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In the coupled-state impact-parameter method, the exact impact-parameter wave function is
approximated by a trial impact-parameter wave function which is a finite linear combination of N basis
vectors with time-dependent coeKcients. In the standard approach the coefficients are determined by
solving the equations obtained by projecting the impact-parameter Schrodinger equation with the exact
wave function replaced by the trial wave function onto the N basis vectors which define the trial wave
function. It is weB known that this method gives variational estimates of the transition amplitudes if
the basis vectors represent physical states. However, if in proton-hydrogen-atom scattering Sturmian
basis vectors, which are for the most part nonphysical basis vectors, are used, the method is not
variational. In this paper it is shown that if Sturmian basis vectors are used the method can be made
variational by projecting the Schrodinger equation with the exact wave function replaced by the trial
wave function onto the physical basis vectors of interest rather than onto the Sturmian basis vectors;
the resultant equations are no more diNcult to solve than the standard equations. It is also shown that
useful variational bounds on the error of the estimate of a transition amplitude exist only if the trial
wave function is expanded in terms of a physical basis set.

I. INTRODUCTION

In the impact-parameter approximation to pro-
ton-hydrogen-atom collisions, the two protons
are treated as classical particles which move
with constant velocity. Thus the protons become
moving centers of force which subject the elec-
tron to a time-dependent potential, and the elec-
tron may undergo transitions to various states.
In order to calculate the various transition ampli-
tudes, the time-dependent impact-parameter
SchrMinger equation for the electron is solved
approximately; a commonly used approximation
is the coupled-state (or close-coupling) method.
In this method the exact impact-parameter state
vector ~%,(t) &(where i denotes the initial state
of the system) is approximated by a trial impact-
parameter state vector ~@& „(i))which satisfies
the same initial boundary condition as ~%, (t}& but
is written as a linear combination of a finite num-
ber N of specified basis vectors

~ P,„(t}&, n =1, . . .N,
with time-dependent coefficients. In the standard
approach, the coefficients are determined by sol-
ving the set of N coupled differential equations that
are obtained by first replacing ~4', (i)& by (4', „(t}&
in the impact-parameter Schrodinger equation,
and then projecting this modified equation onto the
N basis vectors

~ p, „(t)&. The approximate transi-
tion amplitude to a given final state f is then given
by (4&(T))4, „(T)), whe.re (4&(t}& is the vector
which represents the unperturbed state f and where
T is very large and positive.

The question naturally arises as to the accuracy
of the above approximation. It is well known' that
if the basis states are physical states —states

which tend to the true states of the proton-hydro-
gen-atom system when the protons are far apart-
the standard approach is variational. This means
that the error in the calculated transition ampli-
tude is of the order of the square of some weighted
average of 4,. -4,. „.However, Gallaher and
filets' have adopted the standard approach and
used a Sturmian basis set. The virtue of a Stur-
mian basis set is that the Sturmian functions form
a disc~etc set which is complete. However, for
any given angular momentum, all but one Sturmian
function is nonphysical, and although the results
of Qallaher and %'ilets appear to be quite good,
the standard approach is not variational when a
Sturmian basis set is used. One purpose of the
present paper is to develop a method which is
variational for a Sturmian basis set. The diffi-
culty in using Sturmian states arises because,
although the initial state can usually be repre-
sented by a finite linear combination of Sturmian
basis vectors, the final state often 'cannot be so
represented. Ne overcome this difficulty by in-
troducing a second trial state vector ~4z „(i))
which, for large positive times, represents the
final state f of interest. We also introduce a
second set of N basis vectors

~ P~„(t}&, n=1, . . .N,
and ~gf „(i))is written as a linear combination
of the ( Qz„(&}&. One can consider transitions to
those physical states which are represented by
linear combinations of the

~ @z„(&}&.As willbe seen
below, in order to calculate a variational esti-
mate of the transition amplitude, it is only nec-
essary to know ~4', „(i)&, and it is unnecessary
to know ~4& „(i)). However, the coefficients in the
expansion of ( 4'; „(i)) are determined not from the
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standard equations but from the N coupled equations
which are obtained by replacing l4, (t)) by l%, „(t))
in the Schrodinger equation, and by projecting
the modified equation onto the l Q&„(f)), rather
than onto the l p,.„(t)). As will be shown later,
these nem equations mill always have a solution
if every vector in the subspace spanned by the
l Pz„(t)) has a nonzero projection onto the sub-
space spanned by the l Q,„(t)). The new equations
are no more difficult to solve than the standard
equations and they have the advantage of leading
to variational and mell-defined estimates of the
transition amplitudes.

