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An expression is derived for the optical-field-induced birefringence due to molecular reorientations in
cubic plastic crystals. The effect is described by a nonlinear susceptibility tensor shown to be
proportional to a tensorial correlation function. For most cubic point groups this correlation function
has only two independent components. A decomposition into irreducible tensorial sets leads to the two
physically meaningful quantities. One is labeled the tensor strength. It measures the short-range angular
correlation of molecular pairs. It is a susceptibility that increases as this range increases, i.e., as the
plastic-solid phase transition is approached. The second quantity is labeled the tensor anisotropy. It
measures the long-range cubic anisotropy of the molecular orientations. It is related to an orientational
order parameter of the plastic-liquid transition.

I. INTRODUCTION

Plastic crystals are molecular solids in which
the molecules are arranged in a regular lattice
but have a great freedom of orientational motion. '
These substances can easily be plastically de-
formed, which justifies their name. This phase
of matter is intermediate between the liquid phase,
which has translational freedom, and the true
solid phase, in which molecules are rigidly and
regularly positioned (except for the effect of pho-
nons, of course). Plastic mesophases are charac-
terized by a low entropy of fusion (typically of the
order of 2ks per molecule, or even smaller), ' a
relatively high melting point, small elastic con-
stants, ' and, for those substances composed of
polar molecules, by a large dielectric constant
and a rapid dielectric relaxation time more charac-
teristic of liquids than of solids. The plastic-
crystal lattice is usually of high symmetry. '
Though the molecular point group can be of rather
low symmetry, there is most often only one mole-
cule per lattice point. All this is made possible by
the constant reorientation of the constituent mole-
cules. This motion is exhibited in x-ray diffrac-
tion patterns, which are extremely diffuse because
of the large Debye-Wailer factor." It is also
seen in NMR through the motional narrowing of
resonance lines, very much like in liquids. ' The
plastic mesophase is common for organic sub-
stances composed of "globular" molecules. If
these molecules, in spite of being globular, are
also optically anisotropic, a depolarized wing is
observed in Rayleigh scattering due to anisotropy
fluctuations. ' This component of the scattered
light can be rather large. In those cases, a large
ac Kerr effect is also expected, and this was re-
cently confirmed experimentally. '

The purpose of the present paper is to describe
the properties of the orientational contribution to
the ac Kerr susceptibility tensor g"". This tensor
is defined in terms of the dielectric tensor F by

NL
p&))+4%])~, F~ Fg + ~

Here e~ is the linear dielectric constant at the fre-
quency of the probing field E, &,

&
is the Kronecker

symbol, and F is the strong, orienting laser field.
It is assumed from the outset that the crystal has
cubic symmetry, as this is by far the most common
occurrence. In Eq. (I), the magnitude of the
linearly polarized field F can be taken as I/v2
times the field amplitude. This is justified, as the
treatment applies to systems whose orientational
response times are much slower than the optical
period. The same remark applies to all expres-
sions in Sec. II. Using a formalism in the spirit
of that developed by Kubo for the study of response
functions, " the nonlinear susceptibility is ex-
pressed in terms of a correlation function of the
anisotropic part of the molecular polarizabilities.
This tensorial correlation function is then de-
composed into irreducible tensorial sets." For
crystals with fourfold symmetry axes, two such
sets are found. One can be designated as the
tensor strength; it measures the amount of short-
range angular correlation of the molecules. This
cooperative ordering is being probed by the ap-
plication of the orienting optical field F. The re-
sponse is a generalized susceptibility which is ex-
pected to become large near the plastic-solid
phase transition, since the transition to the true
solid is accompanied by the onset of long-range
orientational order. The other irreducible ten-
sorial set is shown to be related to the long-range
anisotropy of molecular orientations in the plastic
phase. This emphasizes that there is a certain
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form of orientational order in that phase. The
liquid-plastic transition must in fact be charac-
terized both by long-range translational order and
by long-range anisotropic ordering of the molec-
ular orientations. These are two distinct order
parameters. Measurements, available so far on
one substance, show considerable pretransitional
effects on the long-range anisotropy, and suggest
that this order is essential to the stability of the
plastic phase. '

The measurement of the ac Kerr effect is a new
tool for the investigation of the plastic crystalline
mesophase and of its transitions to the liquid and
to the solid. It is able to yield important informa-
tion that was not so far acquired by other tech-
niques. Inasmuch as there is great current in-
terest in the understanding of melting, studies of
plastic crystals and of their phase transitions are
very apropos. Indeed these are systems in which
the two processes of orientational and translational
melting occur sequentially, at least in first ap-
proximation. This is similar to the situation in
liquid crystals, except that in the latter case the
sequential order is reversed. The fact that prop-
erties related to long-range orientational ordering
are usually more dramatic than those related to
long-range translational ordering might explain
why so much attention has been given to liquid
crystals as opposed to the plastic ones. The point
of the present technique is to measure short-range
orientational order and long-range anisotropy of
this order.

