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In this paper we present a coherent physical picture of four electronic transport regimes
in expanded liquid mercury. Mfe propose that the first two metallic regions, i.e., the propa-
gation regime (p &11.0 g cm 3) and the diffusion regime (9.2 &p&11.0 g cm 3), are separated
from the semiconductor regime (p& 7.8 g cm ) by a third conduction regime where the ma-
terial is microscopically inhomogenous with regard to electron transport. Density Quctua-
tions in a one-component system characterized by a mean interatomic spacing 2r were
handled by considering the density-density-correlation function. The latter is characterized
by the Ornstein-Zernike decay length $ and by the Debye short correlation length b. The
necessary conditions b &2r and b &$ imply the existence of structual Quctuations which are
independent when separated by more than 2b. Local electronic structure and local response
functions will exist in a disordered material provided that the phase coherence length l of
the electronic wave functions is appreciably shorter than b, and given that quantum correc-
tions associated with the inhomogeneities, i.e., tunneling and kinetic-energy contributions,
are smal1. . The transport properties of such a system were handled by a general effective-
medium theory, which was formally reduced to the problem of transport in a two-component
system. Assuming that liquid mercury in the density range 9.3-8.0 (g cm" ) is characterized
by a sufficiently large value of b, we were able to provide a complete semiquantitative inter-
pretation of the transport data accounting for the slow variation of the Hall mobility, and for
the volume and temperature coefficients of the conductivity in that density region. The anal-
ysis of the conductivity data together with our statistical Quctuation theory results in a value
of b = 15 A. for the average radius of the density fluctuation, whereupon the requirements of
internal consistency of our picture are well satisfied. To establish the validity of the semiclassical
percolation pictur e we have provided estimates of the magnitude and relative importance of
tunneling and kinetic-energy effects, establishing that these corrections are quantitatively
small for this high-temperature system. In the inhomogenous regime, density fluctuations
lead to localization and percolation, and the metal-nonmetal transition should be envisioned in
terms of a continuous change of the conductivity.

I. rNTRODUCTION

A recent series of experimental papers by Hen-
sel' ' and colleagues was devoted to the study of
the electrical conductivity, ' ' thermoelectric
power, "and optical properties' of subcritical
and supercritical mercury, demonstrating the
existence of several distinct regimes of electron
transport in this one-component system. Subse-
quently, Even and Jortner" showed by com-
bined electrical. conductivity o and Hall-effect R
measurements that three distinct conduction re-
gimes ean be identified at Hg densities p above
8.5 g em '. For 11&p&13.6 g cm ', the Hall
coefficient has the free-electron value R„=(Vec) ',
and the conductivity exhibits no particular relation
to R. For 9.2 & p & 11.0 g em ~, o is proportional
to (R„/R)', whereupon the Hall mobility follows
p, „~(Rf,/R) Finally, for. 8.5&p&9.2 g cm ~, p, „
is only weakly dependent on R„/R At still lower.

densities, 5.0&p&V.8 g cm ', Schmutzler and
HenseP' have established a correlation between
o and thermoelectric power S of the form ln(o/o, )
= -nels~/k, a= 1, indicating the existence of a
fourth, semiconducting, regime in expanded liquid
mel cur y.

Additional experimental information relevant to
the physical nature of electron transport in ex-
panded mercury comes from the dependence of o
and S on indium concentration in dilute amalgams.
Zjllgit and Hensel o~' ' "' showed that a strong
influence on In concentration (in the range 0.75-
3%) on o is exhibited for p&8.8 g cm '.""" To
complete this survey we should mention that Hen-
sel has measured the extinction coefficient of
supercritical mercury vapor' for p~3.89 g em '.
Extrapolation of the observed absorption edges
resulted in a vanishing energy gap at p-5.5 g cm '.

In this paper we are concerned with developing
a coherent physical picture of all the four trans-
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CONDUCTION REGIMES IN EXPANDED LIQUID MERCURY

port regimes in exyanded liquid mercury. Before
developing our ideas, however, it will be neces-
sary to review briefly the current theoretical
background to this problem.

Zi~an" and Faber" have shown in normal liquid
metals, where the mean free path considerably
exceeds the reciprocal Fermi wave number, that
in the lowest-order corrections to the Born ap-
proximation there is a eaneellation of those changes
in the conductivity resulting from changes in the
density of states. At the same order the Hall coef-
ficient exhibits changes from R„which are deter-
mined by the ratio of the density of states at the
Fermi energy to the free-electron value. "' '

Fukuyama et a/. "have predicted that incorpora-
tion of high-order effects may result in significant
deviations of R from R„. We term the regime
in which a perturbation expansion in powers of
the potential converges well the propagation (weak-
scattering) regime. Although the theoretical situa-
tion concerning the Hall coefficient is confused,
we may conclude that in this regime there is no
special relation between o and R„/R.

Friedman" has studied transport in a crystal
with a tight-binding s band. He assumes that the
wave-function amplitudes are everywhere constant
but the phases on different sites are uncorrelated.
He then inserts these wave functions into the Kubo-
Greenwood formulas and obtains"

(x = -', v(e'/Sa) zX',

& = (Sqz/z')(a'/ec)X ',

p„=Ita = (2wqZ/z)(ea'/R)X,

(la)

(1b)

(1c)

where z is the number of nearest neighbors; z is
the number of triangular closed paths around each
lattice site; q = —,

' is a geometrical factor; a is the
internuclear separation; and the parameter

X = Za'n(E, )

contains 4, the nearest-neighbor electron-transfer
integral, and the density of states N(E~) at the
Fermi energy E~. Since all parameters, except
X can be readily estimated in particular situations,
it is more convenient" to relate o and p,„to R„/ft,

Friedman" has related in a rough way the trans-
port coefficients he derived to g, Mott's" ratio
of density of states to free-electron density of
states,

ft f./ft = (I/4nf)(z/z) g, (4)

where f is a filling factor relating Fermi energy
to bandwidth W,

g =&(&,)/sf. (&,)
Similarly v can be approximately related linearly"
to g'.

Mott" "has proposed that a pseudogap, i.e.,
a range of localized states, can occur in a dis-
ordered system when g falls below g* which he
estimates"'" to be about g~ =-,'. The boundaries
of this pseudogap or mobility gap are the mobility
edges and within it the mobility is low. According-
ly when E~ lies within this gap, transport is non-
metallic in character. Mott has also pointed out"
that in a fluid consisting of widely separated mer-
cury atoms, the s and p bands would be separated
by a gap and the s band full. Thus, when g falls
to —,

' as the density is reduced, a metal-semi-
conductor transition occurs as the pseudogap opens
near the Fermi energy.

The nature of the wave functions near the mobil-
ity edges and in the pseudogap has been elucidated
by Cohen. '0 His basic point is that long-range
fluctuations in the potential are crucial for the
transition from extended to localized states at a
mobility edge. Hence, semiclassical considera-
tions are sufficient there, and the problem re-
duces to one similar to that first considered by
Ziman, "percolation of a classical particle in a
random potential. Let C(E) be that fraction of
the total volume which is classically allowed. The
mobility edge E, occurs when C(E) reaches the
percolation value C*,

c(E,}=c'.
No calculations are available for this continuum
site-percolation problem. For the lattice case,"
C* ranges from 0.16 for fec to 0.30 for simple
cubic (sc). We estimate C* to be roughly 0.2, so
that

where a, is the internuclear separation at the
density po. In this form, one ean hope that Fried-
man's results are of more general applicability in
this diffusion or Brownian-motion, i.e., strong-
scattering, regime than the particular model for
which they were derived.

C(E.) =0.2.

Equation (8} is consistent with Zallen and Scher's
estimate of C

Conductivity above the mobility edges occurs
through percolation channels, as it does at E„
when C(Ez) z0.2. Thus, as Kirkpatrick" has
emphasized, one has transport within a sub-
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macroscopically inhomogeneous medium. For
C(E~) &0.4, Kirkpatrick's numerical results, "
imply that the simple effective-medium theory"
is adequate, when o~[—', C(Ez) ——,'], and he claims
that R~P '[C(Er)] where P is the percolation
probability. For C (E~) &0 4, h. is detailed numer-
ical calculations" show that

n(E) = n, (E)C(E), (10)

where n, (E) is the density of states of a homo-
geneous metal having the composition of the mate-
rial outside the clusters. There is no reason for
no(E) to be the free-electron density of states, so
that we must write

The condition for pseudogap formation is then

mins[C(E)] =C -=0.2

as distinct from

min, [g(E)]=g*-=-',

as proposed by Mott. " '0

The validity of the semiclassical picture just
at the mobility edge has been challenged by Mott."
His main point appears to be that potential fluctua-
tions large enough for tunneling to be ineffective
in erasing classical inhomogeneities in the elec-
tron motion are improbable except where the
fluctuations are very slowly varying, as near a
critical point. "' ' In his view, one can consider
the wave-function amplitude as everywhere com-
parable except in the latter special case. This
implies, via the Kubo-Greenwood formalism and
the assumption of random phases, that the con-
ductivity decreases abruptly from the diffusiop
limit to zero at the mobility edge at T =0 in con-
trast to Eq. (9}. In our view, the energy range in

o [C(E,)-C*]",
when the conductivity of the "excluded" paths is
negligible. We shall see that for Hg it is essential
to include contributions to. o from the low-conduc-
tivity regions.

