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A semiclassical theory of two-photon Lamb dips is presented, when one of the radiations
is in the radio-frequency region and the other is in the optical region. Perturbation solu-
tions as well as an exact recurrence formula are discussed. For the latter case numerical
results are given. The resonance line shape of the two-photon Lamb dip shows a variety of
changes according to the experimental conditions. When both the optical and the rf fields are
weak a line is of a dispersion form. When the rf field is increased, the line changes to a
Lorentzian form. When the optical field is increased, the line is shifted and broadened. If
the radio frequency is close to or less than the Doppler width of the gas, a two-photon Lamb

dip is accompanied with sstellite dips which correspond to molecules with nonzero velocity
components along the propagation of the laser radiation. The intensity of a two-photon Lamb
dip is expected to decrease rapidly with increasing radio frequency. Additional effects when

the sample cell is placed inside the laser cavity are also discussed. Those results agree
qualitatively with recent observations by Freund, Romheld, and Oka.

I. INTRODUCTION

The recent observation of two-photon Lamb dips
by Freund and Oka' demonstrates a convenient
method for accurate determination of molecular-
transition frequencies which are not in coincidence
with standard laser lines. By using a nonlinearity
of molecular-transition processes, a radio fre-
quency is added to or subtracted from the laser
frequency. If the laser frequency is accurately
known, this technique is much si.mpler than the
standard Lamb-dip measurement combined with a
tunable laser' or the Stark tuning of molecular
transitions. ' For the latter cases the determina-
tion of the transition frequency involves the cali-
bration of the laser frequency or the determina-
tion of additional parameters.

It has been found, however, that the line shape of
the two-photon Lamb dips changes considerably
with experimental conditions. ' Sometimes observed
dips were of a dispersion form, but sometimes they
were of a Lorentzian form. In addition, when the
radio frequency was within the Doppler width of the
molecular transition, many satellite lines were
observed.

This paper presents theoretical explanations for
those line-shape variations in the two-photon Lamb-
dip experiments. The problem is to find the non-
linear susceptibility of a molecular system when
optical radiations propagating in opposite direc-
tions and a radio-frequency (rf) field are simul-
taneously applied to the molecules. The configura-
tion is schematically shown in Fig. 1.

The following discussions are based on the stan-
dard semiclassical formulation using a density
matrix for the molecular system. ' The molecular

level system considered is a three- or two-level
system as shown in Fig. 2. The three-level sys-
tem represents the case of asymmetric-top mol-
ecules or inversion-split symmetric-top mole-
cules (such as NH, ) in which each level has a
single parity. The two-level system represents
the case of symmetric-top molecules with K40
in which each level has a double parity. For this
case a finite diagonal dipole matrix element exists.
Using classical field, the interactions of wave func-
tions corresponding to these levels through dipole
matrix elements are considered.

The procedure to obtain the susceptibility is
similar to that for the theory of the gas laser. ' '
The same theory has also been used for the calcu-
lations of nonlinear susceptibilities by many au-
thors. ' The theory consists of two steps. First,
the quantum-mechanical response of molecules
which are removing at a particular axial velocity
is calculated from the density-matrix equation.
The bulk susceptibility of the gas is then obtained
by integrating the solution over the velocity dis-
tribution. In most cases the Doppler width is as-
sumed to be much larger than the homogeneous
width. The basic theoretical formulation is given
in Sec. II.

In Sec. III we obtain solutions by using straight-
forward perturbation techniques. Many of the ob-
served effects are related to only a few terms of
the perturbation expansion. Additional effects
due to stronger fields are discussed in Sec. IV,
where the discussions are limited to the two-level
system for simplicity. Major effects are shifts
and broadenings of the resonance lines. Some
modifications are necessary when the sample cell
is placed inside the laser cavity. This is dis-
cussed in Sec. V.
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II. THEORY

We consider a system of moleculps interacting
with two optical fields traveling in opposite direc-
tions

- gtdt+fkc ~I e- j u)f-)Ag
~ ~ p

and a rf field

E„e ' "+c.c.
The rf field may be either a standing or a traveling
wave. Its spatial dependence is ignored, because
the Doppler width at radio frequency is usually
much smaller than the homogeneous width. This
is the case also for the microwave radiation.