The derivation of our variational result is
straightforward. We first obtain an identity of the
form

A~ =A~) +Ay- +By) )
(0) (~) (2)

where 4« is the exact impact-parameter transi-
tion amplitude. The precise form of the terms
on the right-hand side is given in Sec. II. For
present purposes, we need merely note that A&0,

'
is a zeroth-order estimate which can be deter-
mined immediately from the asymptotic form of
the trial state vector l4', „(t)), while Az", ' is a
fix'st-01dex' cox'x'ect1on mh1ch 18 obtained by 1nte-
grating over all time a matrix element involving
both trial wave functions. The last term R&", is
formally a second-order error term. Homever,
8&2, ' involves a double integral over time with
infinite ranges of integration and, even though the
value of the integrand is everywhere of second
order, one must make certain that 8&",. ' does in
fact exist. Assuming that R&',.' exists, and is there-
fore truly of second order, its omission gives the
variational estimate

{1.2)

Since A~, exists, it follows from Eqs. (1.1) and
(1.2} that R&",' exists if, and only if, A&/ exists
[lt is important to realize that Eq. (1.2) does not
give a variational estimate unless Az', exists. An
example of mhere B&2 is neglected even though it
oscillates without a limit is in the Brinkman-
Kramers approximation for charge transfer;
hence this approximation is not variati'ona1, in
contrast to the Born approximation. ] Given any
two trial wave functions which are such that
R&",' exists, Eq. (1.2) generates a variational esti-
mate, although, in general, one has to perform
a complicated integral to evaluate A.&",'. However,
it turns out that if one determines the expansion
coefficients of the trial state vectors so that the
variation &A&&' vanishes, Af" also vanishes, and
one then has the very simple variational estimate

( & &&(0~& The equations obtained from the re-
quirement 6AI(", ' =0 are just the equations men-

tloned above.
As useful as variational principles may be, their

use does not provide a knowledge of the sign of the
error, nor any real estimate of the magnitude of
the error. Variational bounds, on the other hand,
can provide such knowledge. Variational bounds,
though they may, in fact, be infinite, and there-
fore useless, can be obtained within the impact-
parameter approximation by using the Schwarz
inequality to eliminate the unknown quantity (name-
ly the time-translation operator) from Rz", '.' A
second purpose of this paper is to investigate the
conditions under mhich the variational bounds are
finite. ' It turns out (somewhat unfortunately) that
the variationa3, bounds are finite only if l4',. „(t})
and l4~ „(t))are both expanded in terms of a physi-
cal basis set. Numerical values of the variational
bounds have been obtained' in the tmo-state ap-
proximation, and the additional effort involved in
calculating numerical bounds is only a small frac-
tion of the effort involved in solving the coupled-
state equations. In Appendix A we give a rapid
numerical technique for evaluating certain inte-
grals which appear in the calculation of varia-
tional bounds in proton-hydrogen-atom scat-
tering.

The entire analysis of this paper will be re-
stricted to the proton-hydrogen-atom system.
(However, this analysis can be gene'ralized im-
mediately to other systems for which the initial
state and the relevant final states of the isolated
systems are known. ) In Sec. II we derive a varia-
tional approximation to the amplitude fox' the elec-
tron to-undergo a particular transition in a finite
duration. In Sec. IH we let the length of this dura-
tion become infinite, and we show' that the ap-
propriate limits exist.

II. COUPLED -STATE EQUATIONS

A. Variational principle

Let r be the coordinate of the electron relative
to the target proton A. , which me assume is al-
ways at rest, and let R(t}be the coordinate of
the incident proton B relative to A. The protons
are treated classically and 8 is assumed to move
with constant velocity, and we have

R(t) =5+vt,

where 6 is the impact parameter and v is the
velocity of B relative to A. The Hamiltonian is'
(we use atomic units hereafter)

(2.1)

If the term I/R(t) is omitted from H(t), the exact



ROBIN SHAKE SHA F T AND LARRY S PRUS H

transition amplitude has an infinite phase factor.
We retain the term 1/R(t); the transition ampli-
tude then exists, the infinite phase factor having
been eliminated, and Eqs. (2.4) below are satis-
fied.