Eggarter and Cohen" have used the semiclassical
picture for electrons in dense He vapors. They
find agreement with the measured mobility over
six orders of magnitude utilizing a statistical
sampling length of 1.7 times the De Broglie wave-
length. Cohen and Sak" have developed a semi-
classical theory of the metal-semiconductor tran-
sition in liquid or amoxphous binary alloys. Elec-
trons near the Fermi energy are excluded from
clusters of the compound composition in the alloy
by Bragg reflection. The density of states is then
approximately"

which percolation effects within the semiclassical
picture are important depends on the Debye short
correlation length" and the amplitudes of the fluc-
tuations. In the case where the Debye short cor-
relation length 5 is long, as for clusters, the
inhomogeneities in the potential are smooth
enough, within a deformation-potential-type of
formalism, that the semiclassical picture is quan-
titatively valid. If, further, the potential

fluctuat-

ionss have a Gaussian distribution in amplitude
with rms width o~, percolation effects are impor-
tant within an energy range of about 20~, inside
the mobility edge. As the Debye short correlation,
length decreases, tunneling indeed reduces the
effects of short-range fluctuations in the potential.
We think that these can be projected out of the
Hamiltonian so as to obtain an equation of motion
for a smooth envelope function which becomes
semiclassical in the vicinity of the mobility edge,
and that the shorter the b, the smaller the range
of energy within which semiclassical percolation
is important. One test of the qualitative accuracy
of the percolation picture is the magnitude of the
mean tunneling probability. We include in this
paper a technique of estimation for the latter which

we prefer to that of Mott."
In summary, the use of the semiclassical theory

near a mobility edge has not yet been given a com-
pletely rigorous justification. There are two

possible approaches, one being the development
of the formal theory and the other being the ex-
ploration of the consistency of the semiclassical
picture with experimental data. Mott has inter-
preted low-temperature transport data for dis-
ordered solids in terms of his picture. We show
here that a consistent interpretation of the liquid-

Hg data can be constructed on the basis of the
semiclassical picture but that the Mott picture" "
has difficulties with liquid Hg.

II. MICROSCOPIC INHOMOGENEITIES IN LIQUID H3,

Even and Jortner, "on the basis of the general
arguments advanced by Mott, ""have proposed
the following scheme of interpretation of their
experimental data. For p &11 g cm ' the propaga-
tion regime holds. Note that R„jR is observed to
be unity, and that no completely adequate inter-
pretation has been given. In the xange 9.2& p&11
g cm, the diffusion regime applies, and both
o and p, H are in quantitative agreement with Fried-
man's theory" in the form of Eq. (3). The break-
down of Eq. (3) for o' and ij,„in the range 8.5 & p
& 9.2 g cm ' was attributed by Even and Jortner'
to the opening of a pseudogap at p=9.2 g cm '
according to the Mott criterion" "of g(E„)=g*

1



10 CONDUCTION REGIMES IN EXPANDED LIQUID MERCURY

There are then difficulties with the detailed
interpretation of the experiments of Hensel and
colleagues. ' ' The correlation between thermo-
power and conductivity' exhibits clearly marked
semiconducting behavior only below p =7.8 g cm '
If the pseudogap had opened" at p--9.2 g cm ',
derivations of the conductivity-thermopower corre-
lation from metallic behavior should have set in
there. Ne conclude that the opening of a pseudogap
occurs at densities lower than 9.2 g cm ' and that
the near constancy' of p. H in the range 8.5&p&9.2
g cm ' arises from some other cause.

The marked semiconducting behavior at densities
below 7.8 g cm ' is to be contrasted with the
clearly metallic behavior above densities of 9.2
g cm '. The electronic structure changers dras-
tically with density in that range. Density fluctua-
tions can therefore cause significant local modifi-
cations of the electronic structure and transport
properties when the mean density lies in that
range. .In other words, we have the strong possi-
bility that liquid Hg is microscopically inhomo-
geneous in its electronic structure and transport
in the density range within which it undergoes a
metal-semiconducting transition.

%'e therefore propose the existence of four
transport regimes in expanded liquid Hg. The first
two are the propagation (p & 11 g cm ') and diffu-
sion (9.2& p&ll g cm ') regimes as proposed by
Even and Jortner. '9 The fourth is the semicon-
ducting regime (p&'1.8 g cm ') as proposed by
Hensel. ' In these three regimes the material may
be regarded as homogeneous in the respect to elec-
tron transport. In the third regime, however,
(8.0&p & 9.2 g cm ') we propose that the material
is inhomogeneous as regards electron transport, "
and that this inhomogeneity is the cause of a con-
tinuous metal-semiconductor transition in this
disordered system.

cally" as

G(R) =(const)e "~'/R, (18)

a(0) =nkTer.

In Eq. (18), n is the mean number density

n =(n(r)},

(18)

~r =n '(sn/sp)r

is the isothermal compressibility. The micro-
scopic length s is given by

s' =
6 dRR c(R) dRR2c(R),

0 0
(20)

where c(R) is the direct correlation function.
There are no accurate treatments of G(R} in

the theory of liquid metals from which one can
obtain direct numerical values of s. Instead we
make reasonable estimates of s by the technique
of Ashcroft and I.ekner. "'" They showed, and
later work by Ashcroft"'b' confirmed in detail,
that the hard-core Percus- Yevick model"'" gave
good fits to the radial distribution function of
simple liquids, including liquid metals, to den-
sities closer to the critical density than those we
are considering here. The Percus-Yevick theory
gives"'"

nba(0) d'

a(0) —1

where

where $ is the Ornstein-Zernike' decay length
conveniently expressed as

~ =s[a(0) —lj'~2,

with a(0) the structure factor at zero wave number

III. DENSITY FLUCTUATIONS IN LIQUID Hg

The density-density correlation function in a
simple, one-component liquid such as mercury
G(R) is

& = s & d'(5 o+ —,P+ —w),

a = (1 + 2q)'/(1 —q)',

8n(1 + k-n) /(I 'n)', —

1
y = P'gQy

(22)

G(R) = (n( r) n( r + R)}—(n( r)}(n(r + It)}, (14) q = —hand,

where n(r) is the completely microscopic number
density,

and d ls the hard-core dlametery this gives

P =nba(0)d2 (23)

n(r) = Q 5(r —r,.). (15)

The sum one runs over all nuclei, r,. is the nuclear
position, and the average is over all nuclear con-
figurations in thermodynamic equilibrium. G(R)
has the following features of interest to us. First,
away from the critical point it decays asymptoti-

for g. We use the thermodynamic expression (18)
for a(0) because the Percus-Yevick theory"'" does
not include the electron-gas contribution to the
compressibility. However, the geometric con-
straints introduced by the pairwise interatomic
interaction are incorporated in the factor nAd',
and these are presumably well estimated by the
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TABLE I. Correlation length in expanded liquid Hg (o =2.76 A).

T
oK

P
atm

p
g/cm 3

az
Bp

atm g 'cm3 (A)

's

(A.) X~ = A'p~

473
673
873

1173
1273
1373
1473
1573
1673
1773
1823
1473
1573
1623
1673
1723
1773

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
1000
1000
1200
1300
1500
1800

13.3
12.8
12.3
11.6
11.3
11.0
10.7
10.3

9.7
8.5
6.3

10.3
9.6
9.2
8.8
8.2
7.1

12 500
12 500
10 000

6700
6000
4000
3500
2200
1000
400
120

2000
700
600
600
300

77

0.44
0.42
0.40
0.35
0.38
0.36
0.35
0.34
0.32
0.28
0.21
0.34
0.32
0.30
0.29
0.27
0.23

1.60
1.54
1.31
1.23
1.08
1.06
0.90
1.36
i.04
0.61
0.46
1.36
1.04
0.93
0.67
0.57
0.52

0.45
0.63
0.73
0.97
1.00
1.16
1.28
2.03
2.54
2.96
4.10
1.98
2.93
2.95
2.52
3.23
5.65

1.81
1.85
1.88
1.51
1.93
1.94
1.96
1.98
2.02
2.10
2.33
1.98
2.03
2.05
2,08
2 ~ 13
2.24

0.721
0.735
0.750
0.763
0.770
0.773
0.781
0.789
0.801
0.836
0.930
0.791
0.807
0.816
0.824
0,849
0.891

Percus-Yevick theory, judging from the goodness
of the fit to the radial distribution functions.