Two cases are considered for the molecular-
level systems as shown in Fig. 2. In the three-
level system shown in Fig. 2(a), the separation
between the levels 1 and 2 is in the rf region and
the separation between the levels 2 and 3 is in a
near coincidence with the optical frequency of a
laser. The levels 1-2 and 2-3 are connected by
the dipole matrix elements p, » and p.», respec-
tively. Figure 2(b) represents a two-level system
of symmetric-top molecules where each level has
a double parity. The levels 2 and 3 are separated
by the optical frequency. In addition to the off-
diagonal matrix element p. 23, there are diagonal
dipole matrix elements p, 2 and p. 3 for levels 2 and
3, respectively.

The molecules which move with an axial velocity
-v past the point z =co at a time t = t„experience
the field

E =E+e " """+Ee " '""+E e ' ~' c.c.
(2)

where E, =E', exp[xi%(vt, —z,)]. The response of
an ensemble of those molecules can be described
by the following density-matrix equation:

~ ~

dt +r„p„=-2ix„(p» -p»)+ i&QPQ3 imp P02,

d
+ ro po = zp„(py2 pzy )

(0)
&o p23+ &o p32+ yo po

(
d—+ iM» + y» p» = -iy„p„—iyo p»,

(
d ~ ~—„, +y23 p23 ~ p13 popo

(
~ ~

12 y13 p13 ~f' p23 ~o p12'

(4)

(4) p~=pii p2~0 po=p2a pcs~ &r=xre
+c.c., and yo=x,*e'"+'+x*e'".-', where 0, =0 +u,

For the two-level system we obtain

(
d
dt +yo po=-2iyop»+2iyo p32+y, p,(0)

for the three-level system where 8&,
&

is the energy
difference between levels i and j. For the two-
level system, the Hamiltonian is

(tf&„—p, ,E p„-El

The second term in Eq. (3) is a phenomenological
damping term, where I' is the matrix of the relaxa-
tion rates y, ~. We now factor out the optical-fre-
quency oscillation by substituting off-diagonal
matrix elements such as p,', =p»e ' »', p13t=p»e 23, p» =p23, and p» =p». For all other
elements p,',. =p„.. After dropping all terms which
oscillate at optical frequencies, Eq. (3) becomes,
for the three-level system,

d
dI; il I&, P'] —F (O' P'"')—

In the above equation, the Hamiltonian H is
(

d—„, +y23 p23 ~0 po ~d p23 (Sb)

1~13 -~ 12 &

a=! -t „E e~„
0 -tl E

0

-g»E
0 j' 2

rf, E&e '"'+c.c.

I QJt
+

= TO DETECTOR

SAMPLE CELL

FIG. 1. Schematic experimental configuration.
FIG. 2. Molecular energy-level diagrams for a three-

level system (a) and for a two-level system (b).
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where

y, = ( t(, —p, ,) E„e ' r'/I+ c.c.
=x„e ' "+c.c.

In deriving Eqs. (4) and (5) the diagonal relaxation
rates ygy y22 and y33 are assumed to be equal and
all terms whose oscillating frequencies are in the
rf region are retained.

The steady-state solutions of Eqs. (4) or (5) are
expressed in a series of terms which oscillate at
various frequencies lQ, +mO +n&„, where l, m,
and n are integers. In order to calculate the sus-
ceptibility to E', field, we have only to know the
part of p», p»(-Q+), whose time dependence is
e '"+'. In Eqs. (4) and (5), the fields E, and E,
are always accompanied by the factors e '"~' and
e '"~', respectively. Therefore, it is expected
that when p, ~ is expanded in powers of the field,
the term with the time dependence of
exp[i(tQ, +mQ +n(v, )t] will appear with a factor
«E( &"&", IE+I'I& I IE,I"' Thus, one may as-
sume for p»(-Q, )

p»(-Q. ) =f(v, Q, ~„I&.l', I& I', I&„l')&,e '"",
where the function f depends only on the intensities
of the fields

I Ekl = IEklk and l~, lk The induced
polarization at z, and at time to produced by those
molecules is then calculated to be

fEl e ((Ql(p kkp)

The bulk susceptibility of molecules is obtained by
integrating f over the molecular-velocity distribu-
tion.