Initially, before some large negative time T, ,
the electron is bound to proton A in the state i.
for times t& T, , the electron is effectively un-
perturbed and its normalized state vector is
I4, (t)) where, in coordinate space,

(2.5)

then 4»(r, t) restricts the range of Ir -R(t)I.]
Equations (2.4) will be used later. These equa-
tions are sufficient conditions for I4, (t)& and
I4&(t)& to be possible incoming or outgoing state
vectors of the electron, and these state vectors
represent so-called physical states. '

With the initial boundary condition that the elec-
tron is in the state i at time T„ the state vector
of the electron at times t&T, is

l4, (t)&=U(t, T, )14,(T, )&,

--V- ———t —4 (r t)=0.(
1 . 8

et (2.2) where the time-translation operator U(t, to} is
defined by

With the definitions
a(t) U(t, t,) = 0; U(t „t,) =1. (2.6)

a(t) -=e(t) —t—3
at y

(2.3)
We shall make use of the following properties of
U, which are easily derived:

it follows from Eqs. (2.1) and (2.2) that for large

il&(01@,(&» II' = J&~ („, — e, (Ft& ',
U(t, t) =1,

U(t, ~)' =U(7, t),

U(t, 7)'U(t, r) =1,

U(t, ~) U(~, t') = U(t, t'),

(2.7a)
'

(2.7b)

(2.7c)

(2.7d)

, J)dr Ir A(t) C, (r, t)l'

1 2 1dr Ir ~ 84, (r, t)l'=0 —, ,

»m t
II +(t)I4, (t)& II

=0
t~ a~

(2.4a)

If at some large positive time T& the electron is
bound to either A, or 8 in the state f, then it will
remain in that state for times t & 7&, being effec-
tively unperturbed. Let I4~ (t)) be the normalized
state vector of the state f. Then 4&(r, t) will
satisfy the same equation (2.2) as C, (r, t) does if,
in the state f, the electron is bound to A; if, how-
ever, the electron is bound to B in the state f,
then 4&(r, t) satisfies the equation

——,V-, — —i —4y(r, t}=0.
lr -R(t)l

In either case it can be shown, as above, that

»m tilt (t)14~(t}&II =0. (2.4b)

where the caret denotes a unit vector and where,
in the second step, we used the fact that the pres-
ence of C, (r, t) restricts the range of r in the inte-
grand. We note that 4, (r, t) need not be a stationary
state, so that the integrand Ir 84, (r, t)l' .may
contain bounded oscillating terms in t as well as
constant terms. It follows from the above that

for all finite times t, 7, and t'.
The transition amplitude for finding the electron

in the state f at the large positive time Tz is

+f ( (~f ~j ) =
& 4f (~jt ) I U (Tt ~ T( ) I

4 ) (T( )& .

By using properties (2.7b) and (2.7d), we can re-
write Eq. (2.8) in the form

&, (T, T, ) = &4,(7')IU(t, T )'U(t, T, )I4, (7;)&

= &4& (t)I+((t)& (2.9)

for any time t, where I4', (t)& is defined by Eq.
(2.5), and where

I4(t)&=U(t, T,)l4, (T, )&. (2.10)

In order to obtain a variational approximation to
A~, we introduce trial state vectors I%, „(t)) which
satisfy the same boundary conditions as IC&(t)&.
These trial vectors are each chosen to be linear
combinations of N normalizable, linearly inde-
pendent, not accessarily orthogonal, and, in
general, time-dependent, basis vectors. %'e have

Clearly, I+~(t)& is the state vector of the system at
time t if the system is in the state j at time T&,
where j = t or f, and I4, (t)& is determined by the
Schrodinger equation and the boundary condition
l@z(T~))=I4;(T)&. Later, we take the limits T&-~,
T, - -~. To avoid repetition, hereafter a sub-
script j is always to be understood to mean i or

[Note that if the electron is bound to B in state f, 14, .(t}&=+,.„,(t)I4,.(t)&, (2.11)
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where the trial coefficients a~„„are to be deter-
mined from a variational procedure which leads,
of course, to a set of coupled differential equa-
tions. Hereafter we drop the subscript tr from
the trial coefficients for otherwise the notation is
rather cumbersome. The basis vectors lgj„(t)&
span an N-dimensional subspace 3CjN(t), and Ij,(t).
is defined to be the projection operator which.
projects onto this subspace.