The remainder of the paper is organized as fol-
lows. In Sec. II, general thermodynamical argu-
ments are used to derive an expression for the
orientational part, and for the nonlinear polar-
izability part, of the Kerr susceptibility tensor.
The orientational part is found to be proportional
to a tensorial correlation function. The symme-
tries of the distribution function entering this
correlation function are analyzed in Sec. III. Based
on this analysis the correlation function is decom-
posed into its irreducible tensorial set components
in Sec. IV. The physical interpretation of the
components is discussed in Sec. V.

-SR/t -Sx (3)

where P=1/ksT. If X depends on a field F, p can
be expanded as

linearity. " The medium is assumed to be trans-
parent to both o and ~. The optical dielectric
tensor will be calculated by taking averages of
sums over bond polarizabilities" and proceeding
to the appropriate local-field corrections. The
averaging process is represented symbolically
as a trace -(tr} over a density matrix p." In prob-
lems where only molecular reorientations are in-
volved, p is an orientational distribution function
that contains all angular coordinates of the moving
molecular segments, and the tracing is in fact
an integration over all these coordinates. In these
problems the sum over bond polarizabilities can
usually be made in two steps. First, one sums
over each rigid molecular segment (these can be
entire molecules in the absence of isomer forma-
tion}; second, these segment polarizabilities
are integrated over the distribution function, and
a sum is taken over all segments. The total num-
ber of segments (which need not be all identical)
in a sample of volume V is designated by X; the
number per unit volume is N=X/V. The polar-
izability of segment a, for a probing field at fre-
quency , and in the presence of F, is designated
by a'(tu, F' ), where F"' is the local field corre-
sponding to F. The remainder of this section is
organized as follows: (i) the reader is reminded
of general statistical mechanical results for p,
and an expansion of p(F) is obtained; (ii} an ex-
pression is derived for y~ in ter is of a sum over
segments, taking into account local-field effects;
(iii) these results are combined to yield an ex-
pression for X~ in terms of a correlatiog. function
of polarizabilities.

The free energy of a system whose Hamiltonian
'

is X and whose temperature is T can be written

F =tr(pK)+ksTtr(plnp)

Minimization of F with respect to variations &p

subject to the constraint trp =1 leads to

II. ac KERR SUSCEPTIBILITY AS A

CORRELATION FUNCTION

P(F): (dd } J +
d ( } d Ej

(4)

An expression is derived for the ac Kerr sus-
ceptibility. The molecular reorientation is pro-
duced by a strong optical field F at frequency 0,
and is probed by a weak field E at a different fre-
quency dd~. The frequency difference ~~, —~)) ~

is
assumed to be much greater than the inverse of the
orientational relaxation time, so that these fields
do not have cross terms contributing to the non-

The expressions for the derivatives of p are easily
obtained from Eq. (3), and are given in Appendix
A. In the present case

)d=)C —f dV J F dP,

where K, is the Hamiltonian in the absence of field,
P is the polarization produced by F, and the first
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integral is over the sample volume. Again, in
such expressions, the use of peak amplitude di-
vided by W2 is implied for F and dP. The polar-
ization increment is written in terms of the polar-
izabilities and of the local field

dP = Q a'(~o, F"') ~ dF"'
N

where the sum is over all segments a in the unit
volume. Strictly, one should also allow for a
stress dependence of &', andthe strain-stress de-
pendence of K0 should be exhibited. This would
allow the calculation of electrostriction. " This
problem will not be tackled here, and the results
will be restricted to the orientational plus non-
linear polarizability contributions to the ac Kerr
effect. As the nonlinearities are additive in first
order, the electrostrictive contribution could
simply be added later to the present result. The
local field F"' is calculated as for an isotropic
solid; this is appropriate for a cubic material.
Corrections to F"' due to the dielectric tensor
anisotropy induced by F contribute to fourth-order
F terms in K which need not be considered here.
Hence"

P, (ook) = g tr[ p(F) af (ek, F"')]E&"', (10)

where E"' is the local field corresponding to E.
One defines

Kk5)g + Kgg
= p tr[p(F) a&&(&k, F"')].

The linear part g 5,.f is defined in a similar man-
ner to Eq. (7b). The relation between jN~ in Eq.
(1) and K"" in Eq. (11) will now be derived. To
this effect, one notes that

E("= E( + o KP( ((dk) = E ( + o v (Kk5 ( ) + K(",") E~". (12)

NL p p + ~ ~ ~ L2 KNL+ ' ' 'ifkl k 1 P if (14)

Using the fact that ~",f" is small compared to
(1-—,KKk)5, &, this relation can be inverted, giving

E"'=[(1——', KK,) '5

+(1 ——KK ) —vKN~+ '']E4 24
3 if i '

This is introduced in Eq. (10), and the result is
replaced in k, ~ E~ = E, +4', (&uk), where k, &

is given
by Eq. (1). The field-independent terms lead to
the Clausius-Mossotti relation between c~ and ~~.
The nonlinear terms give

Foc F+ vK F~oc (f +2}F0 3 0

with

~0&„=tr P0 a'if ~„0
N

(7b)

where Lk= —', (uk+2).
It now remains to introduce Eq. (9) in Eq. (11),

and Eq. (11) in Eq. (14), to obtain the desired re-
sult. Before doing this, it is useful to expand
ac (~ F loc)

