
PHYSICAL REVIEW A 100, 011402(R) (2019)
Rapid Communications

Probing nonlocal spatial correlations in quantum gases with ultra-long-range Rydberg molecules

J. D. Whalen,1 S. K. Kanungo,1 R. Ding,1 M. Wagner,2,3 R. Schmidt,2,3 H. R. Sadeghpour,4 S. Yoshida,5 J. Burgdörfer,5

F. B. Dunning,1 and T. C. Killian1,*

1Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, Texas 77251, USA
2Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

3Munich Center for Quantum Science and Technology, Schellingstraße 4, D-80799 München, Germany
4ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

5Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, European Union

(Received 26 March 2019; published 22 July 2019)

We present photoexcitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in bosonic
and fermionic quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by
the radius of the outer lobe of the Rydberg electron wave function Rn. By varying the principal quantum number
n of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the
trapped gas g(2)(Rn). We demonstrate this with ultracold Sr gases and probe pair-separation length scales in the
range Rn = 1400–3200 a0, which are on the order of the thermal de Broglie wavelength for temperatures around
1 μK. We observe bunching for a single-component Bose gas of 84Sr and antibunching due to Pauli exclusion at
short distances for a polarized Fermi gas of 87Sr, revealing the effects of quantum statistics.
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Our understanding of quantum gases has been greatly en-
hanced by in situ measurements of spatial correlations, which
can arise from Bose or Fermi quantum statistics [1–5] or for-
mation of more complex entangled states [6–8]. Quantum-gas
microscopes resolve correlations on length scales on the order
of, or larger than, a wavelength of light, enabling studies of
quantum magnetism [9] and the superfluid-to-Mott-insulator
transition [10]. Inelastic loss from spin flips and three-body
recombination probe two- and three-body spatial correlations
at very short range [2,7]. Despite the tremendous progress in
experimental techniques, in situ probes of spatial correlations
between these length scales are lacking. Many complex many-
body phenomena take place at these intermediate scales, and
such a probe would provide a new window into the formation
of halo dimers [11] and Efimov trimers [12], long-range
Cooper pairs in strongly interacting Fermi gases [13,14], and
strongly correlated one-dimensional gases [7,8].

Here we demonstrate photoexcitation of ultra-long-range
Rydberg-molecule (RM) dimers [15–17] in an ultracold gas
as an in situ probe of nonlocal pair correlations [1] at
previously inaccessible length scales. At distances roughly
equal to and smaller than the thermal de Broglie wavelength
(λdB ∼ 200 nm), we observe bunching in a thermal gas of
spinless bosonic 84Sr and Pauli exclusion, or antibunching, in
a polarized gas of fermionic 87Sr atoms, reflecting the effects
of (anti-)symmetrization of the wave functions dictated by
the spin statistics theorem. Correlations vanish at distances
greater than λdB. Bunching and antibunching have been ob-
served before in quantum gases with destructive measurement
schemes [2,5,18–21]. In contrast, RM excitation can be nearly
nondestructive [22]. It can also probe the temporal evolution
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of correlations since the molecular binding energy, and there-
fore the inverse excitation timescale, are much greater than the
many-body energy scales of quantum gases, such as the Fermi
energy or chemical potential.

In an RM dimer, one ground-state atom is bound to a highly
excited Rydberg atom. The binding potential results from
scattering between the Rydberg electron and ground-state
atom [15,23], and it therefore follows the Rydberg-electron
probability distribution (see Fig. 1). For Sr, the atom-electron
interaction is attractive, leading to the formation of RMs. The
molecular potential is also attractive for Rydberg excitations
in Rb and Cs quantum gases [16,24,25], which attests to the
broad applicability of the probe we investigate in the present
work.

