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Robust fault tolerance for continuous-variable cluster states with excess antisqueezing
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The immense scalability of continuous-variable cluster states motivates their study as a platform for quantum
computing, with fault tolerance possible given sufficient squeezing and appropriately encoded qubits [N. C.
Menicucci, Phys. Rev. Lett. 112, 120504 (2014)]. Here, we expand the scope of that result by showing
that additional antisqueezing has no effect on the fault-tolerance threshold, removing the purity requirement
for experimental continuous-variable cluster-state quantum computing. We emphasize that the appropriate
experimental target for fault-tolerant applications is to directly measure 15–17 dB of squeezing in the cluster
state rather than the more conservative upper bound of 20.5 dB.
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Introduction. Measurement-based quantum computation
(MBQC) employs highly entangled resource states known
as cluster states [1] as a substrate for a quantum computa-
tion (QC). A specific computation is carved from the clus-
ter state using only adaptive single-qubit measurements [2].
MBQC eliminates the need for coherent, multiqubit interac-
tions during the computation, which provides an advantage
over circuit-model methods [3].

Continuous-variable (CV) MBQC extends this scheme by
utilizing CV resources, rather than qubits, to build the ini-
tial cluster state [4]. This provides a distinct advantage in
scalability over optical-qubit-based MBQC schemes since CV
cluster states can be made deterministically on an immense
scale [5,6]. Other MBQC schemes have been able to achieve
qubit cluster states of only six qubits utilizing two photons
[7], compared with 60 frequency modes [8] or 104–106

temporal modes for a CV cluster state [9,10], albeit with a
one-dimensional topology in both cases. Accessible propos-
als exist for making computationally universal CV cluster
states on a similar scale [6,11–13] and two-dimensional (2D)
CV cluster states have recently been experimentally realized
[14,15].

Still, finite squeezing (required by finite energy) deposits
noise that accumulates throughout a computation [16,17].
Appropriately encoded qubits [18]—available on demand to
be coupled into the CV cluster state at will—can survive this
noise with regular rounds of quantum error correction. As
long as the squeezing—in both the CV cluster state and in
the encoded qubits—is high enough, fault-tolerant quantum
computation is possible [19].

The main idea behind that result is to convert the addi-
tive Gaussian noise due to finite squeezing [17] to logical-
Pauli noise at the encoded-qubit level after every logical-
Clifford gate. The quantum-error-correction scheme proposed
by Gottesman, Kitaev, and Preskill (GKP) [18] enables this.
With the logical-Clifford gates regularly spaced into a grid and
supplemented by distillation of magic states [20], the problem
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is effectively mapped to a circuit-model computation using
noisy gates [19]. This is a well-studied problem (see Ref. [21]
for a review). The acceptable threshold for gate errors depends
on the chosen qubit-level quantum error-correcting code em-
ployed to get rid of this residual error.

Figure 1 depicts a CV resource state for universal com-
putation. We describe this as a “flowerbed” comprising two
essential parts: (1) a large, canonical [22] CV cluster state
with a square-lattice graph [17]; and (2) GKP-encoded |0L〉
ancillae attached at regular intervals to the cluster-state base
by ĈZ [1] = eiq̂⊗q̂ gates. Performing q̂ measurements on un-
wanted nodes (gray) “carves out” the structure of a desired CV
quantum circuit. The remaining nodes are measured in p̂ or
p̂ + q̂ (known as a shear measurement [19]) to enact one- and
two-qubit logical Clifford gates. Universality is achieved by
distillation of magic states [20], which was previously thought