81+ —3g]C,
4 ~

3 0
(7c)

Using the last equality in Eq. (7a), Eq. (5) is re
written

where e0 is the linear dielectric constant at +„.
in (7b} use has been made of the cubic symmetry
of the solid. One notes that (7a) leads to the usual
Clausius-Mossotti result"

'"}= ig(. o}+ o leak(". o} k

1
k O 4J l( ok' Ou 0) k

where

safe(ook, F"')
acgk(~k ~ ~O) =

Fi.'c
F=0

(15a)

(15b)

K=X —L F- ct' u, F"' 'dP,
a

(8)

where L, is the Lorentz-Lorenz factor —', (co+2),
and the summation is over all segments in the
entire sample. This expression allows calculation
of the derivatives entering in Eq. (4) (Appendix A),
leading to the result

P(F) =P.+-'PP. L.g(a'„(~„0)

-tr[p, ac, (&u, 0)]] F,F + ~ ~ ~ . . .

(9)

The macroscopic polarization produced by the
probing field is

(16)A&&(&u) —= a&&(ru, 0) —tr[p, a' (&o, p)].
A' is a traceless second-order tensor which rep-
resents the anisotropic part of the molecular (or
segment) polarizability. Proceeding to the re-

The tensor (15b) is allowed for noncentrosymmetric
molecules as their response to an ac field can be
fast and need not be symmetric. However, the
averaging over p and N involved in Eq. (11) cancels
the linear terms in F that appear in (15a). This
results from the over-all cubic symmetry. To
express the final result of the calculation it is
convenient to define
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quired substitutions, and taking note of Q„
=(N/%)g, , one finally obtains

Xlfkl (Xlfkl}p hifkl)NLPt

with

(Xl fbi)P =NLb LOPGl fkl

where

(1'la)

(17b)

Eq. (17c). There are then three independent com-
ponents G»» G»22& and G1212 the fourth compo-
nent G„» is related to those by G»»+ G»„+G„»
=0. The analysis of G is based on the symmetries
of p, which are described in Sec. III.

III. SYMMETRIES OF DISTRIBUTION
FUNCTION IN CUBIC CRYSTALS

1
ff» =

2 I P. lf( 4) kl( 0)],
a b

(Xlfkl)NLP = 4LkL p tr[p +l . (+4 K —lp }].
N

(17d)

Equation (17a) reflects the fact that the nonlinear-
ities are additive in first order; the subscript 0
refers to nonlinearities of -orientational origin,
and the subscript NLP to those arising from the
nonlinear polarizability of the molecules. The
tensor G is a correlation function of the anisotropic
part of the segment polarizabilities; the summation
over a and b in (17c) is a summation over all 5I'

segment pairs in the entire sample volume. In
spite of this, the magnitude of G is not of order
% but of order 1, the reason being that the contri-
bution of distant uncorrelated segment pairs is
zero, as shown in the following sections. The
result (17d} is well known. " One should observe
that the Lorentz-Lorenz factor L, occurs with
first power in (17b), and is squared in (17d).
Some nonlinear mechanisms have been neglected
in the derivation. The main ones are electrostric-
tion and the local-field variation from site to site.
The latest is known to contribute to about 50% of
the nonlinearity in CC14." However, the non-
linearity in CC14 is about an order of magnitude
smaller than that in a typical plastic crystal succi-
nonitrile. '

The remainder of the paper is devoted to a study
of the orientational contribution (X~}p and, in

particular, of the transformation properties of
the distribution function G. For a crystal belonging
to any cubic group with fourfold symmetry one
finds only three types on nonzero components in
G. These are G»i ~ G»22, and Gy2y2, where the
subscripts refer now to the cubic axes. More-
over, A;,. being a traceless tensor, the 12 trace
of G is zero, which immediately leads to G,»,
+2G»» =0. Therefore there are only two inde-
pendent components in G. For a crystal belonging
to the tetrahedral point group T," the absence of
fourfold symmetry leads in general to G»22+ G22» ~

This difference only exists in the presence of.
dispersion of the polarizabilities, as evident from

The density matrix p, that appears in Eqs. (16)
and (17c) is an orientational distribution function
for all molecular segments in the sample. The
orientation of a given segment a can be expressed
by the rotation R, away from a reference position.
Thus if the value of e' in the reference position is

, one hasga

o'= P n'8 (18)

where P&, is the unitary rotation operator corre-
sponding to the physical rotation R, ." These
rotations span the full rotation group (R]. The
tracing in Eq. (16), or in (17c), can first be made
on all segments which do not explicitly appear as
superscripts in these expressions. This leads to
single-segment distribution functions p, , and to
pair distribution functions p„, defined by

tr„,(p, ) = p, (R,-),

tr&a b) (PO) Pab(R, , Rb),

(19a)

(19b)