The structure of Hg at room temperature and
pressure can be fitted"'" by a value of 0.45 for

This corresponds to a value of d =2.'76 A.
Values of g for other densities can be obtained
by linear scaling with density. Finally, values of
kT/~r can be obtained from the density data of
Hensel. ' In this way, we obtain numerical esti-
mates of the decay length $ for the various condi-
tions of interest. These are given in Table I. It
appears that $ is less than the interatomic separa-
tion 2r, for all densities and temperatures except
for those in the last line of Table I.

The next feature of G(R) is that its asymptotic
exponential decay stops roughly at a value b of R,
the Debye short correlation length. " Inside b,
G(R) shows oscillations idside a smoothly varying
envelope. These detailed oscillations are of no
interest to us. It is always possible to define a
smoothed local density n(r) through

2r, & A. & b.

We can now define a correlation function Q(R}
for the local density n(r),

8(R}=(n(r)n(r+R)) —(n(r))(n(r+R)). (26)

9(R}will have the same asymptotic behavior as

P(R)

-R/(e
R

(a)

n(r)

that n(r) is smoothly varying on an atomic scale
but which is smaller than b,

where

f (fr —r'f)&0

and

I

I

I

I

I

I
I

(b)

Suppose that b is several interatomic separations
2r, in size. The smoothing function" f(~r —r'()
can then have a range ~ which is large enough so

FIG. 1. Schematic representation of some features of
the autocorrelation function for the local density: (a)
correlation function [Eq. (26)l for, the smoothed local
density and (b) local density at high temperatures.
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'=N 'kT

y=(p 0)/0, -
N=pv/M =4irpb'/3M,

(27)

where P now replaces p as the &pean mass density
and M is the atomic weight. The probability that
the local mass density exceeds some particular
value p~ can be expressed in terms of the quan-
tities defined through Eq. (27):

(28)

W(y~) = —,
' + -' erf (-y ), y & 0,

W(y, ) =-,' ——,'erf(l(, ), g, ~o,

x, =y, /~&C

(29)

W(y, ) will turn out to be the quantity of physical
interest for the transport properties. We now go

G(R) [Eq. (It})], since X&b &8 in the asymptotic
region. Inside b, however, 9(R}will be smooth,
as sketched in Fig. 1(a) and not oscillatory as is
G(r). A step-function approximation can be taken
as a first guess for 9{f1), in which 9(R}=const,
g &b, and zero, g & b.

From this behavior of 9(R) we can infer a typical
variation of the local density n(r) itself in space.
It mill vary slowly over distances of order b.
Since me have assumed that b is larger than the
interatomic separation 2r, and have found that E.

is smaller than 2r, , we have that b & $. Thus the
decaying tails of 9(R) can be ignored outside b.
Local-density values at separations larger than
2b can be considered as fluctuating independently.
The behavior of n(r) is that sketched in Fig. 1(b).
The local density can be regarded, in first approx-
imation as roughly constant at its mean value
within a set of regions of radius b filling space,
as also indicated in Fig. 1(b). We have no basis
for a theoretical estimate of b. Its value will be
determined belom through an analysis of the trans-
port data using the model of liquid Hg me are now
developing. It is essential for the internal con-
sistency of our analysis that b so determined in-
deed turns out to be larger than E, and 2r, .

Because b & g holds, fluctuations decay rapidly
beyond b. Thus regions of the material of volume
5 3 mb

' and separated by 2b fluc tuate indepe nde ntl y
of one another. The probability distribution of
fluctuations in mass density p away from the mean
mass density p in the sampling volume v is given
by

P(y) (2vg2) 1/2e- '/ /2$

on to explore the consequence of the microscopic
inhomogeneities described above for the transport
properties.

IV. MICROSCOPIC CONDUCTIVITY

Linear-response theory states that in a micro-
scopically inhomogeneous medium there is a non-
local conductivity tensor relating the microscopic
current density to the microscopic electric field

j(r)=
J

(r(r, r') E(r')dr'.

The range of V(r, r') in
~
r —r'~ over which it is

nonlocal is the phase coherence length I, . On the
other hand, the variation &r(r, r') with mean posi-
tion —,'(r+ r') is on the distance'scale of b, if both
the Fermi wavelength and L are smaller than b.
The Fermi wavelength is definitely smaller than
b under our assumption that b exceeds 2s, in
liquid Hg at the densities of interest to us, cf.,
Table I. Moreover, in the density range 9.2-11
g cm ' the diffusion regime holds, from which
we may infer that l is substantially shorter than
the Fermi wavelength, i.e.,

(31)
Examination of Eq (30) a.nd the inverse relation
for E(r) shows that both j (r) and E (r) vary on the
scale of b. Thus, the integration over r' in Eq.
(30) can be carried out by setting E(r') equal to
E(r) and taking the latter outside the integral,

j(r) =V(r}~ E(r},
(32}

ir(i) = Jir(i, i')di'.

As a further approximation, we shall ignore any
tensorial character in V(r) except when it is in-
duced by a magnetic field, o(r)-(r(r).

The position dependence of o(r) is analogous to
that of n(r) in Fig. 1(b). We can make the corre-
sponding approximation of replacing o(r) by a set
of constant values within a set of space-filling
spheres of radius b. Of course, the Debye short
correlation length for o(r) need not be precisely
the same as that for n(r), but after the many
stages of simplification carried out here, there
is little point in maintaining the distinction.

Finally, me note that it is the variation in local
density which ultimately gives rise to the varia-
tion in local conductivity v(r). As all the other
lengths in the problem are shorter than b, it is a
good approximation simply to put

o(r) =o(p(r}).
Values of o(r) at points separated by more than

2b are statistically independent. The probability
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distribution of the values o(r) at any one point r
can be obtained from that of the values of p(r)
once the functional relationship (33}is known

explicitly.
We now address the problem of calculating the

transport properties of a material with nonuniform
local transport coefficients.

V. EFFECTIVE-MEDIUM THEORY

fined by

where P(o') is the probability distribution of values
of o' and f(e'} is any function of o'. Correspon-
dingly, the effective-medium condition for the full
magnetoconductivity tensor is

o„' ~ 8 = nHx8,

8 cr~ = &8&H,
(35)

all to first order in H. Here 8 is any arbitra, ry
vector and a is a constant.

%'e have carried out an effective-medium theory
for the full magnetoconductivity tensor for arbi-
trary distribution of conductivity components.
Here me give the essential results; a derivation
and detailed discussion will be published sepa-
rately. " The effective medium condition for
determining the macroscopic zero-field conduc-
tivity is

We are concerned with a matexial which behaves
like a random macroscopic medium with regions
of randomly varying transport coefficients. Within
each region of radius 5 the transport. coefficients
are constant. Their values in different regions
are statistically independent. Our problem is to
calculate the macroscopic transport coefficients
of such a medium and in particular, the macro-
scopic conductivity o.

Kirkpatrick has shown" that the effective-medi-
um theory" is remarkably accurate for a simple
cubic array of resistors which randomly take on
one of two values providing the conductance ratio
is greater than about 10 '. Even when the ratio
vanishes, the worst possible case, the theory is
in error only in the range of fraction of resistors
present between the percolation threshold and
0.4. We assume here that this range of accuracy
of the effective-medium theory is more general
than the simple system for which it was found
and go on to develop and use an effective-medium
theory appropriate to the system we are con-
sider lng.

