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Time fractals and discrete scale invariance with trapped ions
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We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical
system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean
a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal
that is invariant under the rescaling of time. These features are reminiscent of the Efimov effect, which has been
predicted and observed in bound states of three-body systems. We demonstrate that discrete scale invariance
in the trapped ion system can be controlled with two independently tunable parameters. We also discuss the
extension to n-body states where the discrete scaling symmetry has an exotic heterogeneous structure. The results
we present can be realized using currently available technologies developed for trapped ion quantum systems.
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In this Rapid Communication we show how to construct
a one-dimensional system of trapped ions with discrete scale
invariance and fractal-like time dependence. In classical sys-
tems scale invariance arises when the scale transformation
acting on spatial coordinates, r → λr, is a symmetry of the
dynamics. This arises naturally if the Hamiltonian transforms
homogeneously under rescaling. When the Hamiltonian is
quantized, however, this scale invariance cannot persist for
bound-state solutions with discrete energy levels. Instead, the
scale invariance is broken through a quantum scale anomaly.
An analogous effect occurs in relativistic field theories and is
responsible for the mass gap in the spectrum of non-Abelian
gauge theories such as quantum chromodynamics.

While the quantum scale anomaly spoils invariance under
a general scale transformation, it may preserve the symmetry
associated with a discrete set of scale transformations. This
was first described by Efimov for the bound-state spectrum
of three bosons with short-range interactions tuned to infi-
nite scattering length [1–4]. See also Ref. [5] for a review
of anomalies in quantum mechanics and the attractive 1/r2

potential. Efimov trimers were first observed experimentally
through the loss rate of trapped ultracold cesium atoms [6],
and a more direct observation has been made using the
Coulomb explosion of helium trimers [7]. As the underly-
ing physics is of a universal character, the application and
generalization of the Efimov effect has been considered in
various settings, including nuclear physics [8,9], bound states
with more than three particles [10–14], systems with reduced
dimensions [15–17], quantum magnets [18], molecules with
spatially varying interactions [19], and Dirac fermions in
graphene [20].

We demonstrate that quantum scale anomalies can be
produced with trapped ion quantum systems. We start with
a one-dimensional chain of ions in a radio-frequency trap
with qubits represented by two hyperfine “clock” states. Such
systems have been investigated by the trapped ion group
at the University of Maryland using 171Yb+ ions [21,22].
Similar efforts have been pioneered by trapped ion groups
at ETH Zürich, Freiburg, Innsbruck, Mainz, Stockholm, and

the Weizmann Institute. Off-resonant laser beams are used to
drive stimulated Raman transitions for all ions in the trap.
This induces effective interactions between all qubits with
a power-law dependence on separation distance. We define
the vacuum state as the state with σ z

i = 1 for all i. We use
interactions of the form σ x

i σ x
j + σ

y
i σ

y
j , to achieve the hopping

of spin excitations. We then use a σ z
i σ z

j interaction to produce
a two-body potential felt by pairs of spin excitations, and we
also consider an external one-body potential coupled to σ z

i .
We can view each spin excitation with σ z

i = −1 as a
bosonic particle at site i with hardcore interactions preventing
multiple occupancy. In this language, the Hamiltonian we
consider has the form

H = 1

2

∑

i

∑

j �=i

Ji j[b
†
i b j + b†

jbi] + 1

2

∑

i

∑

j �=i

Vi jb
†
i bib

†
jb j

+
∑

i

Uib
†
i bi + C, (1)

where bi and b†
i are annihilation and creation operators for the

hardcore bosons on site i. See the Supplemental Material [23]
for a derivation of this Hamiltonian. The parameter C is just an
overall energy constant. The hopping coefficients Ji j have the
asymptotic form Ji j = J0/|ri − r j |α , where ri is the position of
qubit i. For the purposes of this study, we assume Ji j to have
exactly this form for i �= j. Similarly, the two-body potential
coefficients Vi j have the asymptotic form Vi j = V0/|ri − r j |β .
In this work we assume Vi j to have exactly this form for i �= j.
We consider the case where the lattice of ions is uniform and
large, and we start with a constant potential Ui chosen so that
bosons with zero momentum have zero energy. Both positive
(antiferromagnetic) and negative (ferromagnetic) values can
be realized for J0 and V0. The exponents α and β can in
principle vary in the range between 0 and 3. However, in
practice the range between 0.5 and 1.8 is favored in order to
enhance coherence times and reduce experimental drifts [22].