The boundary-condition on I4& „(t)& is

l@,„(T)&= lc' (T }& (2.12)

and Eq. (2.12) can only be satisfied if I@j(Tj)& is
contained within the subspace Xj„(T,.), that is, if

f', (T,)I4', (T,)&
= I@,(T;)& (2.13)

We note that if the state i is the ground state of
the hydrogen atom, the boundary condition on

4, „can be satisfied with a Sturmian basis set.
However if, for example, the state f is the 2s
state of the hydrogen atom (with nucleus A or B),
the boundary condition on 4& „cannot be satisfied
with a Sturmian basis set, since the 2s wave func-
tion of the hydrogen atom cannot be formed from
a finite number of Sturmian functions.

To proceed further, we introduce operators
Uj(t, t,) which govern the time development of the
trial vectors. We have, for all t and t p,

I@j„,(t)&=Uj(t, t.)I4'j, „(t.)& (2.14)

We need not specify the Uj and in fact the choice
is not unique. From Eq. (2.14) and the boundary
condition (2.12) we have

We now obtain an integral equation for the opera-
tor appearing in Eq. (2.17}by considering the ex-
pression'

d'f LU(t, 7) h(») Uj(», t 0)
tp

—[h(») U(7, t)] Uj(7, t )]'. (2.18)

In this expression, and in all subsequent expres-
sions, it is to be understood that h(») never oper-
ates beyond abra, a ket, or a square or curly
bracket. With the additional understanding that
Eq. (2.18}is to be evaluated in a scalar product
between normalzzable functions, we can reduce
this expression by using the Hermiticity of H(»)
With the aid of Eq. (2.7b), we see that the terms
in H(») cancel and Eq. (2.18) reduces to

J
t

—
J

d» —[U(t, ») Uj(», t 0)],
o

that is, to

U(t, t,) U, (t„t,} U,..(t, t,-), (2.19)

where we have used Eq. (2.7a). Equating Eq.
(2.19) to Eq. (2.18), and noting that by Eq. (2.6)
the term in square brackets in Eq. (2.18) vanishes,
we obtain

U(t, t,) U, (t„t,) =Uj(t, t,)

—i d&z U &
y Tz 0 Tz Uj 7 z& & p

tp

(2.20)

(t}&=U(t, T)IC (T)&

and it follows that

U (T„T,)I 4;(Tj)&=
I C, (Tj)&.

(2.15)

(2.16)

where we have replaced the variable of integra-
tion» by 7, . Taking the adjoint of Eq. (2.20), using
Eq. (2.7b), and replacing t, by t, t by»„», -by

»„and j by j ', where j'=i or f, we obtain

We note that it is not necessarily true that U, (t, t)
=1, in contrast to Eq. (2.7a), and the only property
of the trial operators that we require is that Eq.
(2.16) be satisfied. Using Eq. (2.16) we can re-
write Eq. (2.8) in the form

Af j (Tf y Tj ) (4f (Tf )I Uf (Tf 1 Tf )

x U(Tf, Tj) Uj(Tj, Tj)I 4'j(T;)&. (2.17)

Uj, (t, t)'U(t, T,) =Uj, (»„ t)'
t

-z dv2 h 72 Uj. v»t U &»~, .
TI

(2.21)

We now premultiply both sides of Eq. (2.20) by
Uj (t, t)» and then use Eq. (2.21) in the right-hand
side of the resulting equation. We obtain

t
Uji ( t, t) U( t, t o) Uj( t o, t o) = Uji ( t, t) Uj( t, t o) —i d», Uji (»~, t) h(» j) Uj(»„ t 0)

tp

2 I 2 j 2 t
~

2 t I I f I t 0 1

t T2

d»2 d», [h(»2) Uji(»2, t)] U(»2, 7, ) h(», ) Uj(», & t~),
p 'o

(2.22)

where we have used the relation to change the limits of the double integral.
Equation (2.22) is the desired equation. Setting

j'= f, j =i, t=Tf, and t, =T, in Eq. (2.22}, and
using this equation in Eq. (2.17), we obtain
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Afj(Tf ) Tj) —Afj (Tf ) Tj)