In the presence of a magnetic field the local
conductivity becomes a tensor of the form"

=0'g I+ 0'g, (34)

where v,' is independent of magnetic field H and
v„' is antisymmetric and such that

where the average is over the joint probability
distribution of all the components of i'. Equation
(38) can be solved to first order in H for „eby
expanding and inserting (36). We get

(39)

We are concerned here mith a metal-to-semi-
conductor transition in the density range V.8-
9.2 g cm'. We therefore expect that density fluc-
tuations give rise to a range of values for v' and
o„' embracing at least that range observed for
o and o„over that density region. Accordingly
at one end of the range, the values for 0' will be
semiconducting in their magnitude and temperature
dependence. At the other end, they will be metal-
lic. We can select some intermediate value of
o', rr, corresponding to some particular value of
local density [according to (33)], which separates
the "semiconducting" values of o from the "metal-
lic" ones. For a purely mathematical analysis or
for a quantitative analysis of the data, it is not
necessary to specify a value of a„only to state
that it exists. However, if seems to us that there
is only one natural choice of o and p . Eq. (33)
is equivalent to the statement that a local elec-
tronic structure exists because of the phase in-
coherence of the wave functions important in trans-
port. Our interpretation of the metal semicon-
ductor transition is that an energy gap opens local-
ly via Mott's s-p overlap mechanism" "at a
local density p . o is then that value of the con-
ductivity which corresponds to just vanishing local
band gap. Since the conductivity is nearly local
and insensitive to the distant structure of the
material, we may regard o(r) as the conductivity
in a material artificially constrained to be un'i-
form at the local density p(r). Thus o is the
conductivity of a fictitious homogeneous material
of density p in which the band gap just vanishes.

The expression (36) can now be simplified con-
siderably in form with the aid of the mean-value
theorem

where v' is the random value of the local con-
ductivity. The averaging process in (36) is de- (40)
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where

C= P v' do',
Og

(41)

(42)

(r= fgo,

f =a+ (a'+-,'x)'r'

a =-,'[(—', C ——,')(1 -x)+-,'x],
x =g, /g, .

(45)

(43)

The corresponding analysis of o„ is subtler. We
note that because we have assumed that the local-
conductivity tensor depends only on local density,
Eq. (33), o„' is a function of a' only. Thus Eq. (39)
becomes

Equations (42} and (43) define mean metallic and
mean semiconducting conductivities o0 and o„
respectively. C is the probability that the local
conductivity is metallic in character, and 1 —C
is the probability that it is semiconducting. Thus,
C is the volume fraction of metallic material ~

Making use of the connection between g' and p(r),
Eq. (33), and the definition of p, , we can also
write

(r„'((r')
g~

J
P(g )

(
( )g

d(r
P((r') dg'
(o'+2(r)' '

where

Use of the mean-value theorem gives

C[(r'„/((r, +g)']+ (1 —C) [(r„'/(g, „+(r)']
C(g, „+g) '+(1 —C)(o, +g) '

(4.6)

(47)

(44)

r, = (p, P)/P-

according to (28}. The explicit functional form of

W(r, ) is contained in (29).
The problem is now reduced in form to the case

of only two possible values of O'. The standard
results for a for that case can be put in the
form"' "

c(~,„~sv) '= f )'((r')(v'+2(r)-'a(r',
Og

O

(1 —C)(g, „+2g) ' = P(g')((r'+2g) 'd(r',
0

C(r'„(g, +2(r) '=
)

P(g')(r„'((r')
O

x(a'+2g) 2dg',

(1 -C) g„")(g, „+2g) ' = P (g') g„'(g')
0

x(g'+2g) 'dg'.

(48)

C (E ) for X=3x'Ip
F

0 02
I I

0.4
I

1. Experimental 0/00 data

at 1500 C (o)X=3x10-

2. Fit of R / Rp data

X =3 x10 2; Y = 3
1.0—

o Experimental R/Rp

data at 1450-1500'C

3. F it of P /P 0 data
X=3xtp-2 . Y-3

0.6 O.B

I I

0.5—

I
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I

8.5
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Equation (46) is now of the two-component form
and can be analyzed accordingly. Unfortunately,
for the continuous distributions of values of a'
which we have, different mean values of metallic
or semiconducting a emerge for different trans-
port properties, namely a0~ in the magnetocon-
ductivity versus o0 in the conductivity. We shall
suppose that we can ignore this variability of
mean conductivity and replace op„by o0 and simi-
larly for a]z The results can be written in the
convenient form"

(2f +1)'(1 —C)(1 -xy)
(mf+()'((-c) ~ (mf, ~)c)''

a =It/ft, =g/f,
(49)

FIG. 2. Analysis of the electrical transport properties
of expanded liquid Hg in the inhomogeneous transport
regime 8.0 & p & 9.3 g cm 3 in terms of the effective-
medium theory. The experimental conductivity data
(Refs. 3-6) were utilized to establish the relation be-
tween C(Ez) and p, which was subsequently applied to
account for the density dependence of R and p, (Refs. 8,
9, and 27) in the pseudometallic regime.

~ =p/i .
Here p, is- the Hall mobility and R the Hall con-
stant corresponding to the macroscopic magneto-
conductivity cr„. p. 0 and R0 correspond to P„and
p, , too„.(&)

From Kirkpatrick's results, "we infer that for
x-10 '-10 ' the effective-medium theory for o
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is valid for the whole range of C, and a similar
behavior is expected for R and p, . We are inter-
ested in such moderately large x values (10 '-
10 ') and thus expect Eqs. (47) and (49) to hold
for all C.

Equations (47) and (49) constitute a complete,
if approximate, theory of the low-field magneto-
conductivity tensor of the kinds of materials under
consideration. Fitting the theory to actual data
requires establishing values of the parameters
x, y, and R, (or p. ,) and a connection between C
and observables.

From the mean-value theorem we have

and

o &og 0

0&o, &o,

(50a)

(50b)

VI. DETAILED ANALYSIS OF TRANSPORT PROPERTIES

Effective-medium theory will now be applied
to account for the electrical transport properties
in the inhomogeneous transport regime. In Fig. 2

we display the experimental conductivity, ' ' Hall-

and, in principle, oo and o, depend on C. As a
further approximation we shall set these con-
ductivities and the conductivity tensors 8„"' and
o„"' to be constants, independent of C. We next
approximate the values of o, and o, [cf. Eq. (34)]
by the values of the conductivity tensors at the
metallic and nonmetallic ends of the inhomogeneous
regions, respectively. Thus, o, is taken as equal
to the value of the observed conductivity at the
lower limit of the diffusion region (mean density

P =9.3 g cm ', while o, is chosen to be equal to
the conductivity at P=8.0 g cm ' (see Sec. VII).
This highly approximate procedure is followed in
order to minimize the number of parameters in
the theory without loss of physical content. In
Sec. VI, we utilize effective-medium theory,
[Eqs. (45) and (49)], to fit the conductivity and
Hall data, obtaining inter alia, C vs P.

coefficient, and Hill-mobility" data for Hg in the
density range which is assigned by us to the in-
homogeneous transport regime. Three param-
eters, x, y, and p corresponding to C =1, enter
into our transport theory [Eqs. (45) and (49)] and
should be chosen to yield the relation between C
and P that gives the best fit to the density depen-
dence of o/o, and R/R, (or p/p, ,). However, in-
accuracies in available Hall-effect data" prohibit
such a detailed analysis, and at present we have
to rely on semiquantitative estimates of the rele-
vant parameters. On the basis of the analysis
of the transport data presented in Sec. II we ex-
pect that the effective onset of the inhomogeneous
regime occurs at P = p~ = 9.2 g cm ', and we have
accordingly chosen C(P) =1.0 at P, = 9.3 g cm '.
The conductivity ratio x Eq. (45), for a high-tem-
perature material such as expanded Hg is expected
to be appreciable, being of the order x-e ~~'~

where the mean mobility gap ~E =E, -E~ in the
semiconducting regime takes the value 4E- (2 4)kT, s-o that x-0.02-0.10. We have chosen
x =3x10 ' which according to Hensel's data' cor-
responds to C =0 at p =8.0 g cm '. The electrical
conductivity data' were then utilized to establish
the relation between C and P. The more significant
values of C(p) obtained from Eq. (45) (see Fig. 3)
are listed in Table G. The Hall-effect and Hall-
mobility data, Fig. 2, available only in the range
0.5 &C &1 are properly accounted for by Eq. (49)
with the physically reasonable value of the Hall-
mobility ratio y =1-3. The fit to y =3 is somewhat
better; see Fig. 2. However, the accuracy of the
experimental results is still insufficient for a
more accurate determination of y. The Hall mobil-
ities in the metallic regions and above the mobility
edge in the semiconducting regions are both domi-
nated by diffusion-type transport, "and thus we
expect the Hall-mobility ratio to be close to unity.
It is of importance to notice that the observed
weak density dependence of the Hall mobility and

TABLE II. Features of the transition.
~ fit of 0/gp(X=3xlp )

Feature p (gcm 3) C (Ez)
0.5—

-Onset of inhomogeneous transport
Friedman theory fails
Opening of local gap
Opening of pseudogap
Termination of inhomogeneous

transport
Semiconductor-like transport

(Ez ) 4k T in 80% of the material)

pp =9.3
p~ = 9.2
pg =8.8

pp~ =8.2

P
&

-—8.0

ps =7.8

1.0
0.9
0.5
0.2

~M
~~

~W
~8

p g/

B.O B.5

p (gem )

I

9.0 9.5

FIG. 3. Density dependence of C(Ez) in the inhomo-
geneous regime as obtained from the fit of the conductiv-
ity data (~).
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the strong variation of 0 and R in the density
region 9.3-8.'T g cm ' follow from our picture.

