/∂x2 + ∂2/∂z2. In
Eq. (A3), K = 12 × 10−12 N is the single elastic constant and
εa = n2

‖ − n2
⊥ is the optical anisotropy [32]. The size of the

screening length l in Eq. (A3) can be varied by applying a bias
to the NLC cell along the y direction [35]. With respect to the
diametric drive, different values of nonlocality l mainly affect
the power necessary to excite the extraordinary soliton, given
that the beam-beam interaction depends on the thermo-optic
effect. The temperature distribution is governed by a Poisson
equation (lack of convective effects is assumed),

∇2
xzTopt −

(
π

Ly

)2

Topt + 1

2κZ0
(αono|Ao|2 + αene|Ae|2) = 0,

(A4)

where Ly is the cell thickness along y, Z0 is the vacuum
impedance, and κ = 1 × 10−1 W m−1 K−1 is the thermal con-
ductivity. In solving Eq. (A4) we supposed that the tem-
perature on the cell edges does not vary when the optical
field is applied [19]. Here, the temperature T = T0 + Topt is
written as the sum of the sample temperature T0 with no
illumination (fixed to 48 ◦C) plus the variation due to the opti-
cal absorption Topt. Differently from Eq. (A3), the temperature
depends on both fields.
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