Alf( laf) =

Cuff�(lal,

0) —
4 Q4k(pf, 0)6ff (20)

with summation over the repeated subscript k. If
there are many segments of the same type within
the unit cell there can be a situation where the
over-all cubic symmetry does not imply cubic
symmetry of p, . Grouping segments a of the same
type in Eq. (17c) it becomes obvious however that
the over-all symmetry guarantees that identical
results for G are obtained whether A' is given by
(16) or by (20). The simpler form (20) will thus
be preferred In the spir. it of Eq. (18) one writes

A;~ ——PR Aq) (21)

and, from (17c),

where the segments in parentheses on the left-
hand side are excluded from the tracing operation.
Section III discusses the relevant symmetries of

p, and p„ in a cubic plastic crystal.
For the purpose of the present calculation the

single-segment distribution p, that occurs in Eq.
(16}can be thought to have cubic symmetry Here, .
and in what follows, the cubic-symmetry axes
coincide with the crystal axes; the point group need
not yet be specified. The cubic symmetry of p,
changes (16}into
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G= Q fj p„(R, , R,) P A' P A'dR, dR, .
a, b

p 5(R, R5) = p (R ) p5(R5), (23)

(22)

The integrals are Hurwitz integrals" over (Rj, and
it is assumed that p„ is properly normalized. The
explicit indication of dispersion is not made, and
can always be restored in the final result'if re-
quired.

There are three types of pair distributions which
are of interest: (i) Uncorrelated:

equivalent irreducible unitary representations, the
coefficients being summed or integrated over all
group elements'4; indeed, if one of these represen-
tations is taken to be the identity, the above prop-
erty results. By this reduction process one ob-
tains the independent contributions to G.

Referring to Eqs. (22)-(24) and (26), one sees
easily how the Hurwitz integrals should be de-
composed for the various p„symmetries. If p„
is uncorrelated, Eq. (22) becomes

G = Q Jt p, (R,) P„A'dR,
a5b

where p, and p, have. at least cubic symmetry;
(ii} correlated spherical:

x pb Rb P~ A'dRb.
b

(2't)

p„(R, , R5}=f (R„), (24)

Rb ——R,R,b; (26)

(iii} correlated cubic: p„depends on R, and R„.
However, when expressed as a function of R, and
R„only, the R, dependence has cubic symmetry:

p,5(R, , R,R,5) =p,5(SR, , SR,R,5), (26)

where S is any operation of the appropriate point
group.

The cubic symmetry of p„ is not necessary to
the cubic symmetry of p, . However, if p, has
cubic symmetry the three types of pair distribu-
tions (23), (24), and (26) are all that need to be
considered for the calculation of G. Indeed, for
any given pair a bone can cons-ider the set (a-bj
of all pairs obtained by applying the operation of
the cubic point group to a b. The sum Q-(, 5) p„
does have cubic symmetry when po does, and Eq
(22) can be broken down into such sums.

IV. DECOMPOSITION OF G INTO IRREDUCIBLE
TENSORIAL SETS

The contributions to G of the three types of p„'s
that have just been discussed are now analyzed
using group theory. The technique will be to ex-
tract from the Hurwitz integrals in Eq. (23) an
integral (for spherical symmetry), or a sum (for
cubic symmetry}, running over all group elements,
the integrand (or summand) being the coefficients
of a group representation. This representation is
then reduced to its irreducible components, and
the integral (or sum) vanishes for all irreducible
representations which are not the identity. This
well-known property is an immediate result of
the orthogonality of the coefficients of any two in-

meaning that p„depends only on the relative orien-
tation of segments a and b. This is indicated by
the functional dependence f on the rotation R„de-
fined by

Furthermore, if p, is spherical, that is constant,
the first of these integrals is immediately zero
since the components of a symmetric traceless
tensor transform as u"' [see below, Eq. (31)].55

If p, and p, have cubic symmetry, the first inte-
gral is decomposed as

p R P„AdR= p R dR Pz sA(~) (s}

G= I f(R„)dR„JdR P„(A' P A')
a, b

(29)

Here P„applies to both A' and P+„Ab, and they
both transform as X)"'. The product which trans-

1
p(R)dR P„—~ P~ A

P

(28)

In Eq. (28) the first integral is over the full rota-
tion group (R), whereas the second is over a sub-
set (R,j of (R). The volume of this subset is h5'
times the volume of (Rj, where h5 is the number
of elements of the point grc(up (Sj which is the
symmetry group of p(R), and is of course a sub-
group of (Rj. The elements in (R,j are selected
in such a way that the set (R,)x(S), which is the
set of all possible products R, S, is identical to
(R). The fact that this can be done is shown in
Appendix B; it justifies the equalities in (28). In
simple words, this equation simply states that
p(R) having a given symmetry A can be symme-
trized in the same manner before being integrated
with the weight function p(R). Since A transforms
as S"', and since X) "does not contain the identity
representation A, for any of the cubic point
groups, "the sum over (S) in Eq. (28) vanishes.
Therefore, there is no contribution to G coming
from uncorrelated pairs a-b.

If p„ is correlated spherical, Eqs. (22) and (24)
give
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forms as g)"'x m"' contains all &~i} with L =0-4."
Only the L =0 (identity) representation contributes
to the integral over R. This is a contribution to
the tensor strength that will be derived in detail
below.