Further information can be obtained from the
temperature and the volume coefficients of the
electron conductivity, determined by Hensel and
Schmutzler, ' which exhibit a sharp increase in the
density range 9.0-8.0 g cm '

~ This behavior is
consistent with the features of the inhomogeneous
transport regime. The volume dependence of
the electrical conductivity at constant temperatures
is attributed to the density dependence of C. From
Eq. (45) we have

(51)

The density dependence of C iS obtained from
Fig. 3. From Eq. (51) we assert (see Fig. 4) that

f '(a f/sC) exhibits a maximum at C = 0.3; how-

ever, in the present system this maximum is
washed out in s in f/sp owing to the increase of
sC/sp with increasing p in the range C&0.2. The
resulting density dependence of the normalized
electrical conductivity (Fig. 4) exhibits an increase

for C &1.0 with a shoulder at C -0.2. This behav-
ior is quite consistent with the experimental data
evaluated from Hensel's isotherm' at 1500'C.

The temperature dependence of the electrical
conductivity at constant density

81no 8 ln 8 1na,
(52)

is assigned to the temperature dependence of x
and of C. Using Eq. (45) for the evaluation of the
derivatives with respect to these parameters we
get

81n 8 ln dx 9 ln dC

f +1 dx 3 dC

4f(f —a) dT z 4(f -a) dT —'

(53)

P. e "r -—2x10 'iy, ie "~ 'K ' (54)

which depends on C (or on p). The temperature
coefficient of the conductivity ratio is approxi-
mately given by

The temperature coefficient of C can be estimated
utilizing the statistical theory of Sec. II. Neglecting
the temps'rature dependence of sp/sp we estimate
from Eqs. (27), (29), and (44)

35

30

25
C

5 o

4

I

3
I

I

2 I

dx xLssE E
10

dT kT2 (55}

which is p independent. The major contribution
to the temperature coefficient for C &0.5 (i.e.,
p&8.77 g cm ') comes from the first term on the
right-hand side (rhs) of Eq. (52), which exhibits
a sharp rise (see Fig. 5} in this density region.
The estimated temperature coefficient (taking

C

20—
30—

15— 0
20—

0 Experimental data (Hensel )

10—
10

8.0

I

8.5

I

90

p (g cm-'j

I

9.5

FIG. 4. Densitydependence of 8 1nf/BC and of 8 lnf/8 Imp

[Eq. (51)]. The latter curve exhibits a sharp rise in the
inhomogeneous region which is consistent with Hensel's
experimental data (Ref. 6), represented by open circles.

8.0 8.5

p(gem ')
90 9.5

FIG. 5. Density dependence of (8 1nf/Bx)z in the inhomo-
geneous region.
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dx/dT =10-' 'K-' is (s lnf/sT)- =3.3x10-' 'K-'
at P =8.0 g cm ', is not inconsistent with the ex-
perimental value' (s inf/sT) ~

= (10+5)x10 ' K '
at this density.

The inaccuracies in the experimental density
and electronic transport data are such as to make
a more detailed analysis premature; more accu-
rate measurements are under way. The present
analysis of the available experimental data pro-
vides a coherent picture of the electrical con-
ductivity, the Hall coefficient, the Hall mobility,
and the temperature and volume coefficients of the
transport properties of expanded liquid Hg in the
intermediate mic roscopically inhomogeneous
regime.

VII ~ AVERAGE LENGTH FOR DENSITY

FLUCTUATIONS

Vfe have demonstrated that the concept of a
mic roscopically inhomogeneous medium advanced
by us provides a complete semiquantitative inter-
pretation of the electronic transport data in the
density range 9.3-8.0 g cm '. The next cardinal
question we have to address for Hg is whether the
dependence of C on P, obtained from the analysis
of the transport data is consistent mith the density-
fluctuation picture underlying it. To provide a
direct test of our fluctuation picture, the values of
C vs p (see Fig. 3) extracted from the conductivity
data, by means of the effective-medium theory will
be interpreted in terms of our statistical theory.
Utilizing Eqs. (2'?)-(2S) and (44) we obtain the
density dependence of??, which yields I'(P). These
values together with the result (see Fig. 3) p,
=8.'77 g cm ' and the experimental compressibility
data' mere used to derive the density dependence
of ¹ The average number of atoms, N, within a
density fluctuation is plotted in Fig. 6 and varies
from 420+80 at P=9.3 g cm ' to %=360+80 at P
=8.2g cm '. Thus, mithintheexperimentaluncer-
tainty the value of Vis practically constant over this
density range. This analysis results in the value of
5 =(3AM/4')' '=lb A for the Debye short corre-
lation length, which corresponds to the average
range of density fluctuations. 0 is practically den-
sity independent. This value of the Debye short
correlation length is characterized by the following
features (see Table I): (i) it spans several inter-
atomic separations (2r, &4 5A in the .inhomogeneous
regime); (ii) it considerably exceeds the decay
length g ()& 3.2 A in the inhomogeneous regime);
and (iii) it is considerably larger than the phase-
coherence length, /, of the electron wave function
in the diffusion regime (I & O.S A in the inhomo-
geneous regime). Thus, the requirements for in-
ternal consistency of our picture are well met.

VIII. PHYSICAL INTERPRETATION OF C

—500

—O.l 0

700—

600—

0
500—

X

~oo—

300—

200—

1.0—
0

~Xg
0—

(ilP/cip) —~--
iv

—0.05

—200

-1.0— Pg

8.5 $0
P (gem '3

Q5

FIG. 6. Analysis of the density dependence of C(Ez)
in terms of the thermodynamic fluctuation theory. The
results of Fig. 3 together with Eq. (29) were utilized to
obtain the density dependence of g~, which in turn yields

' f vs p. The experimental compressibility data (Ref. 6)
were subsequently applied to calculate the average num-
ber of atoms, A, within a density fluctuation at several
densities.

%e have demonstrated that a complete, self-
consistent physical picture for electronic transport
in liquid Hg can be constructed by interposing the
inhomogeneous transport regime between the con-
ventional metallic diffusion and the semiconducting
regimes. The inhomogeneous transport regime
occurs in a disordered material provided that
two sets of necessary conditions on the magnitude
of the Debye correlation length are obeyed. First,
the basic structural requirements 6 &2r, and b & g

imply the existence of structural fluctuations
which are independent mhen separated by more
than twice the correlation radius. Second, a short
phase-coherence length satisfying Eq. (31) pro-
vides the physical basis for the validity of the
concepts of local electronic structure and local
response functions and consequently for the ap-
plicability of the effective-medium theory. As is
evident from the analysis of Sec. VII, expanded
liquid Hg in the density range 9.3-8.0 g cm is
characterized by a sufficiently large correlation
length, 0, for density fluctuations to satisfy the
necessary conditions of our model.

Vfe now examine the consequences of this picture
of liquid Hg for some of the details of its elec-
tronic structure. These are contained in the one-
electron Green's function G(r, r') Just .as we
considered the nuclear density smoothed over a
smoothing radius in Sec. III, cf. Eq. (24), here
me consider the correspondingly smoothed one-
electron Green's function
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n(E; r) = —ImG(r, r; E), (57)

which is approximately constant within b.
From the local density of states we can extract

a local gap. At this point we run into the problem
of confusion between a pseudogap and a real ener-
gy gap, and all we can do now is to take a band

edge as an energy where the density of states falls
below some small unspecified value. For si.m-
plicity, we take this to be zero. This band gap is
presumably the gap between the top of the s band

and the bottom of the p band, as proposed by
Mott. " " The above constitutes a more detailed
justification of the statement of Sec. V that v, and

p = 8.'lV g cm ' correspond to vanishing local
band gap.

The physical picture of Sec. V in which con-
'ductivity varies randomly within the material,
remaining approximately constant within domains
of radius b, is now seen to correspond to one in

which there is a randomly varying energy gap.
The density p, divides the material into regions
of finite energy gap at the Fermi energy, the
semiconducting regions, and regions of finite
s-band-p-band overlap, the metallic regions.
C is the volume fraction of the material in which

the local density exceeds p and therefore that
volume fraction in which there is no energy gap
at the Fermi energy.