FIG. 1. CV resource state for fault-tolerant quantum computa-
tion. In the original proposal, Ref. [19], the base layer consists of
nodes that are momentum-squeezed vacuum states, with the lines
connecting them representing ĈZ [1] = eiq̂⊗q̂ gates. Here, we consider
each node to be an impure momentum-squeezed thermal state, which
has additional noise in the position quadrature. The cyan nodes are
GKP-encoded |0L〉 states [18], attached via ĈZ [1] gates at regular
intervals like flowers in a flowerbed. These are used for error cor-
rection, while the gray and white nodes implement the computation
(see text). The yellow highlighted nodes represent two-mode (left)
and one-mode (right) error-corrected gates, described in more detail
in Fig. 2.
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FIG. 2. The subgraphs sufficient to enact any (a) single-qubit
and (b) two-qubit logical-Clifford gate, such as the CZ [−1] gate,
followed by GKP error correction [19]. These have been cut from
the flowerbed using q̂ measurements on the adjacent nodes. The cyan
nodes are GKP |0L〉 for error correction [18], the blank nodes are
squeezed thermal states [Eq. (1)], in is the output node of the previous
gate, and the arrows indicate the direction of the measurement
sequence.

to require an additional non-Gaussian resource [18,19]. It was
recently shown, however, that distillable GKP magic states
can be produced using heterodyne detection—a Gaussian
measurement—on a GKP-encoded Bell pair [23].

A single example of both the one- and two-mode gates is
shown in yellow and again independently in Fig. 2. The output
of one such gate becomes the input of the next. This way,
the white nodes in Fig. 1 can be seen as a series of one- or
two-mode gates acting in sequence. With this procedure, the
one-mode gate is sufficient to enact any single-mode Gaussian
unitary gate by a series of shear measurements followed by
error correction.

The gate in Fig. 2(b) is required to enact two-mode
quantum gates such as the ĈZ gate. This gate functions by
connecting the two input nodes vertically with two nodes to be
measured in p̂. Measuring these connecting nodes implements
a ĈZ [−1] = e−iq̂⊗q̂ gate on the input states, after which they
pass through two one-mode identity gates (which are included
only to keep the calculation on a regular lattice [19]).

One of us [19] has demonstrated that for a pure cluster
state (i.e., one created from squeezed vacuum states), there
exists a finite squeezing threshold of no higher than 20.5 dB
that enables fault tolerance to be achieved. Here we generalize
that result to the case where the CV cluster state (base of
the flowerbed) is built from squeezed thermal states instead
of squeezed vacuum states. This introduces additional anti-
squeezing, which will turn out—surprisingly—not to affect
the threshold calculations at all.

Definitions. We work with quadrature operators
q̂ = 1√

2
(â + â†) and p̂ = −i√

2
(â − â†) satisfying [q̂, p̂] = i,

with h̄ = 1. The vacuum variance is 〈q̂2〉 = 〈p̂2〉 = 1
2 . We

denote column vectors of position and momentum operators
as q̂ and p̂, respectively, and we collect both into the column
vector x̂ := (q̂T, p̂T)T.

A squeezed vacuum state with squeezing factor s > 1 is
a Gaussian state with 0 mean, variance ε0 := 1

2 s−2 along the
squeezed quadrature, and variance κ0 := 1

2 s2 along the anti-
squeezed quadrature. The corresponding squeezing parameter
r = 1

2 ln s so that s = e2r . Note that a measured variance σ 2

FIG. 3. Phase-space comparison of the vacuum (s = 1) and a
5-dB p-squeezed vacuum state (s=1.78). Additional antisqueezing
in the q quadrature models a squeezed thermal state (dashed). Shown
are 1-σ error ellipses for the thermal-state Wigner functions, Eq. (1).

corresponds to 10 log10(2σ 2) dB, with negative corresponding
to squeezed and positive to antisqueezed.