If p, b is correlated cubic, Eqs. (22) and (26) give

G= Q jdR„J dRp„(R, RR„)

p tlpL, ab g to(f ) (R) tIdf .Rb (34}

~(&)
G~fk~ ~ ~ C~f pCk) v pmpv Qm

Im pv

where

(35a)

(35b)

Introducing this notation in Eq. (22) one obtains

x P„— P, A'p„A' (30} with

&~ =Ed~:ff A»»
ff

(31a)

f (~ )'t)(' (31b)

The sum within large parentheses is obtained in
the same manner as in Eq. (28), and P„applies
to all terms. Each irreducible representation
S' ' (L =0-4) is also a representation of the ap-
propriate point group. For all cubic point groups
except T (the tetrahedral group), only 5)(G' and 5)(R)

contain the identity representation A, ." Again,
S"' contributes to the tensor strength, whereas
S"' reflects the tensor anisotroPy. For the point
group T, s"' also contains the identity represen-
tation; this is a consequence of the absence of any
fourfold symmetry, and in fact does lead to the
tensor asymmetry G»» w G»». These various
contributions will now be calculated in detail.

A traceless second-order symmetric tensor A

transforms under (R) as B(R)." If f„(p, =2, 1, 0,
-1, -2} is a basis vector for x)(b), one can write

4m" = gpp S~ m» d).tffd v; ,bd4ff(ps A )b, .
pv $f kl

The trace in Eq. (35b) will be taken as shown in

Eq. (29}for the correlated spherical case, or as
shown in Eq. (30) for the correlated cubic case.
The Q' "s are the components of the irreducible
tensors (R)«' on which G depends. It will be shown

that the m dependence in the Q' "s is trivial when

G is referred to the cubic-symmetry axes.
In the correlated spherical case the last integral

in Eq. (29) leads to

dRu«&(R)e';"=5„5 e'. ". (36)

Therefore the only nonvanishing Q«) is Q(G). The

S~ .„„coefficients that are needed to evaluate Q"'
using Eqs. (35b) and (35c}are given in Eq. (C3}.
One finds, taking into account the tracelessness of
the A' s,

The matrices d and c can be selected such that

p„q„= QS)(~R (R)q„, (32)

where S"' is identical to its usual definition, and

this independently of the starting tensor A. The
particular values of d and c are listed in Appendix
C. The basis vector corresponding to A' in Eqs.
(29) and (30} is written g'„, and that corresponding
to Pf)„Ab is fb The pro.duct of these vectors
transforms as X)"'xS"', which is reduced using
the vector coupling coefficients S~ .„„, in Wigner's
notation, "

~ 2+A;t(p A') t),
)Cf

(SV)

U=— Qt p, I A;, A,', ),
ebb

(38a}

In order to express such results in an abbreviated
manner it will be convenient to define the quan-
tities

l )trav gsrm;)(v+m (33a)
v=- Q t (p, I A(tA)t).

With these definitio'ns, Eq. (SV) can be written

(38b)

pv

(33b)

These coefficients form a 25&25 orthogonal trans-
formation matrix, the sum over L running from 0
to 4, and that over m from -L to +L. The 4~'s
are basis vectors for the representations S' ',

(39)Q( ' = (12/&5)(U+ 2V).

The Q"' contribution to G, which is noted G' ', is
obtained from Eq. (35a), using Eq. (39) and the
numerical values given in Appendix C. The two
components of interest are
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c&;& =—,', (v+2V),

(40a}

(40b)

and one finds G,'», = --,'G,'», . The Cauchy relation,
which characterizes isotropy Gypped Gjy22
—2G,",,', =0 is satisfied. In the correlated spherical
case the tracing in Eq. (38}can, of course, be
done as shown in Eq. (37); that is, there is no need
to integrate over R as was originally done in Eq.
(29). . in this case, the two quantities U and V are
also not independent, but are related by 3U =4V.
This can be shown most easily by calculating Q")
in terms of U and V, using (35b) and (35c) together
with the numerical values in Appendix C. One

notes then that (a)(a) vanishes in view of Eq. (36),
and the relation results. This will become cleat
in the following analysis.

In the correlated cubic case, the trace in Eq.
(35b} is made in the manner indicated in (30). The
last summation in (30) leads now to

—g P,e'. "=—gg a~', &(S)e'.;". (41)

The S'~' (8) are representations of the cubic point

groups, irreducible for I.=0 and 1, and reducible
for I.&1. For all cubic groups except T, only
'" and S"' contain A„ the identity representa-
tion." For T, A, is also contained in Q"'. An

orthogonal transformation which transforms S'~'
to a block-diagonal form Q formed of the irreduc-
ible representations S'"' is written &'~'. One has

CL(&)~(J )~(1}

4
(L & ~c(t&)') )1)I
r&

= ~ ~. r& (42b)

Q cg()')
4

(I )

r&

The I"'s are the labels for the irreducible repre-
sentations into which S'~' reduces, and the sub-
script i labels the elements of the representation
I' whose basis vector is &t)~~) (( =1 to h„); the tilde
in Eq. (42a} indicates the transposed matrix. With

this notation (41) becomes

p @L,cb1

~s (s)

gcL(E ) g I g g)(r)(S)4, (I ),aa (43)