To probe spatial correlations, we exploit the fact that the
internuclear separation in the most deeply bound RM dimer
state, |χν=0

n 〉, is highly localized in the potential minimum
formed by the outer lobe of the Rydberg wave function located
at a separation Rn ≈ 2(n − δ)2a0 (Fig. 1). The quantum defect
is δ = 3.37 for the 5sns 3S1 states used in this work, and
a0 ≈ 0.05 nm is the Bohr radius. In a simple semiclassical
picture, the formation of a molecule requires the presence of
atoms separated by approximately Rn. Thus the excitation rate
serves as a measure of the relative probability of finding two
particles with separation Rn in the initial gas, which can be
quantified by the nonlocal pair-correlation function g(2)(Rn).
For principal quantum numbers n between 20 and 75, Rn

ranges from 400 to 104a0, providing an in situ probe of corre-
lations at previously inaccessible length scales. This method is
similar to the mapping of short-range (�100a0) atomic scat-
tering states with photoassociative spectroscopy of low-lying
energy levels [26–30]. The possibility of measuring nonlocal
correlations with RMs was mentioned in [31], and short-range
correlations were probed with RM excitation in [22].
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FIG. 1. Schematic of the excitation to a Rydberg molecular state
|χν=0

n 〉 (green) in a Rydberg potential (orange) from the state of
a pair of colliding atoms |χE

0 〉 (black). The wave function of the
ground ν = 0 molecular dimer state is highly localized in the outer
lobe of the molecular potential at Rn, as shown for two different
principal quantum numbers n and n′. Asymptotically far outside
the short-range interatomic potential (blue), |χE

0 〉 describes a free

particle state with wave vector k =
√

2μE/h̄2 for collision energy E
and reduced mass μ. The experiment samples a thermal distribution
of collision energies (represented by the different |χE

0 〉 curves), and
the molecular excitation rate is proportional to the pair-correlation
function g(2)(Rn).

In the present work, nondegenerate quantum gases of spin-
polarized, fermionic 87Sr (I = 9/2) and bosonic 84Sr (I = 0)
are used to measure the effects of quantum statistics on the
excitation rate of RMs and thus on the pair-correlation func-
tion. As a reference for quantitatively extracting g(2)(R), we
employ an unpolarized sample of 87Sr, which provides a good
approximation to a gas of uncorrelated particles because of its
tenfold-degenerate ground state. A preliminary discussion of
the fermion data was presented in [32].

Atoms are laser cooled, loaded into an optical dipole trap
(ODT) formed using 1064 nm light, and evaporatively cooled
as described in [32]. Evaporative cooling of 87Sr is performed
with 84Sr present in the trap for sympathetic cooling. For
measurements involving spin-polarized 87Sr, a bias magnetic
field of 7.6 G is applied after loading the ODT, which pro-
duces a Zeeman splitting of ∼650 kHz between adjacent
magnetic sublevels in the 5s5p 3P1 F = 9/2 manifold. Before
evaporative cooling, population is transferred into the mF =
9/2 ground state by applying a series of σ+ polarized 689-nm
laser pulses approximately 50 kHz red-detuned from each
mF → mF + 1 transition. Once this optical pumping is com-
plete, the field is lowered to ∼1 G to maintain the quantization
axis. Experiments with unpolarized samples are performed in
zero magnetic field. For all 87Sr experiments, once the final
temperature is reached, any remaining 84Sr atoms are removed
by scattering light resonant with the 5s2 1S0 → 5s5p 3P1 tran-
sition. The isotope shift between 87Sr and 84Sr ensures that no
significant heating of the 87Sr atoms occurs.

FIG. 2. Spectra for excitation to the n = 34 atomic Rydberg state
for spin-polarized (circles) and unpolarized (squares) gases of 87Sr.
A 1 G magnetic field causes the observed Zeeman splitting. The
vertical bars indicate the square of the product of Clebsch-Gordan
coefficients associated with each transition, and differences with
the measured peak heights point to small deviations from an equal
distribution of mF levels in the ground state. Curves show fits used to
extract the population in each mF level. Small features on the extreme
right and left of the plot arise due to imperfect polarization of the first
photon.