+ Afj (Tf ) T, ) +Rf'j'(Tg ) T, ))

where, using Eqs. (2.15) and (2.16),

(2.23)

tionary for variations «j„(t) subject to the condi-
tions «j„(Tj}=0. Let us first consider variations
in az„(t) S.ince Az", ) is independent of jjz„, we have
DA.f", ' =0, and therefore

Ayj'(TI, Tj) =(@y(Tj)lqj.„(Tj)&,

A,",'(T„T,) = -t dt(e, „(t)lh(t)lej „(t)&,
ri

(2.24)

A'"' = A'"+ A"'fi ff fi (2.2'?)

is a variational approximation to A.« . The error
term can, in fact, be bounded. Since U has the
isometric property (2.Vc), we can eliminate U
from Eq. (2.26}by using the Schwarz inequality.
In this way, we obtain the bound

IR~j I-R~j, (2.28a)

Bf,. = dt2 dt, 0 t2 4& „ t2
Tj Fi

x lltj(t, )14'j „(t,)&ll.

Ne therefore have the variational bounds"

IA,', I-R,j-lAyjl-lAjj I+Rjj.

(2.28b)

{2.29)

B. Derivation of equations

The coefficients jjj„(t}satisfy boundary condi-
tions at t =T&. These coefficients can be deter-
mined variationally by requiring that Az", ' be sta-

aItp(r„r, )= I 'a—)"J a,)(')'(),)e, (,))(„,
x U(t„ t, )la(t, ) e, „(t,)&. (2.26)

Equations (2.23)-(2.26) were derived previously, '
but with the restriction that the trial operators
satisfy Uj(t, t) =1 for all t. The present derivation
is, therefore, slightly more general than that of
Ref. 3; also, here we emphasize the role of the
trial wave functions, whereas in Ref. 3 the role
of the trial operators was emphasized. (See also
note added in proof in Ref. 3.) Note that the trial
operators do not appear in the final expressions
(2.23)-(2.26), their lack of uniqueness playing no
role.

Now since

a(t)le, ,„(t)&=Ij(t)lfl, (t)&,

where Qz —-%~ „-4z, it follows that Rf+, ' is of second
order in the average error of the trial wave func-
tions; therefore, supressing the arguments of Tf
and T; when no confusion might arise, the expres-
sion

g
IIA,'('=Ilk)", =-ig J d)5a~. ())

i

x&y,„(t)IIj(t)le, „(t)&.
%'e require that &Af{" be zero for arbitrary varia-
tions «&~„(t), and this is only possible if

(2.30)

(2.31)(y,„{t)ltj(t)lqj „(t}&=0,

which implies that Af{",' ——A&oi'. Thus if we know

4, „(t), we obtain, very simply, a variational ex-
pression for the transition amplitude. Using the
expansion (2.11)for 4j „(t), Eqs. (2.31) lead to a
set of N first-order coupled differential equations
for the coefficients jj(jt) We ca.n combine the
equations of (2.31) formally into the single equation

&j (t) h(t)l @,, „(t)&= o. (2.32)

Note that Eq. (2.32) is not necessarily equivalent
to the standard coupled-state equations, since
If need not be equal to P, . The standard coupled-
state equations can be written formally as the
single equation

&,(t) h(t)lq, *'.;",(t)& =o. {2.33)

a P, ~~„ then lqj „(t)& and lq j(t)& satisfy
different equations {but the same boundary condi-
tions), and the difference between these two vec-
tors is generally not orthogonal to P&, so that
different values for the transition amplitude are
obtained.

We now consider variations in aj„(t). From Eq.
(2.24) we have

5A(" =g «,.(T.)(~,(T,)l 4,„(T,)l
n=1

(2.34)

From Eq. (2.25) we have, with a dot representing
a time derivative,

(2.35)

(2.36)
n=l

N

5A~", ) = -t Q dt 5jj,.„(t)
n=l

x l(q;, „(t)lh(t)I y,.(t)&

«t, „( )(t~ j( )-l pt,.(t)&l.