X =9,» N(v) f dv.

III. PERTURBATION THEORY

time dependence p»(-Q, ) in the series. The sus-
ceptibility is then obtained by integrating the ex-
pression over v or equivalently over u. For the
Dopper-limited case, the integration may be per-
formed to infinity. The integral is obtained by
simply summing up residues of all poles existing
in either upper or lower complex u plane. The
number of terms increases rapidly as we go to
higher -order perturbation. However, for specific
processes such as those discussed in this paper
the number is usually not very large. Further-
more, one can omit any term which has poles only
on one side of the real axis, because for such a
term the integration over u vanishes.

A. The lowest-order terms

The two-photon Lamb dip is observed as a per-
turbation on the susceptibility for the E, field by
E and E„waves. The lowest-order term with such
an effect is in the fifth-order solution of Eq. (4)
and should be proportional to x, lx I'Ix„l'.

It also has to appear with an expression which
is. resonant at 0 +&„. For 0+&„resonance, the
only term which does not vanish after the integra-
tion is the one that is obtained by the iteration
scheme shown in Fig. 3(a):

«(5) LX» sx
—SQ +y23 —lQ —k + 4 ~~ +y~3

x
—zx —gx +

-g„+ t~2+y~2 -SQ+ —4 „+4 ~2+y~3

X ~ p&o&
ix*

-ia, +y„
On the left-hand side p,'~~' indicates that only the
relevant terms in the 4th-order expansion p,"~' are
picked up. Assuming all y's are equal, l(d„—(d»l

»y, and 0+ y2 0 the integration over u
gives

We discuss in this section the solutions of Eqs.
(4) and (5) by using the standard perturbation
method in which the density matrix p is expanded
in powers of the three fields E„E, and E„as

(~„—(d„)'(2Q + (d„—~„}
Zx (Q+~„-~»}+iy ' (7)

kzx
i[tQ, —(t+I)Q +m~, ]+y (6)

where x represents x, or x„and l and m are in-
tegers. We pick up the terms with the relevant

p p(0) + p(&) +p(2) + ~ ~ ~

The term p'"' is proportional to the nth power of
the fields and is obtained from p'" "by substituting
the latter into the right-hand side of Eqs. (4) or
(5). In general, p'"' is expressed as an n product
of factors of the form

The resonance at 0 —~„ is obtained by replacing
((), by -(v„ in Eq. (7). For a two-level system, the
iteration scheme is shown in Fig. 3(b}. The final'
result is

„)„2vx,lx I'Ix.l'
&»OO (a7„ (Q + (()„)+ i y

(6)

If (u» ——0 and Q+(d„=O, the two expressions (7)
and (8) coincide except for a factor of 2. This
factor is due to a difference in the definition of the
dipole moments. If the two-level system is con-
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FIG. 3. Iteration pro-
cesses in the perturbation
calculations in Section III
A. Letters under p, '~ indi-
cates the frequency com-
ponents to be calculated.
(a) and (b) are the lowest-
order terms for three- and
two-level systems, respec-
tively. (o) and (d) are the
two-photon Lamb dips
which are a direct analogy
to the normal Lamb dip,
for three- and two-level
systems, respectively.

sidered as the limiting case of a three-level sys-
tem with ~»-0, the diagonal matrix element p. ,
should be replaced by y, „/v2 .

The results of the two-photon Lamb dip given in
Eqs. (7) and (8) are considerably different from
the normal Lamb dip, which is derived from third-
order terms in the perturbation procedure

-1
n+iy (9)

(~„—&„)'(2Q + ~„—&u„)'y

-1
X (fi+~„—~„)+iy ' (10)