A squeezed thermal state is defined here in terms of its
measured variances rather than in terms of a squeezing param-
eter and a temperature. Using this convention, we designate
the variance ε along the squeezed quadrature to match the
squeezed-vacuum case, i.e., ε = ε0 = 1

2 s−2, while the vari-
ance along the antisqueezed quadrature is larger than in that
case: κ := 1

2 (s2 + δ2) = κ0 + 1
2δ2. The additional variance in

the antisqueezed quadrature, 1
2δ2, is called the additional

antisqueezing. The Wigner function for this state is

Wκ,ε(q, p) := Gκ (q)Gε(p) = G 1
2 (s2+δ2 )(q)G 1

2 s−2 (p), (1)

where Gσ 2 (x) is a normalized Gaussian with zero mean and
variance σ 2. Note that

√
εκ � 1

2 , with equality if the state is
pure (squeezed vacuum), and ε = κ = 1

2 in the case of the
vacuum. These states are shown in Fig. 3.

Wigner representation of cluster-state computation. As
quantum information propagates from node to node through
a CV cluster state, operations are performed by projective
measurements on each node. Due to finite squeezing, noise
is introduced at each of these steps, which appears as a con-
volution of one quadrature of the input-state Wigner function
when the cluster state is pure (made from squeezed vacuum)
[16,17].

By tracking how this noise accumulates throughout the
computation, we can determine how the additional anti-
squeezing might affect the qubit-level error rate. This is
achieved, as discussed throughout the Supplemental Mate-
rial in Ref. [19], by evolving the input Wigner function

through the appropriate quantum gates according to W (x)
Ĝ−→

W [S−1
Ĝ

(x − c)], where x := (qT, pT)T is the vector of all
phase-space coordinates, and where SĜ and c are found via
the Heisenberg action of the Gaussian unitary Ĝ on the
vector of quadrature operators x̂, i.e., Ĝ†x̂Ĝ = SĜx̂ + c [16].
Quadrature measurements replace the measured variable with
its outcome and integrate over the conjugate variable, e.g.,
measuring p̂1 with outcome s maps W (x) → W̃out(x�2) :=∫

dq1 W (x)|p1=s, where x�2 is x for the unmeasured modes,
and the tilde indicates that the Wigner function is unnormal-
ized.

Results. We examine four occasions where additional an-
tisqueezing might affect the cluster-state output: (1) using q̂
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FIG. 4. The quantum circuit (read right to left) describing one
measurement and outcome-dependent displacement as part of the
single-mode gate shown in Fig. 2(a). Win is the Wigner function for
an arbitrary quantum state, and Wε,κ is that for the squeezed thermal
state [Eq. (1)] at the next node in the cluster. Wa is the input state
after the shear gate, and Wb is the two-mode Wigner function after
the ĈZ [1] gate. The unnormalized, outcome-dependent output state
is represented by W̃ (t )

out .

measurements to delete a node, (2) a one-mode gate, (3) a
two-mode gate, and (4) magic state preparation.

(1) Deletion via q̂ measurements. Since each node of the
flowerbed is attached to its neighbors by a ĈZ [1] gate, we
only need to use the fact that a q̂ measurement after this gate
just induces an outcome-dependent momentum shift on the
other mode: (q1

〈s| ⊗ Î )eiq̂1q̂2 = eisq̂2 = Ẑ2(s). Since s is known,
we can correct it on each neighboring node with Ẑ (−s), and
the result is the same as if the deleted node had never been
attached in the first place. The input state makes no difference
to this analysis.

(2) One-mode gate. Recall Fig. 2(a). A one-mode gate
requires several measurements of either p̂ or p̂ + q̂. For mode
j, we write each measurement as p̂ j + mjq̂ j and note that,
in principle, we could have implemented either measure-
ment, mj ∈ {0, 1}, by performing an mj-dependent shear gate
P̂(mj ) = eimj q̂2/2 before measuring p̂ [19], and the output
would be the same as what we actually do, i.e., measure
p̂ j + mjq̂ j . This alternate picture of placing an mj-dependent
shear gate before a fixed measurement will assist with the
analysis, and the corresponding circuit for this is shown in
Fig. 4.