Having defined a local energy gap, we now

enquire after its density dependence. Below the.

density P =p, = 7.8 g cm, the material exhibits
semiconductor transport properties. For this to
occur, the semiconducting regions having a local
gap greater than 4kT cannot be "shorted out" by
regions having a local gap less than 4AT. The
volume fraction of the latter must therefore be
less than the percolation threshold, 0.2. In other
words, 80~jg of the material is occupied by regions
having a local gap greater than 4kT. I.et p,» be

&f(l-'(r+r') -RI).
As A. is significantly greater than I, G(r, r') de-
cays in

~
r —r'~ over a distance of order I, the

phase-coherence length. In other words, G(r, r')
is certainly local on a distance scale of b in
—,'(r+r'). We expect, that the characteristic dis-
tance of variation of G(r, r') in —,(r+ r') is not

less than b, the distance over which the smoothed
potential varies. In liquid Hg, where the kinetic
energy is high and both the wavelength and phase-
coherence length are short, it is likely that b is
that characteristic distance. This permits us to
define a local density of states

the local density corresponding to a local gap of
4kT, and y,» and X4» the corresponding values
of y and y (cf. Sec. III). Let W(y„r) be the proba-
bility that y is greater than y,», its numerical
value is 0.2 according to the above arguments.
Equations (28) and (29) for W permit us to write

p„,=p, [l+(Wi)i(p, )erf-'(I -2W{y„,))]
= p, [1+0.84&(p,)]. (58)

The value of i(p, ) is about 0.09, extrapolating
from the values of f in Fig. 6. Thus p~~z is 8.4
g cm '. Since p, is 8.8 g cm ' and 4kT=0.5 eV,
the local deformation potential is 8.8x0.5/0. 4
=11 eV. Ignoring the inhomogeneity of the semi-
conducting material at a mean density of 7.8
g cm ' would be equivalent to setting p,~+=V.8 g
cm '. That would give a lower limit of 4 eV to
the deformation potential. Both estimates, of
11 eV for the deformation potential itself and of
4 eV for its lower limit, are reasonable values
and support the analysis of the preceding sections.

The extent of the smallest region in which an

energy gap occurs is 2b. If tunneling across such
a region were unimportant and if quantum-kinetic
energy corrections within the metallic regions
were also unimportant, the semiclassical picture
would apply to the motion of electrons at the Fermi
energy in liquid Hg. %'e shall proceed by assuming
tunneling and kinetic-energy corrections unimpor-
tant and justify that assumption subsequently.
C then becomes identical to C(E~) the volume
fraction of material allowed semiclassically to an
electron at the Fermi energy.

The inhomogeneous transport regime in liquid

Hg can be subdivided into two parts": (a) pseudo-
metaliic regime (I & C & C*) where continuous
metallic paths extend through the material, and

(b) pseudosemiconducting regime (0 & C & C*),
where only local metallic domains exist. The
identification of C with the semiclassically allowed
volume fraction C(Ez) permits us to say that a
mobility gap opens up just at Fermi energy at

p~ =8.2 g cm '. For lower densities 8.0&p&8.2 g
cm ', there is a mobility gap within which the
Fermi energy lies. The localized states in that
mobility gap are confined to the metallic regions,
the volume fraction of which C(E~)&C*=0.2.

There is clearly a metal-semiconductor transi-
tion taking place continuously within the density
range 8.0-9.3 g cm '. The electrons at the Fermi
energy are confined to an increasingly smaller
region of the material until at p~~ =8.2 g cm ',
C(E~) =C*=0.2, metallic conduction without
intermediation by semiconducting regions ceases.
At that point, the wave functions at the Fermi
energy become localized, and in a sense a metal-
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G = G. I
T' I+ o,/L. (59)

For the tunneling amplitude T we take the approxi-
mate expression

T =exp[-(2m-,'E )' 'L/h],
I

(60)

where E is the local energy gap and L is the width
of the semiconducting region. The latter corre-
sponds to a multiple of 2b, 2bn with the probabil-
ity25

P„=C(1—C)" '. (61)

For E, we use a deformation-potential approxi-
mation

E, = -D(p p, )/0, — (62)

where p is the local density. The deformation
potential D has been estimated in Sec. VII to be
D & 4 eV, D -11 eV. Equation (62) can be rewrit-
ten using (27) and (28) as

nonmetal transition occurs. lt would be artificial
to select p~, as the density'of the metal-nonmetal
transition, however, because at these high tem-
peratures thermal excitation within semicon-
ducting regions and hopping conduction occur.

The consequences of this interpretation of C
as the allowed volume fraction C(Er) are also
displayed in Table II.

To complete the argument that liquid Hg satisfies
the necessary validity conditions for the applica-
bility of the semiclassical picture in the density
range 9.3-8.0 g cm ', we estimate the magnitude
and relative importance of tunneling and kinetic-
energy effects.

Obviously, if tunneling between metallic regions
is important, it will be effective in erasing clas-
sical inhomogeneities in electronic structure and
transport properties. The estimate of the contri-
bution of tunneling across the semiconducting
regions to the transport properties is crucial to
assessing the validity of the semiclassical physical
picture advanced by us.

Since the most probable energy gap in the pseudo-
metallic regime above P = p~ =8.8 g cm ' is zero
and small for densities below but near to P =p,
the accuracy of the approach which neglects tun-
neling across the semiconducting regions is ques-
tionable. However, we have seen that the proper-
ties of the system are practically independent
of x for C ~ 0.5, and ignoring tunneling amounts
roughly to underestimating z. Therefore we are
concerned primarily with tunneling effects for
C &0.5. The conductance Q through a unit area of
a semiconducting region of length L contains con-
tributions from tunneling across it, G, I

TI', and
from thermally activated carriers within it, ao/L:

E,=-D(r-r, ), r&r, .

The preexponential Q, can be conveniently ex-
pressed in terms of a length l~,

Go = oo/lc .

(63)

(64)

The condition for tunneling to be negligible in (59)
is that

((L/4) IT I') «», (65)

where the averaging is taken independently over
length L and local gaps E .

Tunneling over the distance L =2bn results in
the following contribution:

T'(n) =IIexp
-2(E' m)'~'(2b)

(66)

where the values of E' in each segment are in-
dependent. Averaging over E, values we utilize
Eq. (63) to obtain

(T'(n)&, = f(r,)",

where

(67)

f(y, ) =
Yg br ( d)ePx r4e( O I' ' —(r, —r)' ')'

(68)

and

exp(-y'/2V)
(2vg')'"[1-C(E, )J

' (69)

Making use of Eq. (61), we get

(nT') =gn p„( T'(n)) (70)

(r( =exe(-4(eeOI '
4 (r, —r)")g, b

(72)

e

in Eq. (68) is equal to unity at y =y, and decreases
very fast for y&y (see Fig. 7). We can thus take
for the slowly varying function P(r) its value at
P(y, )

Correspondingly, we have

exp(-y, '/2K')
(2mk ')' '[1 —C(E~)] 8mb'D (73)

for the mean tunneling probability across a semi-
conducting region of the minimal width 2b. Using
the free-electron value for the mass m, 5 eV for
D, and 0.07 for g, we obtain from Eq. (73), t(y, }

which, together with Eqs. (67) and (68), yields

C(Er)+(r )
—C(E

, We can obtain a crude estimate of the integral in
(68) as follows. The exponential factor
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FIG. 7. Dependence of the tunneling function v(y)
(solid curve} and the relative probability distribution
P(y) (dashed curve) on the local density for p = p~.
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=8.4x10 ' at C =0.5. For a value of f(y, ) as small
as 10 ', the denominator in (71) may be replaced
by unity, which implies that only minimal length
regions (n =1) need be considered. Equation (65)
thus simplifies to

with

(»/I. )&l 7 I') «~ (74)

8I 2mg2
C = ——= W'n'[n(Z )]'

A ay AA.
(76)

via the tunneling Hamiltonian method. In (76), W
is the rms transfer matrix of the tunneling Hamil-
tonian which can be estimated to be

W = I, T ,' Z, (AP)~'/n. - (77)

In (77), l~ is the decay length inside the barrier,

2m —E

and T is the tunneling amplitude, Eq. (60}. The
first three factors in (77) would give the magnitude
of W if it were not for the fact that the phases of

(75)

The results of numerical integration of (68) for
&
T') are shown in Fig. 8.
Before we can use (74) to establish whether tun-

neling is negligible, we need a theory of /~. %'e

now construct one based on a simple tunneling
Hamiltonian formalism and an analysis of the
metallic conductivity, both for the diffusion regime.
%e consider two metallic regions, each of eross-
sectional area A, and volume 0 separated by a
semiconducting region of width L,. The conduc-
tance of Eq (59) can .be readily expressed as

I"IG. 8. Density dependence of the mean-square tunnel-
ing amplitude across semiconducting regions. Calcula-
tions were performed for two values of the deformation
potential, which correspond to slightly above the lower
limit (D =5 eV) and above our "best" estimate (D =11 eV).

fe= s mv/8n(Ew)E' (81)

for E~. %e can obtain a lower limit for p in the
following way. The density 11 g cm ' is the lower
limit of the propagation regime. Consequently

c„=~p„(Ew)e'hkwl/m

holds but with kzl about 2, or

&r„=-',n„(Ew)e'A/m .
The conductivity at 9.3 g cm, the lower limit of
the homogeneous metallic regime is given by (80),

1
o9 3

—
6 ng 3(Ew)e vl (83}

the wave functions are random in the metallic
regions. Thus we have A/I' contributions of mag-
nitude l' and of random phase to the transverse
integration, where E is the phase coherence length.
The rms value of transverse integration is there-
fore (A/I'}~' I', as given in (77). Inserting (77)
and (78) into (76) gives

G =-,'we'(h/m)E, [l Tn(Ew)]'.

