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Eternal life of entropy in non-Hermitian quantum systems
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We find a different effect for the behavior of von Neumann entropy. For this we derive the framework for
describing von Neumann entropy in non-Hermitian quantum systems and then apply it to a simple interacting
PT -symmetric bosonic system. We show that our model is well defined even in the PT -broken regime with
the introduction of a time-dependent metric and that it displays three distinct behaviors relating to the PT
symmetry of the original time-independent Hamiltonian. When the symmetry is unbroken, the entropy undergoes
rapid decay to zero (so-called “sudden death”) with a subsequent revival. At the exceptional point it decays
asymptotically to zero and when the symmetry is spontaneously broken it decays asymptotically to a finite
constant value (“eternal life”).
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I. INTRODUCTION

The information contained within a quantum system is
of great importance for various practical implementations of
quantum mechanics, most importantly for the development
of quantum computers (e.g., Refs. [1–4]). In order to un-
derstand the quantum information, one must find a way of
measuring the entanglement of a state. Entanglement is a
defining feature of quantum mechanics that distinguishes it
from classical mechanics, and there has been much work in
recent years into the evolution of entanglement with time,
particularly the observation of the abrupt decay of entangled
states, coined as “sudden death” [5,6]. The decoherence of
entanglement [7,8] is a problem for the operation of quantum
computers and so understanding the mechanism behind this
is an important contribution to the development of future
machines. One particular measurement of entanglement and
quantum information is the von Neumann entropy (see, for
instance, Sec. 11.3 in Ref. [1]). This is well understood in
the standard quantum mechanical setting, however, to date
there has only been a small amount of work done concerning
the proper treatment of entropy in non-Hermitian, parity-
time (PT )-symmetric systems [9–12]. These differ from open
quantum systems as the energy eigenvalues are real or appear
as complex conjugate pairs and do not describe decay.

Non-Hermitian, parity-time (PT )-symmetric quantum me-
chanics was first popularized when it was shown that non-
Hermitian systems with unbroken PT symmetry had real
eigenvalues and unitary time evolution [13–17]. This is pos-
sible due to the existence of a nontrivial metric operator, and
much work has been done on constructing metrics for time-
independent systems (e.g., Refs. [18–23]). More recently this
has extended to time-dependent systems (e.g., Refs. [24–30]).
Of particular interest are non-Hermitian systems with
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spontaneously broken PT symmetry. These systems pos-
sess an exceptional point above which the PT symmetry is
broken. In this regime the system exhibits complex energy
eigenvalues, becoming ill defined and is therefore ordinarily
discarded as nonphysical and useless. However, it has been
shown [31–34] that when a time dependence is introduced
into the central equations it is possible to make sense of
the broken regime via a time-dependent metric. This allows
for the definition of a Hilbert space and therefore a well-
defined inner product. This will be central to our analysis
in non-Hermitian systems as we will be showing how the
evolution of entropy changes significantly as we vary the
system parameters through the exceptional point.

We will first set up the framework for analyzing the von
Neumann entropy in non-Hermitian systems and then we will
apply it to a simple model consisting of a bosonic system
coupled to a bath.

II. ENTANGLEMENT VON NEUMANN ENTROPY

In order to make calculations of the quantum entropy for
non-Hermitian systems, we must first introduce some new
quantities when compared to the Hermitian case. In what
follows we use natural units, setting h̄ = 1. The density matrix
for Hermitian systems is defined as an Hermitian operator
describing the statistical ensemble of states,

�h =
∑

i

pi |φi〉 〈φi| , (1)

where the subscript h indicates it relates to an Hermitian
system. |φi〉 are general pure states, and pi is the probability
that the system is in the pure state |φi〉, with 0 � pi � 1 and∑

i pi = 1. Therefore �h represents a mix of pure states (a
mixed state). If the system is comprised of subsystems A
and B, one can define the reduced density operator of these
subsystems as the partial trace over the opposing subsystem’s
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Hilbert space,

�h,A = TrB[�h] =
∑

i

〈ni,B| �h |ni,B〉 , (2)