2', [x I'ix, i' -1
0+„+ 'Ly

for Figs. 3(c) and 3(d), respectively. The reso-

First, the absorption coefficient in Eq. (7}or (8)
has the dispersion form, while in Eq. (9) it has
the normal Lorentzian shape. This is because the
iteration schemes shown in Figs. 3(a) and 3(b) are
not straightforward extensions of the case of sin-
gle-photon Lamb dips to that of "two-photon Lamb
dips. " For a single-photon Lamb dip, the change
in the population difference p, caused by the ab-
sorption of E field is observed through the single-
photon absorption of E, field. The direct extension
of this to the two-photon case mechanism will be
the observation of the change in p, caused by the
two-photon absorption of E and E„ fields, through
the two-photon absorption of E+ and E„ fields.
Such effect appears in the seventh-order perturba-
tion. The scheme is shown in Fig. 3(c) for the
three-level system and in 3(d) for the two-level
system. The results are

nance at 9 —&„ is obtained by replacing &„by -„.
Those terms have the Lorentzian absorption shape
as in the single-photon Lamb dip. In Figs. 3(a)
and 3(b), in contrast, the induced polarization at
„, produced by the Raman process of E and

E„, is observed again through the Raman process
of E, and E„. Although the seventh-order effect
given in Eq. (10}or (11) is of higher order it takes
over the fifth-order effect given in Eq. (7) or (8)
when ~x„~'/~„y&1. It will be shown in Sec. IVA
that the variations of line shape with E„ is caused
mainly by the competition between those two con-
tributions.

In a single-photon Lamb dip, the change in the
population becomes appreciable when ~x, ~a y. At
this field intensity the susceptibility of the Lamb
dip is on the same order of magnitude as the linear
susceptibility. In the two-photon case, the popula-
tion change between levels 1 and 3 becomes ap-
preciable when ~x, x„~z dray, where n~ is the fre-
quency mismatch at the intermediate state. How-
ever, the susceptibility of the two-photon Lamb
dip is smaller than the linear susceptibility by a
factor of y/n(o even at this intensity. This is be-
cause the observation is done through the intensity
change of an off-resonant field E, . 'The same re-
duction in the susceptibility is expected in any
nonlinear effect, if the observing field is off-reso-
nant to the molecular transition. This limits the
applicability of two-photon technique to cases of
larger 4, because one has to increase the line-
width y in order to keep the same absorption coeffi-
cient, even when the field intensities are suffi-
ciently strong to saturate the, two-photon transi-
tion. The situation can be improved, if the popu-
lation change is directly observed. The population
change for the two-level system is given from the
sixth order term,
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pp 4u =—
CO'y

0+„
(Q+~„) +y

(12)

One of such methods will be to observe selectively
the fluorescence from the upper state, which is a
two-photon version of Freed and Javan's tech-
nique. "

B. Nonzero-velocity Lamb dips

Normal Lamb dips are caused by molecules
which have zero-velocity components along the
propagations of radiation. However, Lamb dips
are caused also by molecules with nonzero-velocity
molecules when two saturation dips on the longi-
tudinal velocity profile of the molecules coincide.
The integration procedure in Sec. IIIA is to insert
u for which il'Q, —$(l' +1)Q + im'v„+y=0, into
expression (6). Therefore, the requirement of
having nonzero-velocity Lamb dip is to be able to
find coincidences between two saturation dips at
velocities (M -m&„)/(2l +1) and (+Q —m'&u„)/
(2l' +1). Since l, m, l', and m' are arbitrary
integers, the coincidence can occur at v„=(2j/n)Q,
where j and n are any integers.

If „ is much larger than the Doppler width, only
the normal dips which correspond to u =0, and

therefore m =m', are observable. In this case
the resonances are restricted to

lxl' /(~, r ) and lxl' "/(~, "r ), for even u=2m
and odd n=2m+1, respectively. Therefore, when

the field intensity lxl' is larger than &u„y, the per-
turbation expansion does not converge. The satu-
ration effect starts to appear at such a field in-
tensity. This situation is discussed in the following
using the method of solutions which is similar to
that of the intense gas laser theory. " In most
general cases the solutions are expressed in terms
of fractional series and the evaluation can be done
numerically. First we discuss the case when only
one of the rf or optical fields is strong. The ef-
fects are considerably different for those two
cases. Although many of the following results
can be applied, in principle, to arbitrarily strong
fields, we assume implicitly that lxl'«&u', . The
field intensity such that lxl'z ~„' is almost im-
possible to obtain except at the very low &„.
Furthermore, only the two-level system is con-
sidered throughout this section. The three-level
system will give qualitatively the same result.