We now add to Ui a deep attractive potential at some
chosen site i0 that traps and immobilizes one boson at that
site. Without loss of generality, we take the position of that
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site to be the origin and add a constant to the Hamiltonian so
that the energy of the trapped boson is zero. We then consider
the dynamics of a second boson that feels the interactions
with this fixed boson at the origin. In order to produce a
Hamiltonian with classical scale invariance, we choose β =
α − 1. Then at low energies, our low-energy Hamiltonian for
the second boson has the form

H (p, r) = 2J0 sin(απ/2)�(1 − α)|p|α−1 + V0

|r|α−1
, (2)

where we omit corrections of size O(p2). We are interested
in the case where both J0 and V0 are negative. In that case
we find an infinite tower of even-parity and odd-parity bound
states. We label the bound-state energies as E (n)

+ and E (n)
− ,

respectively, for non-negative integers n. As expected, our
quantized system has a quantum scale anomaly and we are left
with two discrete scale symmetries, r → λ+r for even parity
and r → λ−r for odd parity. Correspondingly, the bound-
state energies follow a simple geometrical progression, E (n)

+ =
E (0)

+ λ−n
+ and E (n)

− = E (0)
− λ−n

− . In the Supplemental Material
[23] we provide details of the discrete scale invariance for
general α. For the special case α = 2, the scale factors are
λ± = exp(π/δ±), where

δ+ = V0

J0π
coth(δ+π/2), δ− = V0

J0π
tanh(δ−π/2). (3)

In contrast with most other systems with a quantum scale
anomaly, we note that the properties of our ion trap system
can be tuned using two different adjustable parameters, V0/J0

and α. This is convenient for probing a wide range of dif-
ferent phenomena exhibiting discrete scaling symmetry. In
the following we will work in lattice units where physical
quantities are multiplied by powers of the lattice spacing to
make the combination dimensionless and have set h̄ = 1. As
an example, consider a system with α = 2, β = 1, J0 = −1,
and V0 = −30. The wave functions for the first 12 even-parity
bound states are shown in Fig. 1. We plot the normalized wave
function for r > 0. We see clear evidence of discrete scale

FIG. 1. Bound-state wave functions. Plot of the normalized wave
functions for the first 12 even-parity bound states for the case
α = 2, β = 1, J0 = −1, and V0 = −30. We plot the region r > 0.
All quantities are in dimensionless lattice units.

invariance emerging as we approach zero energy. In Table I we
show the energies for the first 14 even-parity and odd-parity
bound states and the ratios between consecutive energies. For
comparison, at the bottom we show the predictions for these
ratios as we approach zero energy at infinite volume. We see
that the agreement is quite good.

One intriguing question is how discrete scale invariance
could persist in quantum many-body systems. It has been
demonstrated numerically that the Efimov effect extends be-
yond bosonic trimers and describes the properties of n-boson
systems with the same discrete scaling factor [10–14]. As
we will see, something quite different happens in the trapped
ion system. Let us start from a particular bound state of the
two-body system and ask what happens when we introduce

TABLE I. Bound-state energies. Energies for the first 14 even-parity and odd-parity bound states and ratios between consecutive energies
for the case α = 2, β = 1, J0 = −1, and V0 = −30. For comparison we show the theoretical predictions for the ratios λ+ and λ− as we approach
zero energy at infinite volume.

n E (n)
+ E (n−1)

+ /E (n)
+ E (n)

− E (n−1)
− /E (n)

+

0 −27.05304149 −26.5188669
1 −11.93067205 2.267520336 −11.79861873 2.247624701
2 −6.977774689 1.709810446 −6.919891389 1.705029468
3 −4.553270276 1.5324754 −4.521425357 1.530466798
4 −3.139972298 1.450098869 −3.120231851 1.449067112
5 −2.233327278 1.405961557 −2.220194049 1.405386998
6 −1.617052389 1.381110033 −1.607920414 1.380786033
7 −1.182654461 1.367307563 −1.176124883 1.367134084
8 −0.869406941 1.360300229 −0.864656962 1.360221377
9 −0.640405903 1.357587332 −0.636916042 1.357568195
10 −0.471738446 1.357544438 −0.469161911 1.357561276
11 −0.347112043 1.359037968 −0.345207121 1.359073675
12 −0.254996818 1.361240684 −0.253589633 1.361282464
13 −0.187011843 1.363532996 −0.18597462 1.363571189