�h,B = TrA[�h] =
∑

i

〈ni,A| �h |ni,A〉 , (3)

where |ni,A〉 and |ni,B〉 are the eigenstates of the subsystems
A and B, respectively. In this way one can isolate the density
matrix for each subsystem and perform an entropic analysis
on them individually. We now want to find the relationship
between the �h and �H , where the subscript H indicates a
non-Hermitian system. The clearest starting point is the von
Neumann equation which governs the time evolution of the
density matrix. For the Hermitian system it is

i∂t�h = [h, �h], (4)

where h is the Hermitian Hamiltonian. We now wish to find
the equivalent relation in the non-Hermitian setting. In order
to do this we substitute the time-dependent Dyson equation
[32,35],

h = ηHη−1 + i∂tηη−1, (5)

into the von Neumann equation. Equation (5) arises when
one considers two Hamiltonians, h = h† and H �= H†, each
satisfying the time-dependent Schrödinger equation with cor-
responding wave functions |φ〉 and |ψ〉,

h |φ〉 = i∂t |φ〉 , H |ψ〉 = i∂t |ψ〉 . (6)

The wave functions are related by the Dyson operator
|φ〉 = η |ψ〉, which when substituted into the time-dependent
Schrödinger equation, gives the time-dependent Dyson equa-
tion. This relates the non-Hermitian Hamiltonian to a Her-
mitian Hamiltonian. The Dyson operator forms the metric
ρ = η†η which we will see is essential for the calculation of
entropy in non-Hermitian systems. After some manipulation,
substituting Eq. (5) into (4) results in the following equation,

i∂t�H = [H, �H ], (7)

when assuming that the density matrix in the Hermitian
system is related to that of the non-Hermitian system via a
similarity transformation,

�h = η�Hη−1. (8)

Recalling that |φ〉 = η |ψ〉, this leads us to the definition of
the density matrix �H for non-Hermitian systems,

�H =
∑

i

pi |ψi〉 〈ψi| ρ, (9)

where |ψi〉 are general pure states for the non-Hermitian
system. Notice that �H is a Hermitian operator in the Hilbert
space related to the metric 〈·| ρ |·〉. It is therefore clear that the
existence of a well-defined metric is essential for the calcula-
tion of entropy in non-Hermitian systems. These results match
those from Ref. [9]. Having defined the density matrix for
non-Hermitian systems and found the relation to Hermitian
systems we can now consider the entropy. For the total system,
the von Neumann entropy is defined as

Sh = −tr[�h ln �h]. (10)

This can also be expressed as a sum of the eigenvalues λi of
the density matrix ρh as it is a Hermitian operator,

Sh = −
∑

i

λi ln λi. (11)

As the density matrices for the Hermitian and non-Hermitian
systems are related by a similarity transform, they share the
same eigenvalues, therefore

SH = Sh. (12)

It is important to recall, however, that this relation only holds
true for the existence of a well-defined Dyson operator η and
metric ρ. Without this, we are unable to form the relation (8).
For closed systems, the von Neumann entropy is constant with
time. However, we wish to consider the entropy for particular
subsystems and for this we must consider the partial trace of
the density matrix. In this setting the entropy for subsystem A
becomes

Sh,A = −tr[�h,A ln �h,A] = −
∑

i

λi,A ln λi,A, (13)

where once again the entropy of the Hermitian subsystem is
equal to that of the non-Hermitian subsystem Sh,A = SH,A with
the existence of η and ρ. The entropy of a particular subsystem
is not confined to be constant and we show that it exhibits
some very interesting properties when evolved in time.

III. SYSTEM BATH COUPLED MODEL

We now consider a time-independent non-Hermitian
Hamiltonian consisting of coupled harmonic oscillators. We
have a system composed of a, a† bosonic operators coupled
to a bath of N qi, q†

i bosonic operators. The Hamiltonian takes
the form

H = νa†a + ν

N∑
n=1

q†
nqn + (g + κ )a†

N∑
n=1

qn

+ (g − κ )a
N∑

n=1

q†
n, (14)

with ν, g, and κ being real time-independent parameters.

A. PT symmetry

The Hamiltonian (14) is PT symmetric under the antilinear
transformation,

PT : i → −i, a → −a, a† → −a†,

qn → −qn, q†
n → −q†

n, (15)

as it commutes with the PT operator for all values of ν, g,
and κ ,

[PT, H] = 0. (16)

The energy eigenvalues are

E±
m,N = m(ν ±

√
N

√
g2 − κ2). (17)