The sum over [3}vanishes unless F —= A). For
I.=0, 'n,(a) =1, and the results (40) carry through.
However, in taking the traces in Eq. (38), there
remains now an integral over R as in (30). The
result of this integration is just to average p,~,
as 40 is invariant under P~. The transformation
%,"' is well known, ' and the vector 'h"'„, is given

in Appendix C [Eq. (C6)]. The particular form of
this vector depends on the fact that all transforma-
tions leading to the 4~'s have been carefully se-
lected so that the z axis coincides with the third
cubic axis. Using Eq. (43) in Eq. (35b)' one obtains

(44a)

with

4&),a 5 PgPg cn(4)

m pv kg AE

..d„;(;d. ;a) &(&(Ps„A'}ar~

These expressions are evaluated using the nu-

merical values given. in Appendix C; the required
Sa .„,'s are given in Eq. (C4). Using Eq. (38),
one finds

(44b)

Q „(a) = (3U —4V) (1,0, 0, 0, P , 0, 0, 0, 1)—.

The second factor is a constant vector and only

the first factor contains physically relevant in-
formation. In taking the traces in (38), it is now

necessary to account for the fact that 4' trans-
forms as 5&(a) under P„[see Eq. (30)]. The fact
that @&a) vanishes in the correlated spherical ease
demonstrates that 3U =4V in that case. Using Eq.
(45), together with the numerical values of Ap-
pendix C, one finds from Eq. (35a} the contribu-
tion G&4& of q&a& to G

(45)

c&', &, =-,'(3v -4v),

c,",,', = -—,', (3U - 4v).

For all cubic point groups except T,
are the only two contributions to G.
(40) and (46) their sum is

Gl 1i1

(46b)

G(0) and G(4)

From Eqs.

(4 la)

(47b)

with G»» = ——,'U. The anisotropy can be charac-
terized by

C„„-C„„-2C„„=-.'(3V -4V). (48)

(48a)

If the crystal belongs to the tetr'ahedral point group

T, there is also a contribution from L =3. This
is listed here for completeness as this case does
not seem to have occurred among the plastic crys-
tals whose structure is known to date. The vector
'(t(')„, is given in Eq. (CV). Equations (44a) and

(44b) carry through with "4" simply replaced
everywhere by "3";Eq. (45) is now replaced by
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(,)

x(0, 1/v2, 0, 0, 0, -1/v2, 0). (49b)

(3) (3)
1111 1212 (50a)

x[A).(tx )A[, (tx,)-A;, (tp )A[~(tp )])

(50b)

Using Eq. (35a) and the numerical values in Ap-
pendix C, one finds the contribution G"' to G

The tensor strength is defined as

Q =- U+2V = G„„+2G,2,2. (52)

It is proportional to Q"' in Eq. (39). The tensor
anisotropy is defined as

1 1
1111 2 G1122 2 G2211 G1212

1111 G1122 G2211

This quantity is related to

C=-U ——V,
4
3

(53)

(54)

which characterizes the cubic order and is pro-
portional to Q"' in Eq. (45); both C and g are zero
in isotropic media. From Eq. (53) one finds

The polarizability dispersion has been shown ex-
plicitly in (50b). In its absence the expression
vanishes as the summation over all pairs includes
the pair b-a as well as a-b.

g =C/2V =-,' ', (V/f—r)-

or, in terms of C and Q,

r„=5C/(6C + 4Q).

(55a)

(55b)

V. INTERPRETATION OF RESULTS

Having reduced G to its irreducible components
one is in a position (i) to express rather simply
G in other coordinate frames; (ii) to give a, physical
interpretation to each component.

The first advantage, which is only mathematical,
will be dealt with very briefly. To rotate the ob-
ject G given by Eq. (35a) amounts to rotating the
sets Q'~' of which it is built. One has

(51)

Introducing this in (35a) one obtains G,'», , where
P„G=-G'. The Q"' contribution to G' is R inde-
pendent. The Q"' contribution involves, in gen-
eral, all nine components of P„Q"'. The fact that
only three components occurred in Eq. (45) was
due to the fact that 4"' transforms as S"', with
the z axis parallel to a cubic axis and to the third
axis of the reference frame. In other words, the
g„'s transform identically to the spherical har-
monics Y"' due to the particular choice of d p f f
in Eq. (Cl}, and the 0'~"s transform identically
to the Y'~'s due to the particular form of the
g~'s and the S~ .„„'s. Once q'(~) is rotated, the
z axis is no longer parallel to the third reference
axis, and all components of Q' ' occur.