If we integrate by parts the term in ~a,„, noting
that 5aj„(Tj)=0, we obtain, using the Hermiticity
of H(t) and Eq. (2.12), and combining terms,

'&)l' = —)Z f «« ())(( ())I"())I ~i. ())) '. ..
N=1 Ti

~Qi~ Tf 4'f Tf i~ Tf
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lt follows from Eqs. (2.2'I), (2.34), and (2.36) that detN
q q(t) 4 0, (2.41)

(2.37)

%'e require that 4k&", ' be zero for arbitrary varia-
tions 6a,„(t), and this is only possible if

(4 .(t)lh(t)l+. ,(t)& =0, n =I, . . . , iV. (2.38)

Expanding 4z „(t), Eq. (2.38) leads to a set of N
first-order coupled differential equations for the
coefficients az„(t). We note that we do not need
these coefficients to evaluate Az", '. However, we
do need these coefficients to evaluate the bound
Rz~,'. on the error term. The equations of (2.38)
can be combined formally into the single equation

P, (t)a(t)le, „(t)&=0. (2.39)

C. Matrix form of equations

Equations (2.31) and (2.38) are not in the form
most suitable for numerical integration. For this
purpose it is more convenient to write these equa-
tions in matrix form. Noting that both Eqs. (2.31)
and (2.38) are encompassed by

for the appropriate choices of j and j', we have

iN, , ,(t) A, (t) =M, ,,(t) A, (t), .

where A&(t} is the column matrix with elements
a~„(t), and where N ~ ~(t) and M, .,(t) are the ma-
trices with elements (/~i (t)~ P~„(t)& and

(P,. (t)~h(t)~P~„(t)&, respectively It is clear . that
Eq. (2.40) will have a solution if, and only if,
N, ;(t) has an inverse, that is, if for all t

(2.40)

%'e have, up to thi.s point, chosen the varia-
tional parameters of the trial wave functions to be
linear coefficients a~„(t) of completely specified
basis vectors. %'e could also build nonlinear varia-
tional parameters, such as variable effective
charges, into the basis vectors themselves. Al-
though we do not considex this possibility here,
we mention that these "nonlinear" parameters
could be determined from Euler-Lagrange equa-
tions which are obtained by requiring that A&", ' be
stationary. Alternatively, as a slightly more
practical numerical procedure, one could evaluate
A~",.' (or R&~) for a number of sets of values of the
nonlinear parameters and then choose the non-
linear parameters to be those for which A&,

"' (or
R&s~4) is estimated by interpolation to be stationary
(or a minimum); even this approach is often not
practical. '

where the symbol "det" denotes determinant.
Equation (2.41}is equivalent to the condition that
every vector in the subspace X&.„(t)has a nonzero
projection onto the subspace X»(t}. We will as-
sume the validity of Eq. (2.41}.

It follows from the definition of N ~i~(t) that

N ~.~(t)t =N ~~i(t).

By considering the definitions of M
~ ~(t) and

Mz,'(t)t and using the fact that H(t} is Hermitian,
it is not difficult to see that

(2.42)

iN,.;(t)=M~~. (t)t -M~i, (t).
It follows from Eqs. (2.43) and (2.40) that

(2.43)

—[A qi(t)tN qiq(t) A ~(t)] =0, (2.44)

where A ~(t) is any solution of Eq. (2.40), and
where A&.(t} is any solution of the equation ob-
tained by interchanging j and j' in Eq. (2.40}.
Equations (2.43) and (2.44) are generalizations of
the well-known relations derived by Green'; these
relations can be used as checks on the calcula-
tions. '

D. Time - reversal invariance

%e now consider some useful consequences of
time-reversal invariance. ' ' %'e define the anti-
unitary operator 8 as the product of the time-
reversal operator and the operator which xeflects
the coordinates of the electron in the plane which
passes through the origin of coordinates, and is per-
pendicular to the velocity v of the relative motion of
A and B. Inorder to fully exploit the rotation, reflec-
tion, and time-reversal symmetries of the sys-
tem, the basis sets should be chosen so that X»(t)
is transformed into X»( t) under S. Mo-re pre-
cisely, the basis vectoxs should be chosen so that