A. Intense rf field

Let us consider the exact solution of Eq. (5b) by
taking g= -iy*pp as a known function. Suppose g
has a time dependence of e ' ', then -p» is ex-
pressed as a sum

Q p„(-8+n(u, ) exp[t ( 8+n(u„)t].-

tu„=(1/m)Q, m=+1, H, . . . .

When „ is close to or within tQe Doppler width,
coincidences at nonzero velocities become ob-
servable. Naturally the lower-order coincidences
are stronger. The coincidences, in which one of
the saturation dips is due to the two-photon ab-
sorption, are shown in Fig. 4. When the rf radia-
tion is intense, the dips corresponding to higher-
order multiple rf photon absorption occurs at
u =Q -nw„, n =0, 1, 2, . . . . The coincidences with
the two-photon dip are observed at ~„=(2/n) Q.
They are shown by crosses in Fig. 4. If the optical
fields are strong, higher-order dips are created
at u =[1/(2n+1)]Q. Resonances due to these dips

appear at (u, = [1 s 1/(2n + 1)]Q, n = 0, 1, 2, . . . ,
which are shown by circles in Fig. 4. The reso-
nance at ~„=20 is of lower order than the two-
photon Lamb dip. Next-strongest resonances are
expected at „=-', 0 and —', 0, as observed. '"

++3&r

Q 3air

I

Q

9/3
Q/5
Q/7

-Q/7
-Q/5
Q/3

I QJ

2Q

IV. EFFECT OF HIGHER FIELD

The largest contribution to the nth order p
" is

due to the terms which have resonant denominators
in each second factor of the iteration process.
When 0, aw„-0, those terms have a magnitude of

FIG. 4. Higher-order Lamb dips. Circles are coinci-
dences between two-photon saturation dip and higher-
order saturation dips caused by the optical fields.
Crosses are coincidences between two-photon saturation
dip and the dips produced by multiple rf photons and an
optical photon. The figure shows only up to third order.
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By comparing the coefficients of terms which have the same time dependence, the equations for
p„(-8+n&()„)are written in a recurrence form

(-i 8+ in(L)„+y») p„(-8+n(()„}= -ix„p»(-8+ (n+1}(()„}—ix, p»[-8+ (n —1)((),]+g5„0.

The solution is obtained as a product of fractional series. By defining

K~(-8) = ( i8+-y„)+
( i8-+ i (d, + y„)+ [x,['

( i8-+3i(d„+y»)+ Ix„['

(13)

and

(-'}=(-'"y-) K ( 8...}.K (
"8 „)

the general solution is

(s&0),

(n&0).
(14)

We seek for the solution whose optical field dependence is ~x [ x, . The iteration series is shown in Fig.
5(a). In calculating p~,',l from p~,

' '), the expression in Eq. (14) is used instead of the simple perturbation
form Eq. (6). This is shown by thick arrows in Fig. 5(a). In the last result pi,'~, the terms with time de-
pendence e '""are picked up. The final result is

-ZX -2$X -ZX+ ~ -ZX ~ -fXr -2lx ZX+

M(-Q ) y~ M(-Q+) „-, M(-Q ) +&PK (-+Q + j((),) into„+y„M( Q++s(d-„)

tf

X
-2zx —gX + —CX

—i«t«, ~ y M(-A, —«1«, ) +~I K,[-Q, —(« —j)«,J) (15)

Equation (15) includes all contributions whose
optical field dependence is ~x ('x, . When ~x„~'
«(d,', only the first two terms in Eq. (15}have
large contributions. Assuming 0+&„-0, they are

same as Eqs. (11}and (8), respectively. These
results indicate that the main effect of the satura-
tion by intense rf field is to change the line shape
from dispersion form to Lorentzian form when
~x„~' exceeds —,'&u„y. Neither saturation broadening
nor frequency shift appears in Eq. (15}.