Let us now turn to the physical interpretation of
the components. The Q'" component, which re-
flects polarizability dispersion and occurs only
in the absence of fourfold axes, is rather peculiar,
and will not need much discussion. One should
simply note that Q'" has no contribution to either
the tensor strength or to the tensor anisotropy,
about to be defined. This results from Eq. (50a);
Q(R) only contributes to the asymmetry, as seen
in (50b).

f(R, )—= I dRp(R, RR), (56)

from isotropy. The strength Q depends on the
degree of correlation of given pairs a-b, and on
the number of pairs contributing to the sum in
Eq. (37), which is the correlation range. There-
fore Q is a generalized susceptibility which mea-
sures the short-range molecular ordering. It can
be compared to the paramagnetic susceptibility
of a magnet above the Curie point, which mea-
sures the short-range spin ordering. As the tem-
perature is lowered toward the plastic-solid phase
transition, segments become correlated over
longer distances. They are correlated over the
entire sample in the solid. Consequently, Q is
expected to increase on the approach of the solid
phase. Such a remarkable increase has been ob-
served recently in succinonitrile. "

The quantity C results from the over-all cubic
symmetry of p„, which is a long-range property,
but also from the short-range correlation of mo-

As shown in Sec. IV (i)uncorrelated segmentpairs
a bdo-not contribute to either Q or C [Eqs. (27)
and (28)]; (ii) correlated segment pairs contribute
to Q irrespective of whether the symmetry of the
correlation function is spherical or cubic. In fact,
as discussed below Eq. (43), in the correlated
cubic case it is the spherical average of p„over
R which is relevant to the calculation of Q. This
average can be written f(R„}as in Eq. (24);
(iii) correlated segment pairs contribute to C only
to the extent that p has cubic rather than spherical
symmetry.

The correlation of segment pa, irs is a short-
range property in the plastic phase. For any
given pair a-b, the degree of correlation depends
on the departure of
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lecular pairs, which is required to obtain a non-
vanishing contribution to G. This is clear from
points (i) and (iii) above. By defining the dimen-
sionless anisotropy parameter &, which depends
only on C/Q, it appears that the short-range as-
pect is eliminated and only the long-range aspect
remains. This cannot strictly be demonstrated in
all generality, but can be intuitively understood
from consideration of the second equality in Eq.
(55a); if one assumes that the correlation range
affects in the same way the off-diagonal and the
diagonal components of A' and A' in Eq. (38), the
quotient V/U is independent of the range T.here-
fore f measures the over-all cubic anisotropy
of the average molecular orientations, and, as
such, can be considered as an orientational order
parameter of the plastic phase. It turns out that
f is related to the average over the angular dis-
tribution function of fourth-order spherical har-
monics. Nithin a mean-field theory, and for sym-
metric top molecules, g is found to be directly
related to the average of (cos'8- —', ), where 8 is
the angle between the molecular axis and a cube
fourfold'axis. Such an order parameter is a direct
extension to higher-order harmonics of angular
order parameters proposed by Kobayashi for
liquid crystals. " As opposed to liquid crystals,
the average of (cos'8--', ) is always zero in the
present case in view of the cubic symmetry. Re-
cent measurements on succinonitrile have shown
that f decreases markedly on the approach of the
plastic-liquid transition. " This result indicates
that the melting of the lattice requires a high
degree of rotational isotropy. Roughly speaking,
the anisotropy parameter below the melting point
can be compared to the magnetization of a magnet
below the Curie point; however, the melting phe-
nomenon is considerably more subtle in that more
than one order parameter is involved.

(there is one more component in the case of the
proper tetrahedral group T). Using more elaborate
group-theoretical considerations, G is then de-
composed into tmo irreducible tensorial sets re-
lated to two independ& ~tants. One of these,
which was labeled Q, en named the tensor
strength. Its magnitu ~ands on the amount and
range of short-range molecular ordering. For the
plastic-solid transition this quantity plays a role
similar to that of the paramagnetic susceptibility
above the Curie point. The second quantity & has
been called the tensor anisotropy. Its magnitude
depends on the long-range anisotropy of the aver-
age molecular ordering. For the plastic-liquid
transition g plays a role somewhat similar to that
of the magnetization of a magnet below the Curie
point.

The measurement of Q and & on one substance
(succinonitrile) has already indicated that these
quantities show a remarkable pretransitional be-
havior on the approach of the respective transi-
tion points. '0 One experimental task mill be to
determine whether this behavior is peculiar to
succinonitrile or is a rather general behavior of
all plastic crystals. In the latter case, micro-
scopic theories will have to be developed to account
for these effects. Our results are also relevant
to light-scattering investigations of these com-
pounds. The depolarized Rayleigh wing is de-
scribed by a correlation function somewhat similar
to G." In view of our analysis, several compo-
nents are expected in the depolarized Rayleigh-
wing spectrum. There is little doubt that a better
understanding of the plastic-solid and of the plas-
tic-liquid transition mill improve the general
understanding me have of melting phenomena.

APPENDIX A

Using Eq. (3) one obtains

VI. SUMMARY AND CONCLUSIONS

On the basis of very general thermodynamical
arguments an expression has been derived for the
ac orientational Kerr-effect susceptibility of cubic
plastic crystals. The susceptibility has been re-
lated to a tensorial correlation function G. This
function expresses the correlation between the
anisotropic part of the optical susceptibility tensor
of pairs of molecules (or molecular segments, in
case of dynamical isomerization). The analysis
is facilitated by the fact that local-field correc-
tions can be treated rather simply in cubic molec-
ular crystals.