A two-photon transition is employed to create Rydberg
atoms or molecules. The first photon, at 689 nm, has a fixed
blue-detuning of 14 MHz from the 5s5p 3P1 level (F = 11/2
for 87Sr). The energy of the second photon, at 320 nm, is
scanned to obtain spectra for excitation to 5sns 3S1 levels
(F = 11/2 for 87Sr) (Figs. 2 and 3). The excitation lasers
are applied for 10 μs, after which an electric field is applied
to ionize Rydberg excitations. Product electrons are counted
using a microchannel plate detector. Typically, 1000 laser
pulses at a single frequency are applied to each sample.
Excitation rates are kept much less than one per laser shot
to avoid Rydberg blockade effects (blockade radius RB =
(C6/2hγ )1/6 ∼ 3.5 μm at n = 39 for linewidth γ = 300 kHz
and C6 = 7 × 10−61 J m6 [33]).

To quantitatively measure the pair-correlation function
g(2)(R), the molecular excitation rate in a single-component
gas is normalized with respect to the rate in an unpolarized
87Sr gas. This allows us to cancel experimental factors and,
most importantly, n-dependent contributions to the excitation
rate that are unrelated to spatial correlations. Maintaining
similar sample densities and temperatures increases the accu-
racy of this procedure. To this end, we approximately match
the final trap potential, excitation laser intensity, atom num-
ber (N ∼ 2 × 105), peak density (ρ ∼ 3 × 1013 cm−3), and
sample temperature. The latter quantities are inferred from
time-of-flight absorption imaging on the 5s2 1S0 → 5s5p 1P1

transition at 461 nm and knowledge of the trapping potential
[34]. The final trap oscillation frequencies and rms cloud radii
are approximately (125, 125, 300) Hz and (12, 12, 5) μm
respectively, with the tight axis along gravity.

The effectiveness of optical pumping is measured spec-
troscopically through excitation of the 5sns 3S1 F = 11/2
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FIG. 3. Raw data showing the effects of quantum statistics on the
excitation of RMs. (a),(b) Spectra for excitation to the |χν=0

n 〉 dimer
ground state for a spin-polarized 87Sr Fermi gas (blue, circles), for
an unpolarized 87Sr Fermi gas (green, squares), and a spinless 84Sr
Bose gas (red, triangles). The spectra for the polarized Fermi gas and
the spinless Bose gas are scaled such that all spectra match at n =
39 to highlight the effects of quantum statistics at low n (see text).
(c)–(e) Integral of the RM dimer spectra versus principal quantum
number for (c) unpolarized 87Sr, (d) polarized 87Sr, and (e) 84Sr. In
(c), a fit (solid green line) shows that the integral for the unpolarized
87Sr gas varies as (n − δ)α , with α = 3.5(3). (d),(e) The dotted lines
are translations of the (n − δ)α curve, and dashed lines are theory
predictions accounting for quantum statistics and the n-dependent
structure of Rydberg molecular wave functions.

atomic Rydberg state in a 1 G magnetic field using two
π -polarized photons (�mF = 0). The spectrum (Fig. 2) is
fit to a line shape model to determine the degree of polar-
ization. For a polarized sample, at least 90% of the atoms
occupy the mF = 9/2 state. For the unpolarized Fermi gas,
the populations in the ten different ground-state mF levels
are approximately equal (±25%). Differing heights of the
Zeeman peaks in the spectrum for the unpolarized sample
arise from the variation of transition strength from the ground
state to final states with different magnetic quantum numbers
as given by angular momentum coupling (Clebsch-Gordan
coefficients).

To probe spatial correlations and measure g(2)(R), a po-
larization configuration different from the one used to probe
polarization is used to create Rydberg molecules. The first
photon is σ+ polarized, and the second photon remains π

polarized, which maximizes the transition strength for the
spin-polarized sample.

The influence of quantum statistics on spatial correlations
is apparent in the spectra for excitation to the ν = 0 RM state

at principal quantum numbers 31 � n � 45 (1400 a0 � Rn �
3200a0). Figures 3(a) and 3(b) show spectra for n = 31, 39.
The spectra for the spin-polarized Fermi gas (T = 860 nK)
and Bose gas (T = 650 nK) are scaled such that their integrals
match the integral of the unpolarized data (T = 860 nK)
at n = 39, where the effects of quantum statistics are small
[Fig. 3(a)]. With decreasing quantum number [Fig. 3(b)], the
suppression of the excitation rate in the spin-polarized Fermi
gas arising from Pauli exclusion and the enhancement for the
Bose gas due to bunching are evident.