Theory λ+ = 1.3895595319 λ− = 1.3895595319
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FIG. 2. Time fractals. The amplitude A(t ) is displayed over the range from t = 0 to 80 in the upper left, t = 0 to 160 in the upper right,
t = 0 to 320 in the lower left, and t = 0 to 640 in the lower right. All quantities are in dimensionless lattice units.

a third boson that is weakly bound and very far from the
origin. The effective Hamiltonian for the third boson contains
a potential energy that is doubled due to interactions of the
weakly bound third boson with the two other bosons. As
a result of the stronger attractive interaction, the geometric
scaling factors λ± for the third boson will be smaller than
for the two-body system. This argument can be generalized to
describe weakly bound states for the general n-body system.
The effective potential for the nth boson will be a factor of
n − 1 times larger, and thus the scaling of the n-body energies
relative to each (n − 1)-body threshold is different from the
scaling of the k-body bound states for each k between 1 and
n. The properties of these exotic systems with heterogeneous
discrete invariance will be investigated further in future work.

Let us now consider an initial state |S〉 = ∑N−1
n=0 |ψ (n)

+ 〉,
where we sum over the first N even-parity two-boson bound
states |ψ (n)

+ 〉 with equal weight. We choose the even-parity
states, but we could just as easily choose odd-parity states.
The phase convention for each |ψ (n)

+ 〉 is chosen so that the tail
of the wave function is real and positive at large r. We note that
the time-dependent amplitude A(t ) = Re[〈S| exp(−iHt )|S〉]
is invariant under the rescaling t → λα−1

+ t , thus endowing
it with the properties of a time fractal. The time fractal is
particularly interesting for the case when λα−1

+ is an integer
so that each of the higher frequencies in A(t ) are integer
multiples of the lower frequencies.

For the case α = 2 and J0 = −1, we can produce the time
scaling factor λα−1

+ = λ+ = 2 by setting V0 = −14.238 829 3.

In Fig. 2 we show the amplitude A(t ) ranging from t = 0 to
80 in the upper left, t = 0 to 160 in the upper right, t = 0
to 320 in the lower left, and t = 0 to 640 in the lower right.
Aside from small deviations, we see that the time dependence
shows fractal-like self-similarity when we zoom in or out by
a scale factor very close to 2. The best fit for the scale factor
is approximately 1.9. In the Supplemental Material [23] we
show how a time fractal can be realized experimentally using
quantum interference on a trapped ion quantum system.

The time fractals that we have discussed are closely re-
lated to the Weierstrass function w(x) = ∑∞

n=0 an cos(bnπx).
Weierstrass showed that this function is continuous every-
where but differentiable nowhere when 0 < a < 1, b is an
odd integer, and ab > 1 + 3π/2 [24]. Hardy extended the
proof to any 0 < a < 1 < b and ab � 1 [25]. We note that
aw(bx) equals w(x) plus the smooth function cos(πx), and
this suggests that the fractal dimension of the Weierstrass
function should given by [26]

D = 2 + log a

log b
. (4)

This result for the fractal dimension is confirmed by the box-
counting method for determining fractal dimensions [27].

Our initial state |S〉 = ∑N−1
n=0 |ψ (n)

+ 〉 produces the fractal-
like amplitude

A(t ) =
N−1∑

n=0

cos(E (n)
+ t ) =

N−1∑

n=0

cos(ε+λ−n
+ t ). (5)
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In the limit of large N , our choice of parameters corre-
sponds to the limiting case a → 1 and b = λ+, with x =
ε+λ−N+1

+ t/π . Therefore, the fractal dimension for our time
fractal will be D = 2. If we instead choose the initial state
to have the form |S(a)〉 = ∑N−1

n=0 an/2|ψ (n)
+ 〉 for a < 1, then in

the limit N → ∞, the fractal dimension will be

D = 2 + log a

log λ+
. (6)

There are many interesting related phenomena that one can
explore in connection with time fractals and the dynamics of
systems with discrete scale invariance. One fascinating topic
is the adiabatic evolution of a system with discrete invariance
as the interactions are varied slowly. Another is the response
of a system with discrete scale invariance when driven in
resonance with one of its bound state energies. In this Rapid

Communication we have shown that the intrinsic power-law
interactions of the trapped ion system make it an ideal system
for exploring the physics of quantum scale anomalies, discrete
scale invariance, and time fractals. There are clearly many
directions that one can explore in this new area, and we look
forward to working with others to develop further applications
and experimental realizations of many of these concepts.
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