B. Intense x field

—SX ZXr -2zx
M(-Q ) K (-Q -(d„) -i~„+y,

X
—gx + —SXr

M(-Q~ —(d„) K~(-Q~}

Influences of strong optical fields on the line
shape are more complicated than the influence of
the strong rf field. If only the x field is strong,
however, the result can be expressed in an alge-
braic function. This form is obtained by adding
all terms with an arbitrary number of factors

The first expression is derived from the first
term in Eq. (15) by deducting lower-order reso-
nance terms. The contribution of other terms is
smaller by a factor of at least y/(()„. When we
further simplify those expressions using the same
assumption ~x,~'«(()2, they become exactly the

(-iQ'+ iQ + y„)(-iQ'+ y, ) '

«po", p,"', p,",', and pm,
" in Fig. 3(b), where Q'

stands for 0, &r, 0+ +0 + wr, and 0+ +0, re-
spectively. Assuming ~x ~'«&o,', the fifth-order
term becomes
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1 1 2lx I'/(d,
-Q- —(d, +2lx-I'/(d, —iy Q++(d, —2lx I'/(d, + iy» -Q +Q, +iy,

The integration over u gives

-2vrix, lx I'Ix„l' 1 Ix I'/(d„
n+r«, —2(« I'/r«, ~ (y„n ~ r«, —21« I'/r«, ~ r(y„~ & /2))

'

The line is shifted in frequency by 2lx I'/(d„. At
higher intensity lx I'»„y, the second term in the
parentheses become dominant, whose imaginary
part is more or less similar to a second derivative
of the Lorentzian shape. The linewidth is not
affected by x field as in the case of intense rf
field.

p,",'- p,",', and at p,",'. However, it can be shown
that in the first and the last corrections only a
finite number of terms are important, as long as
lx, l'«cu'„. The iteration processes are shown
in Fig. 5(b}. The box indicates the infinite sum
in p,",'- p,",'. This summation is equivalent to
solve Eqs. (5) with y, =0 and

C. Intense x and x, fields

When both optical fields are strong, one has to
include terms with an arbitrary number of factors
which contain x, and/or x . This correction has
to be done at three places in Fig. 3(b); p,'n'- p,',",

p,"' = g pn") (-nb, Q —(d„)exp[- i (nhQ + (d„)t),

where AQ =Q, —Q = 2u. The comparison of the
coefficients for the same frequency components
gives

+ 2x,'x. . . +. . . p,"' [-(n —1)nQ —~„]
1 1

i Q —inhQ —i +„+y» —i Q —in' Q —i „+y»
~ ~ ~ ~ ~

The susceptibility is obtained from the integration
of the sum

pr', r(-(« ~ 1)r«n —r«, ) -«, (r«, ~ n —(y„) )'r' .

p,",'(-naQ —(d,}

in Fig. 5(b}. Equation (17) can be calculated nu-
merically by truncating at a finite number n. How-
ever, the convergence in Eq. (17) is rather slow
when u is small and lx, l' are large. Particularly
when u=0, and Ix.l=lx I

Therefore, a relatively large number of

p,",)(-nb, Q —(d„) has to be included in the calcula-
tion. Actual numerical solutions show that the
first three terms give sufficiently good approxi-
mation if lx, l' s (()„y. In this case the approximate
feature of the line shape can be estimated. from the

(a)

jn) $1)
0 23

(0)
P

P(3)
0

-fi0-(()

P~3

(b)

. P(&) P(2)
23 0

-A + fl()) Il())r r

P(3)
23

P(4)
0

P() )
23

-0 -())+ r

-2L) 0-&u ~-2Q +0+ — r

P(& }
23

-20 +A P0
('(' )

P(&)
-0 +n 23++~ ~-0+

FIG. 5. Iteration pro-
cesses for intense rf field
(a) and for intense optical
fields (b). The thick ar-
rows implies infinite sum
of terms which have x„
(se'e Sec. IV A). The box
implies infinite sum of
terms which have x~ (see
Sec. IV C).