Figures 3(c)–3(e) include the integral of the molecular
signal measured for each n for (c) unpolarized 87Sr, (d)
polarized 87Sr, and (e) 84Sr. The integrals for the unpo-
larized Fermi gas can be fit well by an (n − δ)3.5 power
law (solid green line). This agrees well with the approx-
imate (n − δ)3.8 scaling predicted using numerical calcula-
tions of the overlap integral between scattering and molec-
ular states and the 1/(n − δ)3 scaling of the electronic
dipole transition matrix element. In Figs. 3(d) and 3(e),
the dotted lines vary as (n − δ)3.5 and are scaled to match
the polarized 87Sr and 84Sr data at high quantum number.
In the absence of effects of quantum statistics, the integrals for
all samples should have the same n dependence but different
overall amplitudes that reflect n-independent factors such as
Clebsch-Gordan coefficients (Fig. 2), differences in detector
efficiency arising from the magnetic field needed to preserve
quantization for the spin-polarized sample, and small differ-
ences in laser intensity between the Bose and spin-polarized
Fermi gas experiments. Deviations from the (n − δ)3.5 power
law at low quantum number result from quantum statistics.

The excitation probability to the ground vibrational state
(ν = 0) of the RM for principal quantum number n is propor-
tional to a Franck-Condon factor that accounts for a thermal
average over collision energy (〈· · · 〉E ) for initial two-particle
states and all possible initial and final rotational states. This
reduces to Fn = ∑

l (2l + 1)〈| ∫ dR R2χν=0
n (R)χE ,l

0 (R)|2〉E ,
where χν=0

n is the radial wave function for the RM, which is
independent of l for the low-l states contributing to Fn. χE ,l

0 is
the wave function for the initial state with collisional energy
E and rotational angular momentum quantum number l . To
account for quantum statistics, the sum over l is understood to
be restricted to initial states with allowed exchange symmetry.
This yields the theory curves in Figs. 3(d) and 3(e) (dashed
lines), which are in reasonable agreement with the data.

χν=0
n is well localized at Rn on the scale of the initial

collisional state. In particular, the wave function for n < 50
is localized within a single potential well (Fig. 1). This allows
Fn to be approximated as

Fn �
∣∣∣∣
∫

dR R2χν=0
n (R)

∣∣∣∣
2

g(2)(Rn) ≡ On g(2)(Rn), (1)

where g(2)(Rn) is the pair-correlation function for separation
Rn, and On is an effective Franck-Condon factor. This deriva-
tion can be generalized to the case of an initial state of a
many-body Fermi or Bose gas at arbitrary density and temper-
ature and with multiple internal spin states initially populated.

When experimental factors are taken into account, the
integrated signal becomes

Sn � αI1I2NβnCOng(2)(Rn), (2)
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which is proportional to the detector efficiency α, the two-
photon-excitation laser intensities I1 and I2, the volume inte-
gral of the square of the density distribution N ≡ ∫

d3r ρ(r)2,
a factor βn proportional to the square of the reduced two-
photon electronic-transition matrix element, a factor C ex-
pressible in terms of Clebsch-Gordan coefficients, On, and
g(2)(Rn).

For nondegenerate gases of noninteracting particles,
g(2)(R) is given by

g(2)(R) = 1 + εe−2πR2/λ2
dB , (3)

where λdB = h/
√

2πmkBT , and ε equals +1 (−1) for indis-
tinguishable thermal bosons (fermions) in identical internal
states and 0 for classical statistics [1,35]. Trap and phase-
space-density-dependent corrections to Eq. (3) will vary with
separation R and are always less than z/10 [1], where z ≈
ρλ3

dB is the fugacity. The highest peak fugacity in these ex-
periments is z = 0.4, and corrections are small. Equation (3)
neglects interactions between ground-state particles, which
modify spatial correlations at length scales less than the
scattering length or the range of the ground-state atom-atom
molecular potential, which are less than Rn probed in this
experiment.