In order to ensure boundedness from below the system must
have ν >

√
N

√
g2 − κ2. Note that there is an exceptional

point at g = κ and when κ > g this system is in the broken
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PT regime. This is clear when studying the first excited state
(m = 1) expanded in terms of creation operators acting on a
tensor product of Fock states. The general state consists of one
Fock state for the system of a and a† bosonic operators and N
Fock states for the bath of qi and q†

i bosonic operators,

|ψ〉 = |na〉 ⊗ |nq1〉 ⊗ |nq2〉 · · · = |na〉
N⊗

i=1

|nqi〉 . (18)

When considering the first excited state, we will be dealing
with very few nonzero states, and as such we can make some
simplifications to the notation. If all the states in the q bath are
in the ground state we will represent this with |0q〉. Similarly,
if the ith state in the q bath is in the first excited state with the
rest in the ground state, we will represent this with a |1i〉,

|0q〉 =
N⊗

i=1

|0qi〉 ,

|1i〉 =
⎡
⎣ i−1⊗

j=1

|0q j 〉
⎤
⎦ ⊗ |1qi〉 ⊗

[
N⊗

k=i+1

|0qk 〉
]
. (19)

We can now write down the first excited state,

|ψ±
1,N 〉 =

√
g + κ

2g
|1a〉 ⊗ |0q〉 ±

√
g − k

2gN
|0a〉 ⊗

N∑
i=1

|1i〉

=
√

g + κ

2g
|1a0q〉 ±

√
g − κ

2gN

N∑
i=1

|0a1i〉

=
√

g + κ

2g
a† |0a0q〉 ±

√
g − κ

2gN

N∑
i=1

q†
i |0a0q〉 . (20)

In order for the PT symmetry to remain unbroken, the wave
function must also remain unchanged up to a phase factor
when acted on by the PT operator,

PT |ψ±
1,N 〉 = eiφ |ψ±

1,N 〉 . (21)

However, the wave functions are only eigenfunctions of the
PT operator when κ < g,

PT |ψ±
1,N 〉 = − |ψ±

1,N 〉 . (22)

When κ > g, the wave functions are no longer eigenfunctions
of the PT operator,

PT |ψ±
1,N 〉 �= eiφ |ψ±

1,N 〉 . (23)

Therefore we need to employ a time-dependent analysis in
order to make sense of the broken regime. To do this we first
must solve the time-dependent Dyson equation.

B. Solving the time-dependent Dyson equation

We wish to find the time-dependent metric ρ(t ) that allows
us to perform an entropic analysis on our model (14). In
order to do this we must find the Dyson operator η(t ) and
the equivalent time-dependent Hermitian system h(t ). The
model (14) is in fact part of a larger family of Hamiltonians

belonging to the closed algebra with Hermitian generators,

NA = a†a, NQ =
N∑

n=1

q†
nqn,

NAQ = NA − 1

N
NQ − 1

N

∑
n �=m

q†
nqm,

Ax = 1√
N

(
a†

N∑
n=1

qn + a
N∑

n=1

q†
n

)
,

Ay = i√
N

(
a†

N∑
n=1

qn − a
N∑

n=1

q†
n

)
. (24)

The commutation relations are

[NA, NQ] = 0, [NA, NAQ] = 0,

[NA, Ax] = −iAy, [NA, Ay] = iAy,

[NQ, Ax] = iAy, [NQ, Ay] = −iAx,

[NAQ, Ax] = −2iAy, [NAQ, Ay] = 2iAx. (25)

In terms of this algebra, our original Hamiltonian (14) can be
written as

H = νNA + νNQ +
√

NgAx − i
√

NκAy. (26)

We are now in a position to begin solving the time-dependent
Dyson equation (5). For this we make the ansatz

η(t ) = eβ(t )Ay eα(t )NAQ , (27)

and use the Baker-Campbell-Hausdourff formula to expand
the Dyson equation (5) in terms of generators. In order to
make the resulting Hamiltonian Hermitian, we must solve two
coupled differential equations to eliminate the non-Hermitian
terms,

α̇ = − tanh(2β )[
√

Ngcosh(2α) +
√

Nκ sinh(2α)], (28)

β̇ =
√

Nκ cosh(2α) +
√

Ng sinh(2α). (29)

Equation (29) can be solved for α,

tanh(2α) = −Ngκ + β̇
√

β̇2 + N (g2 − κ2)

Ng2 + β̇2
. (30)

In principle this could lead to a restriction to the term on the
right-hand side of Eq. (30) as −1 < tanh(2α) < 1. However,
as we will see, this restriction is obeyed with the final solu-
tions for α and β. Substituting (30) into Eq. (28) gives