81 0.(t)&=d!. I e,.(-t)&, (2.45)

where the constants d~„depend on the basis vec-
tor s and form the diagonal e1.ements of a unitary
diagonal matrix D&. If Eq. (2.45) is satisfied for
all times, it is not difficult to show that (cf. Ref. 9)

M ~a~(t) =D~. M~.~(-t)*D~

N ~.,(t) =D~. N q.~( t)*D )*. -
(2.46a)

(2.46b)

The time symmetry expressed by Eqs. (2.46)
enables one to cut the computing time in half. Also,
we obtain a further check on the calculations by
noting that [according to Eqs. (2.46)] if A&. (t)
satisfies Eq. (2.40) (with j and j' interchanged),
then so does D zi A~i( t)*, and therefor-e from Eq.



ROBIN SHAKESHAFT AND LARRY SPRUCH

(2.44) we have

—[AI.(-t)DIiNI(t)AI(f)] =0, (2.47)

fined. To consider the limit T, —— with 1z fixed,
we write Eq. (3.1) in a different form. From Eqs.
(2.31) we have

where the tilde over A &f denotes the transpose of
A )f.

dv +y, 7' h7' 4) z =0
Tf

(3.7)

HI. ASYMPTOTIC LIMITS

A. Transition amplitude

In this section me pass to the asymptotic limits
Tq-~, T(--~. From Eqs. (2.24), (2.25), (2.27},
and (2.31) we have, with 4', „(t)determined from
(2.31),

and by xntegratang by parts the term in the v derjv-
Rtlve, slid llslllg 'tile Hel'IIlltlcity of If(t), we olItRln

-I&@,(T )I+,„(T,)&+1&@g„(T,)lc'l(T, )&

dv 4q „7' h v' 4y „v' *=0.
Tf

(s.8)

Apl"'(&y, T() = &@y(&y)l qt „,(&~)& (s.l) Hy Eq. (2.38}, the integral of Eq. (3.8) vanishes,
and therefore

We consider the limit T&- first. Let us replace
Tz by the variable f. Then, from Eqs. (2.13) and
(3.1) we have

A(,")(f,T, ) = &4,(f)lq, , „(f)&= &&,(f)4,(f)l~, .(f)&.

(3 2)

&@g(Tg)l @I„,(Tg)& = &@g„,(T, )i@I(T, )&

From Eqs. (3.1) and (3.9), we have

A(I'(Ty, TI) = &@y„,(T()IC'((TI)&

{3.9)

(3.10)

From Eq. (2.32) we have

f~,(f)—„I+, .(f)& =I,(f)If(f)lq, ,„(t)& (3.3)

We now consider A~(", '(~, t) In ju.st the same way
tlIRt W8 proved Eq. {3.5), tlllt using Eq. (2.39)
rather than Eq. (2.32}, we can show that

and using Eqs. (3.2) and (3.3), we obtain (noting
thRt Py Is Hel'IIll't1all)

BA. '"'
si (i, sI)= s( si (s/(s)@/(s)) sI, (s))

,", (-, f) =lll~g, .(f)&ll

&& Ilh(f)I4, (t)& II (s.11}

and it then follows, using Eq. (2.4a), and noting
that ill~~..(t)&ll Is n»m»ly bounded, th«

+ I &@y(t)I&g(f)—,
q

i@I,„(f)&
Bt

lim f ' (~, t) =0. (3.12)

= '( ' (i) s, „(s))

+&@I(t)IWt)i@I. (f)&

= &h(f) 4, (t)lq;„,(f)&, (3.4)

(f, TI) - ill~(..(f)) II

XIII (f)i4, (f)&ll

Rlld uslllg Eq. (2.4b) we obtain (notmg that
III%', „(t)&ll is bounded by some finite number inde-
pendent of t if me assume a sensible choice of
basis vectors)

(3.5)

where in the last step me have used the Hermiticity
of H. Using the Schwarz inequality, it follows
from Eq. (3.4) that

Hence the limit of A~(,")(~,T, ) as T, - -~ exists;
that is, A~(", ) (~, —~) is well defined, and is there-
fore truly a variational approximation to Az, (~,-~).
We note that, although A~(,")(~,-~) exists, when a
Sturmian i -basi sest is used the coefficients a,„(t)
mill not have limits as t-+~, and they mill con-
tinue to oscillate. Homever, in contrast to the
procedure of Gallaher and Wilets, we do not need
to remove the oscillating parts of the coefficients
to calculate the transition amplitudes.