-0 -()) ~.n .r
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position of the poles in the solution of Eq. (17).
They are

2lx. l'+21» I' . ' 41».I'I» I' "
(d CO„

(19)

This shows that the line is shifted by 2(lx+I'+ Ix I')/
+„and that it has an additional width of the order
of 2lx, x I/&u„. The result of the actual calcula-
tions shown in Fig. 6 qualitatively agrees with
Eq. (19). In Fig. 6 the Doppler width is taken to
be 100 times the size of the homogeneous width

y. Figure 6(a} is the weak-field case, which agrees
with the perturbation solution in Sec. IIIA. When

the fields intensities are increased the shift and
the broadening of the line is seen as in Fig. 6(b).
Note that the relative magnitude of the imaginary
part decreases while that of the real part keeps
increasing. If only the x field is large, the line-
width is about the same as in the weak-fieLd case
as shown in Fig. 6(c), although the line shift re-
mains. For higher-field intensities Eq. (19) pro-

duces a doublet. However, the results of the nu-
merical calculations showed no sign of doublet
structures within I», I's So)„y. The shift of the
amount of 2(lx, l'+ Ix I')/&e„exists, but the line
shape remains close to that of Fig. 6(b). The
doublet in Eq. (19}is probably due to the artificial
cutoff of an infinite series, though a doublet struc-
ture is experimentally observed in a v, transition
in phosphine. " The observation may be attributed
to the difference in the shift for different M tran-
sitions.

D. General solution

So far the discussions are limited-to the case
when only one of either the optical or the rf field
is strong. The procedures in these discussions
are basically to sum infinite terms with factors
l»il'", n=0, 1, 2, . . . , for a strong field»i, while
keeping the exponents for the other fields to a
finite number. The range of validity for this ap-
proximation is not immediately clear, because
there is always some N for which a=lx, l'Ix, l'"/
((d„y)""& I as long as I»il' & (d„y, even if lx, l'

(0)
TABLE I. Matrix components in Eq. (20).

Al

CV~

O

CV

cv+ 5
H

o

(c)

0
N+

H

0 2

-5y

I

l

I
i

I

/
/

/
/

I

I
I

/
/

5y

$n i ~) +f) p(n ~) +( p(n+ &,) y p( 0)0
I

Definitions:

pg" ~ ) (I exp [ (-i~Q+ il(d„)t], EQ = Q'

Ix„ I
2

K~ (8) = (i8+y„)+ lx„l2
(i 8 6 im„+y„) +

IX I
2

(i8 + 2iao„+y„) +

Ix„I 2
I x„I 2

1
L~(n;l +m, l) =

M(-n'DQ+Q, ~+ l co„)

y=g K [-nEQ+ Q~ + (l +j)co„]'

1
M(- nDQ+Q~+ l co„)

T tx
&= i K [—n EQ+Q, + (l —j )~„]'

Matrix Elements:

A„(l ', l) = 2x+x*[L+(n —1; l ', l ) +L (n —1;l',l )],

(m 0).

FIG. 6. Real (broken lines) and imaginary (solid lines)
parts of the susceptibilities for relatively strong optical
fields, the calculations based on the discussions in Sec.
IV C. The Doppler width is 100', and ~„ is 104'. The
vertical scale is normalized to the real part of the linear
susceptibility at two-photon resonance. (a) applies to
relatively weak fields, ~ x, ~

=
I x ~

= 25'; (b) to stronger
fields, )x+)=)x )=100y; and (o) applies when only x is
strong, ( x+ (

= 25' and [ x )
= 100y.

B„(l',l) = (—inEQ+il m„+yz)6~', ~

+2Ix I2[L (n;l', l)+L (n -1;l',l)]
+2lx I 2[L (n —1;l',l)+L (n; l', l)],

Q„(l',l ) = 2x*xJL (n;l', l) +L (n;l', l)] .

Final:

p&&(—f) ) = ix,L+( ; 0l—)Op)
' 0i ~+x(0;O, l—)p ".c
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«„y. Therefore, the above factor & creates a
new divergent series of terms which contain an
arbitrary exponent of weak field x, . One can
argue that & is always smaller than the term with
lx~l'"/(&„y)" which is included in the calculation.
Sample numerical calculations of the following
general formula indicate that the results in Secs.
IV A-IVC are good approximations at least when

lx, x, l~ cu„y.
For a more accurate treatment, a recurrence

formula which is equivalent to Eq. (5) and is con-
venient for numerical calculations can be obtained
using Eq. (14) as the solution of the second equa-
tion. Since pQ is related to two frequencies r5,0
and „, it is written in a matrix form

lxl'-~, y, few terms in both 40 and ~„ iterations
are necessary, and they have appreciable magni--

tudes.
Figure 7 shows the results for lxl'-&u„y, in

which the linear response is substracted before-
hand. The Doppler width is chosen as 100y. For
the upper two figures only three terms are included
in the expression. For the bottom curve seven
terms are included. The accuracy is probably
better than 5%, which is estimated from the re-
sults with different approximations. The result
is qualitatively similar to the case of strong opti-
cal fields. Both line shift and broadening are ob-
served. However, no complicated structures were
found in this intensity range.