β̈ + 2 tanh(2β )
[
Ng2 − Nκ2 + β̇2

] = 0. (31)

Now making the substitution sinh(2β ) = σ , this reverts to a
harmonic oscillator equation,

σ̈ + 4N (g2 − κ2)σ = 0, (32)

which is solved with the function

σ = c1√
g2 − κ2

sin[2
√

N
√

g2 − κ2(t + c2)], (33)
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for all values of κ , where c1 and c2 are constants of integration. We can now write down expressions for α and β,

tanh(2α) = ζ 2 − 1

ζ 2 + 1
, (34)

sinh(2β ) = c1√
g2 − κ2

sin[2
√

N
√

g2 − κ2(t + c2)], (35)

where ζ is of the form

ζ =
√

2

√
g − κ

g + κ

⎡
⎣

√
c2

1+ g2 − κ2+ c1 cos[2
√

N
√

g2 − κ2(t + c2)]√
c2

1 + 2(g2 − κ2) − c2
1 cos[4

√
N

√
g2 − κ2(t + c2)]

⎤
⎦.

(36)

Therefore we have a well-defined solution for η(t ) from
our original ansatz (27) which results in the following time-
dependent Hermitian Hamiltonian,

h(t ) = νNA + νNQ + μ(t )Ax, (37)

where

μ(t ) =
(g2 − κ2)

√
N

√
c2

1 + g2 − κ2

c2
1 + 2(g2 − κ2) − c2

1 cos[4
√

N
√

g2 − κ2(t + c2)]
.

(38)

This is real provided | c1√
g2−κ2

| > 1. The general time-

dependent first excited state is

|φ(t )〉 = e−iνt [A sin μI (t ) + B cos μI (t )] |1a0q〉

+ e−iνt

√
N

[A cos μI (t ) − B sin μI (t )]
N∑

i=1

|0a1i〉 , (39)

with A2 + B2 = 1 and

μI (t ) =
∫ t

μ(s)ds

= 1

2
arctan

⎛
⎝

√
c2

1+ g2− κ2 tan[2
√

N
√

g2− κ2(t+ c2)]√
g2 − κ2

⎞
⎠.

(40)

Now we have a full solution for η(t ) and therefore ρ(t ) =
η(t )†η(t ). This allows us to calculate the entropy for our

non-Hermitian system (14). The easiest route to take is to
work with the resulting Hermitian system (37) as it was shown
in Sec. II that the entropy in both systems is equivalent when
η(t ) is well defined. It is important to note that if the η(t )
ever becomes ill defined, then our analysis of the Hermitian
system does not correspond to the original non-Hermitian
Hamiltonian as we cannot form a metric ρ(t ).

IV. THREE TYPES OF ENTROPY EVOLUTION

We now calculate the entropy of the system and show how
varying the parameters N , g, and κ affect its evolution with
time. We prepare our system in an entangled first excited
state (39) at time t = 0—this is equivalent to a single qubit
entangled with itself,

|φ(0)〉 = sin γ |1a0q〉 + cos γ√
N

N∑
i=1

|0a1i〉 , (41)

for which we choose A = sin γ , B = cos γ , and c2 = 0.
Therefore the general state at time t is

|φ(t )〉 = e−iνt [sin γ sin μI (t ) + cos γ cos μI (t )] |1a0q〉

+ e−iνt

√
N

[sin γ cos μI (t )− cos γ sin μI (t )]
N∑

i=1

|0a1i〉 .

(42)

Now we form the density matrix for the system (a) with a
partial trace over the external bosonic bath (q),

�a(t ) = Trq[�h(t )] =
(

[sin γ sin μI (t ) + cos γ cos μI (t )]2 0
0 [sin γ cos μI (t ) − cos γ sin μI (t )]2

)
. (43)

We can now calculate the von Neumann entropy of the system using this reduced density matrix. First, we read off the eigenvalues
of �a(t ) as it is diagonal,

λ1(t ) = [sin γ sin μI (t ) + cos γ cos μI (t )]2,

λ2(t ) = [sin γ cos μI (t ) − cos γ sin μI (t )]2, (44)

and substitute these into the expression for the entropy,

Sh,a(t ) = SH,a(t ) = −λ1(t ) ln[λ1(t )] − λ2(t ) ln[λ2(t )]. (45)
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FIG. 1. von Neumann entropy as a function of time and varied
bath size, with c1 = 1, g = 0.7, κ = 0.3.