The metallic conductivity may conveniently be
written as

o, =n(Zw)e'( vf')

in the diffusion regime. Here p is roughly the
reciprocal of the time it takes an electron at the
Fermi energy to cross the phase coherence length.
Comparing (79), (80), and (64}, gives
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is the condition for tunneling to be unimpox tant in
conduction. Comparing (85) with Fig. 8, we see
that it is well satisfied for all values of C. In gen-
eral, tunneling corrections are unimportant when

~ is relatively large, as is the case for high-tem-
perature materials such as liquid Hg. However,
tunneling may also be unimportant in small-x sys-
tems for large enough barrier potentials and val-
ues of 5, as in metal-ammonia solutions.

Having shown that we ean ignore tunneling we
now make a rough estimate of the kinetic-energy
effects associated with the finite size of the metal-
lic regions. These will be largest for the smallest
yossible metallic region, containing N atoms, with
%=400 and b in radius. The effect of finite size
will be to split the levels at the Fermi energy into
a set of discrete levels with mean spacing 6 given
by

3 xg
D„(E„) 2 E, (SS}

according to Kubo. " Here D„(Er) is the density
of states at the Fermi energy E~ of a small metal-
lic particle containing N atoms of valence z. We
have invoked the randomness in shape of the metal-
lic regions in using (86). This discreteness of the

The experimental ratio of oyy to Q9 3 is about 9.
Dividing (82) by (83) gives an expression for the
value of v entering (Sl),

4n„(E ) k-
(S4)Sn, ,(Er) ml'

Because I;„l&1 at 9.3 g cm ', /&0. 9 A. Moreover,
n»(Ez) &n, ,(E~}because of the incipient metal-
semiconductor transition. We arrive at p& 10"
sec '. We use an upyer limit of 4 AT=0. 1 eV for
E and of the free-particle density of states for
n~, (Ez). These give l~ &1000 A when inserted
into (81).

We note parenthetically that l~ & 2b for (77), and

the tunneling Hamiltonian formalism, to be valid.
That requires E,&0.006 eV, which defines the
lowex limit of the local gay for which the material
ean be considered locally semiconducting. This is
sufficiently small so as not to affect our previous
consideration in which we chose zero for the low-
er limit. Moreover, since l~ is explicitly depen-
dent on E, it should have been included explicitly
in the averaging over local densities carried out
in (67). There the exponential dependence of T'
on E dominates all other dependence and a mean-
value argument for the E dependence of /~, as
implied above, is sufficient.

Returning now to (74} and inserting x = 3 x10 '
and 2b/le & 3 x 10 ', we find that

(85)

levels'is important only if 6 becomes comparable
to kT. For %=400 and T =1500'K, 5/kT =0.03.
Such quantum effects are therefore quite unim-
portant in liquid Hg. This result implies that our
treatment of tunneling, which ignores problems of
energy conservation, for the tunneling conductivity
is, in fact, reasonably accurate.

In summary, we conclude that an interpretation
of the values of C taken from the transport data as
values of C(E~), the semiclassically allowed
volume fraction for an electron at the Fermi ener-
gy, is justified as consistent with values of D and
5 taken from the transport data.

IX. DISCUSSION

We have proposed that a metal-nonmetal transi-
tion can proceed continuously in disordered mate-
xials via the interposition of an inhomogeneous
regime between essentially homogeneous metallic
and semiconducting regimes. We have developed
this idea in the present paper to provide an ex-
planation for the curious transport properties of
expanded liquid Hg in the density range 9.3-7.8
g cm '. We argued that below a density of 'l.a
g cm ' the material is semiconducting because
of a gap exceeding 4kT between the filled s band
and the empty p band as proposed by Mott. ""
The metallic behavior between 9.3 and 11.0 g cm '
is of a diffusion type and ean be described by
Priedman's theory. " We observed that there is
therefore great sensitivity of the electronic struc-
ture to density in the range of transition. Con-
sequently we proposed that density fluctuations
were sufficient to cause inhomogeneities in elec-
tron structure and transport in that density range.
To explore the consequences of this idea we intro-
duced the Debye short correlation length b to
specify the spatial. extent of fluctuations in a
smoothed local density. We then assumed that 6
was several interatomic separations in size and
consequently larger both than the Ornstein-Zernike
decay length and the phase-coherence length of the
conduction electxons. This permitted us to state
that the microscopic conductivity was local and
roughly constant within b. Regions separated by
more than 5 have statistically independent values
of local conductivity. To solve the resulting trans-
port problem we utilized a general version of
effective-medium theory. The latter was cast
into a form equivalent to that of a two-component
system by defining a conductivity separating the
semiconducting from metallic values of the local
conductivity. This allowed us to introduce a
metallic volume fraction C and mean transport
coefficients for the metallic and semiconducting
regions. For simplicity and to avoid prolifera-
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tions of parameters, these were given values equal
to the values of the transport coefficients at the
limits of the inhomogeneous regime. It was found
that a self-consistent interpretation of data on
resistivity, Hall-coefficient, and volume and
temperature dependence of the resistivity could be
carried out via the resulting theory. The density
dependence of C and a rough estimate of the de-
formation potential were obtaineP. A value of
b =15 A was then inferred from a statistical analy-
sis of density fluctuations and turned out to satisfy
the consistency requirements of the physical pic-
ture. The concept of a local-energy gap was then
introduced and used to construct a semiclassical
picture in which electrons at the Fex'mi energy
are confined only to metallic regions. An esti-
mate was made of the mean tunneling probability
through forbidden regions which showed that tun-
neling was unimportant in the transport proper-
ties. The mean level splitting in isolated allowed
regions was found to be much smaller than kT.
Thus quantum corrections to the semiclassical
picture turned out to be unimportant for expanded
liquid Hg. This allowed us to identify the metallic
volume fraction extracted from the transport data
with the allowed volume fraction for electrons
at the Fermi energy and made possible the appli-
cation of semiclassical percolation concepts to
liquid Hg. From the analysis of the transport
data we obtained p, = 8.77 g cm 'for the local density
corresponding to the opening of the gap and p~,
= 8.2 g cm ' for the mean density where C =C*
=0.2 which may be taken to characterize a pseudo-
metal to pseudo-semiconductor transition. We
note a difference between our value of p~ =8.2
g cm ' and Hensel's extrapolation of the optical
data' in the vapor to give a vanishing optical gap
at 5.5 g cm . This is a serious discrepancy and

may arise from the extrapolation used. ' It is most
unlikely that our estimate of p~, can be off enough
to eliminate the discrepancy. What is needed is
a series of optical measurements in the liquid
from the critical density up.

Despite the internal consistency and quantitative
success of the description of the data so developed,

, the picture proposed is complex. Many approxi-
mations and simplifications were introduced in
order to make theoretical analysis tractable. It
is therefoxe important to consider the question
of the uniqueness of our picture. Several alterna-
tive models either come to mind or have already
been proposed. We review these critically below.

Kirkpatrick~ has also suggested that an inhomo-
geneous transport regime exists in liquid Hg in
which percolation through classically allowed
regions plays a crucial role. His interpretation
is based on the relations

ft„/ft =P(C(E,)),
[-,'C(Z, ) --,'], C(E„)&0.4

[C(E,)-C*]", C(E,)«.4.