By simple consideration of the cubic symmetry,
one finds only tmo independent components to 0
whenever the crystal point group has fourfold axes

Bp BX B+
BF= ~PBE "PBF

B'p t B'X B'X
BF]BE~,BF,.BF~ BF]BF,.

For the problem treated in Sec. II,

(Al)
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aX
o

82X
= ——,

' (s, +2}gn', &(z11„0).
F=o

This leads to

(A3}

8 p
sash - =» """'

f F=o

x Q(n', ~(&u„p}—tr[pn'„(ur„p}]}.

(R} can be distributed in the (R,}'s, and the above
relation between the sets follows immediately.

(iv) fR,}being any one of these subsets, gR,}
x(S}=(R}.This is evident from the fact that the
junction of all {R,}'s is (R}, and from using the
equality demonstrated in (iii} above.

APPENDIX C

This appendix contains the detailed numerical
information that is required for the decomposi-
tions of G into irreducible tensorial sets. The
basis vector g„ transforming as S"', which is
obtained from a traceless second-order symmetric
tensor A, is"

(A4)

APPENDIX B

This appendix shows that the full rotation group

(R} can be decomposed into hs nonoverlapping sub-
sets (R,} (z =1 to hs), where hs is the number of
elements of a point group (S}, the subsets being
such that (R,}x(S}—=(R}. This theorem justifies
the decomposition of the integrals in Eqs. (28) and

(30). It is demonstrated in the following simple
steps:

(i) The set (R}xS&——fR} when S& is an element
of (S};this is evident since S& is also an operation
of (R}.

(ii) The condition S, 3-'S& leads to RS, PRS& for all
R belonging to (R}. Let us assume that RS, =RS&

for a particular R; this gives RS, Sf ' =R. The
product of two rotations being a third (different)
rotation unless at least one of them is the identity,
this leads to S,Sf =I, or S, =Sf in contradiction
to the initial assumption.

(iii) {R}can be decomposed into hs subsets (R, }
(i =1 to Izs} which have identical volume and are
such that

(R;}xS,-=(R,}xS,-=~ ~ ~ -=JR„}xS„.

This is shown by building up such a decomposi-
tion. One starts with any element R, builds all
h~ products RS, ', and distributes them in the cor-
responding sets R, . All these products are dif-
ferent, by (ii). Then one picks a new element R'
not among any of the previously distributed rota-
tions R'31 RS,. ' (for all z), and forms all products
R'Sf '. The demonstration hinges on the fact that
R'Sf'MRS, ' for all i and j. Indeed, if one had
R'S f

' =RS, ', one would also have R' =RS, 'Sf, and
since S, 'S& is equal to some S3' of (S}this result
is in contradiction to our selection procedure for
R'. Proceeding in this manner, all elements of

$3 =A„-A33+2iA131

g, = -2A» —2z A»,

$0 =36 A33,

g 1=2A„—2iA„,

g 3=A„-A„—2iA„.

(cl)

A„=-.'(q. .q .) —(I/2~6)(V. ),

A..=--'(C. C .) —(I/2~6)(C. ),

A..= (I/~6)(y. ),

A„= (I/4z)($, —g, },

A13 4 4 1 ~l)1

A..=-(l/4z)(C, +C, ),

(c2)

which gives the coefficients c,~l. „of (31b).
The Sz .„„coefficients in Eq. (33) can also be

labeled S~ ".„, to indicate that they originate from
These coefficients can further be writ-

ten s~'„"„, as they vanish unless m=p, +v. A

formula for these coefficients has been derived
by Wigner. 27 The numerical values relevant to
the calculation of Q' ' are

s &3 ~ » = (-1)~/~S. (c3)

For the calculation of Q"' they are

S'2 2' =S'2 2' =14 ' 2 ' 2 4 ~ 2 ~ 2

s'3'3' =stz 3' =1/(7P)' 3
4 ~ 23-2 43 232

S(3'3» = S tz'3~ = 4/(7P)43~&3&

s(2I2) 6/(70)1/3

(c4)

It is written in such a way that the s axis of q„
coincides with the third axis of A, f . Equations
(C1) give the coefficients d„.,z defined in Eq. (31a).
This set is inverted taking account of g, A« =0.
One obtains
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For the calculation of Q'" they are

s""=s"" = -s+"= -s"" =1/WP
3y2 ~ 0 3sOs 2 3eOt2 3 ~ 2 ~ 0

s""=s"" =0.3s1&1 3 ~ ls-1
(c5)

The vector %,"'„,, which is one column of the uni-
tary transformation matrix that reduces B"' is,
for all cubic point groups, ' 'll "'„=(0, 1/v 2, 0, 0, 0, -1/v 2, 0). (c7)

cg(4) —[(
5 )1/2 p p p (

7 )1/2 p p p (
5 )1/s]

(c6)

The vector 'll"'~, which is one column of the uni-
tary transformation matrix that reduces X)"' into
irreducible representations of the tetrahedral
group Tq is
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