p(n 1 ) +B p(n ) +g p(n I ) p(Q)
n Q n Q n Q nQs (20)

V. INTRACAVITY MEASUREMENT
where pQ'"' is a vector of the components pQ'" ",
which oscillates at -nAA+l~„. The elements of
the matrices A„, B„, and C„are summarized in
Table I. Exact numerical calculation is rather
complicated, because of the complex matrix form.
The solution of Eq. (20) includes contributions
from all orders including linear absorption and

dispersion. Since the Doppler width is taken to be
finite in the numerical calculation, the nonreso-
nant linear effect is usually by far the largest
contribution in the result. Therefore, it is also
difficult to calculate the weak-field case. When

(0'+ ~r, )r,
[(0"+y'+Slxl')(0" + y')]'" (21)

In the experimental configuration shown in Fig.
1, the imaginary part of the susceptibility is mea-
sured. However, in the actual experiments the
sample cell was usually placed inside the cavity. "
Although this improves the sensitivity, it also
complicates the line shape.

The round trip gain G of a homogeneously broad-
ened gas laser may be written approximately as"

4—
p 2

l3—

l2—

IP—

9—
Io

l4—
l3—

l2—

I I—
lo—

Io

—8
IO'

-l4
—15

—l7
IO'

IO'

FIG. 7. Real (left) and
imaginary (right) parts of
the susceptibilities for
relatively strong rf and
optical fields. The Doppler
width is 100', and cu„ is
104'. The vertical scale
is normalized to the real
part of the linear suscepti-
bility at the resonance.
(a) I~, I =!~ I

= l~„l =~«7;
(h) lx, l= I» 1=10Or,
Ix„l=200y; (c) lx, l=lx I

=)x, /=150r. The real
parts are scaled up to
10 times. The linear re-
sponses are deducted.

I

Ioy 20y I oy 20y
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where (x~ = ~x, ~, y, is the relaxation rate of the
laser levels, and G, is the gain at zero off-set
frequency 0' =0. The laser intensity ~x~' and the
oscillation frequency is determined by equating the
real and imaginary part of G with the round trip
phase shift p=p&+9 and the loss factor & =&)+
due to the laser cavity (subscript l} and the sample
molecules (subscript m), respqptively. This leads
to the familiar equation for the frequency pulling

and the equation for the laser power

It is clear from this equation that the intensity
change is proportional to the imaginary part of the
susceptibility, only when the cavity mismatch Qi

is zero and when the cavity loss is much larger
than the absorption by the sample. If the cavity
mismatch is not zero, observed intensity change
is proportional to a weighted sum of the real and
imaginary part of the susceptibility. One can
deliberately detune the cavity to measure the real
part of the susceptibility. Since the sign of the
real part changes with the sign of 0 = & —&», the
line shape determines which one of the two possible
resonances u» = ~&„ is being observed.

VI. CONCLUSION

In this paper we have discussed line-shape varia-
tions of the two-photon Lamb dip under various
experimental conditions. When the rf intensity is
changed, the line shape is determined by the com-
petition of two elementary processes. When the
optical intensities are increased, the line shifts
as well as broadening is expected even if the rf
intensity is very weak. The result from the nu-
merical calculations show that the increase in opti-
cal intensity beyond the saturation point

~ x, ~2 &u„y

only makes the observation more difficult. These
results indicate that considerable care has to be
taken for the accurate determination of the reso-
nance frequency ». The signal intensity depen-
dence of y/&u„taoptimum field intensities imposes
a limitation of this method for higher radio fre-
quency, although the limitation may be partially
removed by introduction of other techniques as
fluorescence measurement. It should be remem-
bered, however, that this complexity is not par-
ticular for the two-photon Lamb dip. Almost all
high-order nonlinear effects suffer similar com-
plexities.
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