The input to the circuit is Win. For later use, we define a new
Wigner function Wa to represent the input state after having
passed through the shear gate P̂(mj ) in Fig. 4. This is just

Wa(q1, p1) = Win(q1, p1 − mjq1). (2)

The ĈZ [1] gate entangles Wa and Wε,κ to give

Wb(x) = Wa(q1, p1 − q2)Gκ (q2)Gε(p2 − q1), (3)

and the outcome-dependent final state after the measurement
and displacement is [16,17]

W̃ (t )
out (q2, p2) = Gκ (q2 + t )[Gε ∗1 Wa](p2,−q2), (4)

where ∗1 indicates convolution of the univariate function on
the left with the first variable of the function on the right [19],
e.g.,

[ f ∗1 g](x, y) :=
∫

dw f (w)g(x − w, y) (5)

and similarly for the other ∗n using the nth argument of g.
In Eq. (4) the input Wigner function is being convolved

by a narrow Gaussian Gε in its first argument, which can be
interpreted as a slight blurring in that quadrature, and then
it is multiplied by a wide Gaussian envelope Gκ (q2 + t ). This

FIG. 5. The quantum circuit (read right to left) representing the
action of p̂ measurements on the two nodes connecting the input
states in Fig. 2(b). The measurement-dependent correction step is
included. Win is the Wigner function for an arbitrary two-mode input
state, and Wε,κ represents the squeezed thermal state [Eq. (1)] at
each of the two connecting nodes in the cluster. Wa is the total
Wigner function after the ĈZ [1] gates. The unnormalized, outcome-
dependent output state is represented by W̃ (r,t )

out .

envelope holds all dependence on the additional antisqueezing
through its variance κ . Its mean depends on the outcome t
after the final displacement.

To model the typical effect of the channel [17], we average
the normalized state over the measurement outcome t , which
is equivalent to integrating the unnormalized Wigner function
W̃ (t )

out over t . This eliminates Gκ , giving the normalized Wigner
function

W avg
out (q2, p2) = [Gε ∗1 Wa](p2,−q2). (6)

All dependence on the additional antisqueezing is gone. In
fact, this is exactly the same average effect as one gets with
squeezed vacuum instead [17,19]. Only the variance ε of the
squeezed quadrature affects the output (through convolution
with Gε).

(3) Two-mode gate. To determine the effects of the addi-
tional antisqueezing on the two-mode gate in Fig. 2(b), which
enacts a CZ [−1] gate, we need only consider the effect of p̂
measurements on the two nodes connecting the input states.
This is because any subsequent measurements along the top
or bottom wire are already covered by the result given above
for the one-mode gate. The circuit for these two measurements
is given in Fig. 5.

The input state is a general two-mode state
Win(q1, q4, p1, p4) over modes 1 and 4. After the ĈZ [1]
gates, the four-mode state is

Wa(x) = Win(q1, q4, p1 − q2, p4 − q3)Gκ (q2)Gκ (q3)

× Gε(p2 − q1 − q3)Gε(p3 − q4 − q2). (7)

After the measurements and a change of integration variables
to absorb the outcomes r and t , the output state becomes

W̃ (r,t )
out (q1, q4, p1, p4)

=
∫

du dv Win(q1, q4, p1 + u, p4 + v)

× Gκ (t − u)Gκ (r − v)Gε(v − q1)Gε(u − q4). (8)

Analogous to the single-mode calculation above, this involves
two convolutions and two Gaussian envelopes. The latter hold
the entire effect of the additional antisqueezing, and once
again they integrate to 1 after averaging over measurement
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outcomes, leaving

W avg
out (q1, q4, p1, p4)

= [Gε ∗4 (Gε ∗3 Win)](q1, q4, p1 + q4, p4 + p1). (9)

The result is just Win acted upon by ĈZ [−1] and then blurred
by Gε in the momentum quadrature of modes 1 and 4. This
is the same as what happens with squeezed vacuum [19],
showing again that the final result is independent of the
additional antisqueezing.