With this expression we are free to choose the initial state
of our system with a given value of γ . If the initial state of our
system is maximally entangled state with γ = π/4, then we
observe how the entanglement entropy evolves with time. This
is most applicable to quantum computing as in that context
one would like to preserve the entangled state. We will now
vary the parameters N , g, and κ to see how they affect the
evolution of entropy with time. Of particular interest is the ex-
ceptional point g = κ where the non-Hermitian system enters
the broken PT regime in the time-independent setting. It is in
this area that the evolution we see differs from the standard
evolution of entropy in Hermitan quantum mechanics.

Figure 1 shows how the entropy evolves when κ < g. This
is equivalent to the unbroken PT regime of the non-Hermitian
model. In this setting the entropy experiences so-called “sud-
den death” similar to Ref. [6]. The entropy rapidly decays
from a maximum value to zero with a subsequent revival
after the initial death. When the number of oscillators in the
bath increases, the moment of vanishing entropy occurs at an
earlier time.

Figure 2 depicts the entropy evolution when κ = g. This
is equivalent to the exceptional point of the non-Hermitian
model. As κ = g, any dependence on either κ or g disappears
as they only appear in the combination g2 − κ2 in the entropy.
In this specific setting, the system decays asymptotically from

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0
S

N= 2
N= 10
N= 20
N= 50

FIG. 2. von Neumann entropy as a function of time and varied
bath size, with c1 = 1, g = κ .
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FIG. 3. von Neumann entropy as a function of time and var-
ied bath size, with c1 = 1, g = 0.3, κ = 0.7. The asymptote is at
St→∞ ≈ 0.3521.

maximal entropy to zero. The half-life of this decay decreases
with the number of oscillators in the bath.

Figure 3 now shows the results of entropy evolution when
g < κ . This is the spontaneously broken PT regime of the
original time-independent non-Hermitian model. In this case
the system once again decays asymptotically but in this in-
stance the decay is to a nonzero value of entropy. In this
way, the entropy is preserved eternally. Once again the half-
life decreases with increasing N . The finite value that is
asymptotically approached independently of N is

St→∞ = − 1
2 (1 + ξ ) ln

[
1
2 (1 + ξ )

]
− 1

2 (1 − ξ ) ln
[

1
2 (1 − ξ )

]
, (46)

where

ξ =
√

c2
1 + g2 − κ2

c1
. (47)

We see the condition for the asymptote to exist is
| c1√

g2−κ2
| > 1, which matches the reality condition of μ in

Eq. (38).
We have found three significantly different phenomena

at κ > g, κ = g, and κ < g. Specifically, we see a change
from rapid decay of entropy to zero, to asymptotic decay
to zero, through to asymptotic decay to a nonzero entropy.
This can be interpreted as crossing the PT exceptional point
into the spontaneously broken regime of the original time-
independent non-Hermitian system. However, with the exis-
tence of a time-dependent metric, the broken regime is no
longer truly broken as we are able to provide a well-defined
interpretation.

V. CONCLUSION

We derived a framework for the von Neumann entropy in
non-Hermitian quantum systems and applied it to a simple
system bath coupled bosonic model. In order to analyze the
model we were required to find a time-dependent metric
and we chose to solve the time-dependent Dyson equation
for this. This method also gave us the equivalent Hermitian
system which we worked with to perform the analysis as
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the framework showed the entropy was equivalent in both
systems. The PT symmetry of the non-Hermitian system
played an important role in the characterization of the regimes
of different qualitative behavior in the evolution of the von
Neumann entropy. We found three different types of behavior
depending on whether we are in the PT -unbroken regime,
at the exceptional point, or in the spontaneously broken PT
regime. In the unbroken regime, the entropy underwent a
rapid decay to zero. At subsequent times it was revived
and continued this oscillatory behavior indefinitely. At the
exceptional point, the entropy decayed asymptotically to zero,
and in the spontaneously broken regime, the entropy decayed
asymptotically from a maximum to a finite minimum (46) that
remained constant with time.

Our findings may have implications for maintaining entan-
glement in quantum computers when the computer is operated
in the spontaneously broken PT regime. The challenge here
is to construct a system in a laboratory that mimics that
of the non-Hermitian system presented here. However, non-
Hermitian systems have been realized in quantum optical
experiments (e.g., Refs. [36,37]) and so it is certainly possible
that the same could be carried in quantum computing.
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