Equation (2) is used to experimentally determine g(2)(Rn)
for indistinguishable particles in identical internal states by
normalizing the integrated signals for the bosons and spin-
polarized fermions to the integrated signal for the unpo-
larized fermions. This cancels common factors βn and On.
For the unpolarized Fermi gas, we assume g(2)(R) = 1 −
0.1e−2πR2/λ2

dB , which is the generalization of Eq. (3) for equal
populations in the ten ground spin states. Remaining factors
that vary between different experimental runs and different
isotopes and sample polarizations, are either measured or
calculated independently. The Clebsch-Gordan factor for the
unpolarized gas (Cunpol) is calculated assuming equal popu-
lations in all ground spin states, yielding Cpol/Cunpol = 5.05,
where Cpol describes bosons and polarized fermions. Tem-
peratures and densities of each sample and the unpolarized
gas used for normalization match within 10% in all cases.
For the Bose gas, T/Tc ≈ 1.5 where Tc is the critical tem-
perature for Bose-Einstein condensation. For the polarized
Fermi gases, T/TF ≈ 1.0, where TF is the Fermi temperature.
For the unpolarized Fermi gases, T/TF ≈ 2. Density distri-
butions are calculated using the appropriate Bose or Fermi
distributions.

At large separations, where the effect of quantum statis-
tics should be negligible, this procedure yields g(2)(R) = 1.5
rather than the expected value of 1. A systematic deviation of
this size is consistent with uncertainties in relative populations
of the initial internal spin states of the unpolarized Fermi gas
and in trap geometry and resulting density profiles. Ratios
are thus divided by an additional correction factor of 1.5 to
obtain the values of g(2)(Rn) in Fig. 4. At lower values of n
the normalized integrated signals for the bosons and fermions
clearly deviate from unity [Fig. 4(a)]. The boson signal in-
creases while the fermion signal decreases, which is consistent
with bunching and antibunching, respectively. The Fermi-
gas experiment was performed at two different temperatures,
and antibunching is less pronounced in the warmer sample

FIG. 4. Measured pair-correlation function for indistinguishable
particles in identical internal states. (a) g(2)(R) for a Bose gas and
Fermi gases at two different temperatures plotted against interparticle
separation, R. Sample temperatures are indicated in the legend.
(b) g(2)(R) for Fermi and Bose gases plotted against R scaled by
the thermal de Broglie wavelength. The two sets of fermion mea-
surements (blue symbols) fall onto a single curve and approach a
constant value at large scaled distances. Error bars indicate statistical
fluctuations from repeated measurements. Expected g(2)(R) [Eq. (3)]
for bosons (solid) and fermions (dashed and dot-dashed) are shown
by the lines.

reflecting the shorter thermal de Broglie wavelength. Figure 4
also shows that the results follow the expected behavior for
g(2)(R) [Eq. (3)].

On a scaled, dimensionless axis [Fig. 4(b)], the two
fermionic data sets fall on the same curve and approach
a constant value for larger R/λdB. Effects of quantum
statistics—bunching for bosons and antibunching due to Pauli
exclusion for fermions—are strikingly evident.

In summary, we have demonstrated that photoexcitation
of the most deeply bound, ν = 0 dimer RM state provides
an in situ probe of pair correlations in an ultracold gas
that can be tuned over previously inaccessible length scales.
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These results suggest other interesting phenomena that can be
studied with this diagnostic. For example, the pair-correlation
function in a gas with a large s-wave scattering length should
show strong deviations from the noninteracting result pre-
sented in Eq. (3). Stronger suppression and enhancement
effects on higher-order correlations should be observable with
trimers, tetramers, etc. Moreover, due to the fact that Rydberg
molecule formation takes place on a timescale (∼1 μs) much
faster than the relevant many-body dynamics of quantum
gases, RMs hold promise for in situ probing of the time
evolution of ensemble averages of correlations during the
nonequilibrium dynamics following quantum quenches or in
driven many-body systems.
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