(4) Magic state preparation. The Supplemental Material
of [19] discusses the preparation of magic states using photon
counting on a GKP-encoded Bell pair. Recent work has shown
that heterodyne detection (which is Gaussian) can be used in-
stead of photon counting (non-Gaussian) to produce the same
results, enabling fault-tolerant, universal QC [23] given a CV
cluster state and a supply of GKP-encoded logical zero states,
|0L〉. The GKP-encoded Bell pair is prepared using encoded
Clifford gates, and then heterodyne detection is performed on
one mode. If necessary, distillation of higher-quality magic
states then proceeds using further Clifford circuits. We have
shown in (3) that the additional antisqueezing has no effect
on the output of the two-mode gate and so does not affect
magic-state preparation either.

In summary, we have taken fault-tolerant continuous-
variable MBQC and demonstrated that this fault tolerance is
maintained even in the presence of additional antisqueezing.
This result is significant in determining what error-correction
steps are required for practical implementations of this QC
scheme.

Discussion. The goal of Ref. [19] was to prove that a finite
squeezing threshold exists for CV MBQC, not to optimize
the particular threshold value. In fact, taking a conservative
approach to the required squeezing ensured that this goal was
achieved even if many of the implementation details (such
as particular code to be used) were left unspecified. The
conservative squeezing threshold explicitly quoted, 20.5 dB,
corresponds to a qubit-gate error rate of 10−6. This satisfies
the most stringent threshold required by any known quantum-
error-correcting code [24], making the result very general.

In fact, 20.5 dB is an upper bound on the actual squeezing
threshold for any particular code [19], and lower squeezing is
likely to be sufficient for particular applications. For instance,
specifying the 23-qubit Golay code or seven-qubit Steane
code allows for gate error rates of ∼10−3 [25]. This translates
to ∼17.4 dB of squeezing at the physical level using the
construction in Ref. [19]. Using the C4/C6 code, which has

a threshold of ∼1% under conservative assumptions [26],
the construction of Ref. [19] gives a squeezing threshold of
∼15.6 dB.

Using these levels of squeezing in a fault-tolerant QC will
require more careful design of the algorithm to be imple-
mented since some proofs of these qubit-based thresholds
assumed aspects of circuit design that are prohibitive in a
2D cluster-state architecture (e.g., Ref. [25] assumes any-to-
any two-qubit gates), so additional theoretical work may be
required to prove that a particular squeezing level will suffice
when employing a particular code for a particular application.

Nevertheless, the present work shows a critical simplifica-
tion: the antisqueezing levels have no effect on any squeezing
threshold calculated using the methodology of Ref. [19]. This
result, while surprising on the surface, agrees with prior work
on CV teleportation, which showed that additional antisqueez-
ing has no effect on teleportation fidelity [27]. It would have
an effect, however, on any attempt to use gain tuning to alter
the noise model from additive Gaussian noise to, say, pure
loss [27–30] since that simplification requires a pure resource
state [27].

For completeness, we note that if one were to forego the
scalability advantage of large-scale CV cluster states and
instead make a CV resource state entirely out of GKP states, a
lower threshold of 10 dB is possible [31], even in the presence
of experimental imperfections [32], albeit daunting. To obtain
this, Fukui et al. employed analog quantum error correction
[33], postselection, and a 3D cluster-state construction using
GKP input states [18]. This is an impressive threshold, but it
does not immediately apply to methods based on large-scale
CV cluster states, which have been experimentally demon-
strated [8–10,14,15].

For that purpose, the fault-tolerance target should be to
directly measure 15–17 dB of squeezing in a CV cluster
state. This squeezing can be converted to an effective qubit-
level gate error rate (for use with GKP states [18] at similar
squeezing levels) using the methodology of Ref. [19]. The
present work shows that the level of antisqueezing in the
cluster state is irrelevant, thereby greatly expanding the scope
of that result to include physical (i.e., impure) CV cluster
states.
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