(87)

Kirkpatrick's conjecture concerning the depen-
dence of the Hall coefficient on the percolation
probability P(C(Er)), Eq. (87), is incompatible
with the results~ of the effective-medium theory
for the Hall effect. Eqs. (88) and (89) for the
conductivity have to be modified to include the con-
ductivity ratio g. He apparently assumed that C(Er)
ocp and fitted the conductivity data over the den-
sity range 11.0-8.7 g cm ' to (89). The percola-
tion threshold obtained in this way coincides with
the density at which R„/R tends to zero when
extrapolated from above p =8.7 g cm '. Since the
region over which R /R„de viates from unity starts
at P=11 g cm ', Kix'kpatrick's interpretation~
of the data implies that the inhomogeneous regime
starts there as well. This is the most extreme
possible interpretation based on inhomogeneity.
We have three objections to this assignment of
density to the inhomogeneous regime: (i) the
quantitative fit of o to the Friedman theory" is
better" ' than that to (88) and (89) in the region
9.2 & p&11 g cm ' (ii} the variation of 8 and o

with density are not mutually consistent in this
application of percolation theory. Because R„/R
reaches unity at p=11 g cm ', Kirkpatrick as-
sumes that C(E~) =1 there On the .other hand,
serious deviations of o from Eq. (89) occur when

C(Er) exceeds 0.4 or 0.5. Kirkpatrick fits the
data for o with (89) also up to P =11 g cm ~. Thus,
his interpretation implies that C(Er) ls slmul
taneously 1 and 0.5 at P =11 g cm '; (iii} Kirk-
patrick's interpretation' implies that p~~ =8.6
g cm ', and what we designated by p~ becomes
11 g cm '. Using our fluctuation theory together
with these values for p~ and p~, we obtain values
of 9.5 g cm ' for p~, & =0.12, and 9 for N at
P=11 g cm ', That value of N is too low to permit
the material to be considered submacroscopically
inhomogeneous, as is requixed for the interpreta-

tionn.

The opposite extreme interpretation is that the
material remains homogeneous and metallic down
to densities below 8.5 g cm ' (where the Hall-
effect data cease) but that the Friedman theory"
goes wrong below 9.3 g cm 3. However, it seexns
to us that there is no room for error in Fried-
man's argument for a single component system.
Once the condition of random phases is reached,
the only further change possible is nonuniformity
of the wave-function amplitudes, as we have pro-
posed. Moreover this unifoxm metallic picture
does not explain why the temperature and volume
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o-2N(E, }ep,*(E,}kTe ' k F' ' (90)

where N(E,}and p,"(E,) are the density of states
and the mean mobility at or near the mobility edge
E„respectively. The inequality arises in Eq.
(75) because we have omitted contributions to the
conductivity from localized states within the mo-
bility gap. In Mott's picture of transport" " in
disordered materials in which:p(E} drops abruptly
from the diffusion value to zero (at T =0}, both

N(E, ) and p(E,} are approximately density inde-
pendent. In our semiclassical picture of transport
near a mobility edge, N(E, ) is constant but p, (E,)
will be a decreasing function of density because
p(E) goes gradually to zero as E-E, over a, range
of energy increasing with decreasing density.
Thus the pre-exponential in Eq. (75) is smaller
than or equal to o„, the conductivity at 9.2 g cm ',
i.e., the density at which the mobility gap first
opens,

2N(E, )ep(E,)kT ~ o„. (91)

Allowing the opposite inequalities in (90) and (91)
to compensate, we obtain

coefficients of the conductivity start increasing
below 9.0 g cm '. We are, of course, familiar
with the fact that small deviations of the Hall
coefficients of binary alloys in the propagation
regime, e.g. , 15/o for Hg/In alloys, "are often
difficult to interpret accurately because, e.g. ,
of small uncertainties in knowledge of pseudo-
potentials and pair correlation functions as well

as uncertainties about the organization of higher-
order perturbation theory as the strong scattering
limit is approached. This can by no means be used
as an argument"' ' that the Hall effect is not

suitable as a diagnostic tool for establishing trans-
port regimes, where we are concerned with

changes of 100/o-1000% in this quantity. We
therefore rule out the persistence of a homogeneous
metallic regime down to about 8.5 g cm '.

A serious possibility is that originally proposed
by Mott" "and subsequently by Even and Jort-
ner. "b' The latter considered the material homo-
geneous and that a mobility gap opens at p =9.2
g cm ' and reaches 4kT at 7.8 g cm '. That
corresponds to a deformation potential of D =0.5
x 8.5/1. 5 = 2.3 eV. Assuming symmetric conduc-
tion and bands, the conductivity can be written"

Further difficulties are encountered when using
Mott's picture" "for the temperature and volume
dependence of conductivity. However, the rough
constancy of the Hall mobility could be explained
within this picture as owing to the constancy of
the Hall mobility of electrons at E, . On the other
hand, if our semiclassical picture of transport
near the mobility edge is used, the Hall mobility
would be a decreasing function of density.

We note in passing that (92) is also applicable to
our inhomogeneous model provided we replace the
macroscopic conductivity o„by the local conduc-
tivity v~ at local density p~=8. 77 g cm ', so that
for the local conductivity of the semiconducting
regions we have o/cr, =e ak~kkr. This implies that
for the local conductivities o(4kT)/o =0.14. On

the other hand, for the macroscopic conductivities'
o (p =7.8}/o(p =8.77}=0.07 at 1500'C. The dis-
crepancy of a factor of 2 originates from the
averaging process contained within the effective-
medium theory.

Thus far it would appear the picture developed
in the present paper offers only a quantitative
improvement over Mott's idea" "of a mobility

gap in a microscopically homogeneous material
at p =9.2 g cm '. However, we cannot ignore the
existence of density fluctuations. Making use of
the deformation potential of 2.8 eV originating
from Mott's model, one can estimate the inhomo-
geneity of the material for transport as follows.
First the conductivity is taken as

o' =o„e ~, p&9.2 g cm

o' =o„, p&9.2 g cm '. (93)

r =(p P)IP- (95)

The probability distribution for y is taken from
Sec. III, Eq. (27). This gives the conductivity
distribution

2kT g' 'I', 2kTP(o')=(2vg')' ' ~ exp — ln +rz~ 2g'
D o'e ~] Do'

+ —,
' ——,

' erf 5(o' —o„), o' & a„'
2f

This underestimates somewhat the inhomogeneity
of the conductivity. Next, we set

(94)

where

o/o e-EklkkT
N (92)

where E~ is the mobility gap in the homogeneous
material. If use the above deformation potential
D =2.8 eV, we obtain a value of 0.14 for / „otoa
p = 7.8 g cm '. Experimental conductivity values' '
give instead o/o„=0.02 at 7.8 g cm ' at 1500 'C.

(96)

For a density P in the middle of the transition
region, e.g. , 8.5 g cm ', the weight of the ~ func-
tion in Eq. (96) is negligible and. it can be ignored.
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The most probable conductivity is simply

(D/2kT) fp
Mode

and the spread of the distribution is

Ao =2cr„,~, sinh(Df/2kT).

(97)

(98)

The next question is what sampling region to con-
sider in estimating the density fluctuations. In
our previous treatment (Secs. V-VII) we have
taken f =0.07, corresponding to N=400, and use
this same value for N to begin the present argu-
ment. Thus from Eq. (88) we have n, o =2.7o„~,.
The conductivity is therefore quite inhomogeneous
for density fluctuations for the regions of that
size. To reduce Ao to 0.50M~, say, we would have
to increase N to 7700 or b to 40 A. Over such
distances one runs into serious difficulties with
inhomogeneities in the wave-function amplitude,
the exponential decay of wave functions at the
mobility edge in one region across a neighboring
region of larger mobility gap. We conclude that
inhomogeneities in transport and electronic struc-
ture are inescapably implied by the parameters
obtained by fitting experimental data into Mott's
picture, " "and we are led back to our original
approach.

Moreover, our picture of liquid Hg is essentially
identical to our picture" of liquid Te apart from

the physical basis of the microscopic inhomo-
geneities. In liquid Te, the behavior of o, R, and
p. is similar to that of Hg, and has received no

convincing physical interpretation other than the
one we have given. The same technique of analysis
and physical picture are proving useful for a still
more complex system, liquid metal-ammonia
solutions. " They are promising even for solid
systems such as granular metals. "

To conclude, we have added to earlier views on
transport in expanded liquid Hg the notion that in
between the metallic and the semiconducting re-
gimes there is an intermediate regime in which
density fluctuations lead to localization and perco-
lation. Because of percolation effects in the in-
homogeneous regime, the metal-nonmetal transi-
tion in this one-component system should be en-
visioned in terms of a continuous decrease in the
conductivity in that range. We believe this picture
has wide applicability for disordered systems.
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