B. Bounds on the error term

From Eq. (2.28b) we have

sip(s„r)= J''sic(i)j' , (,s,ss,~(is. )ss)
T$ Tf

eA. '"
11111 f (t, TI) =0.

8t (s.6)
where

F (t}=-llh(t)lq', , (t)&II. (3.14)

It follows from Eq. (3.6) that the limit of A&", I(T&,T, )
as Tz-~ exists, that is, Az,")(~,T, ), is well de-

We nom take the limits T&-~ and T, - -~ in Eq.
(3.13}. We obtain
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(3.15)

where

G ( ) )())()=-1),)",()), (3.16)

Let us d'efine 8~(t) to be the column matrix with
elements

(3.19)

In just the same way that we proved that Az", )(Tz,T, )
has limits as T&- ~, T,.- —~, we can prove that,
for all j and n, t),„(t)has limits as t- a~, so that

lim tb,.„(t)=0. (3.20)

It then follows that since A, (t) is related to B,(t)
through the nonsingular matrix with elements
((j)&„(t)l&J (t)&, we must have, for all j and n,

lim taJ„(t) =0. (3.21)

Since the norm of a sum is less than or equal to
the sum of the norms, we have, by Eqs. (3.14)
and (2.11),

It follows from Eq. (3.15) that Rt~~((~, -~) is finite
if, and only if,

lim t G(t) = 0.
g~ gee

In this section we investigate the conditions under
which Eq. (3.17) is satisfied.

To begin, 1.et us assume that all of the basis
vectors represent physical states, so that, for
all j and n,

(3.18)

in order to satisfy Eq. (3.17}in the second case,
we must have

(3.24b)

We now show that Eqs. (3.24) cannot be satisfied.
For simplicity we assume the i, and f-basis se-ts
are identical and we drop the subscript j from .

the basis vectors and from the projection opera-
tors. We introduce the projection operator Q(t)
which projects onto the complement of the subspace
R„(t), so that

P(t)+Q(t) =1.

Then we have

(3.25)

f -basis sets are both physical, they must in fact
be equivalent, for otherwise Eq. (2.41) would not
be satisfied. With equivalent i and -f -basis sets,
the new coupled-state equations reduce, of course,
to the standard equations.

As we will now show, the bound R&,. (~,-~) does
not exist if Eq. (3.18) is not satisfied for all j and
n. Suppose that at least one of the i-basis vectors
does not satisfy Eq. (3.18}. Then it is not difficult
to see that F,(t) cannot tend to zero as t-~. [How-
ever, F, (t) will tend to zero as t- —~ if the coef-
ficient of the particular nonphysical i-basis vector
vanishes sufficiently rapidly as t- -~. We as-
sume that it does; otherwise G(t) does not even
exist. ] It follows that G(t) will behave like tE&(t)
for large positive t. Similarly, if at least one of
the f -basis vectors does not satisfy Eq. (3.18),
E&(t} cannot tend to zero as t- —~, and then G(t)
behaves like tF, (t) for large negative t In ord. er
to satisfy Eq. (3.17) in the first case, we must have

(3.24a)

n 1
(3.22)

Using Eqs. (3.18) and (3.21) in Eq. (3.22) we obtain
(noting that Ill(t), „(t)&ll and la,„(t)I are bounded)

lim tF~(t) =0,
t~ goo

(3.23)

and hence Eq. (3.11) is satisfied. Therefore, if
we use physical i - and f -basis sets, we can ob-
tain finite variational upper and lower bounds on
the transition amplitude. It can be shown that
these bounds fall off sufficiently rapidly with im-
pact parameter to give finite variational bounds on
the cross section. ' We note that if the i - and

(3.26)

where in the third step we used Eq. (2.32), and in
the last step we observed that

so that no terms containing either iz or i,.„ap-
pear. Let us assume that, initially, the electron.
is in the state with state vector I ((tt))&, that is,
I(f', (t)&=I/, (t)&. Then, for large negative times,
only a;, (t) is appreciable and from Eq. (3.26) we
have~ as t
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[&(t)I'-&h(t) c,(t)IQ(t)lt (t) c,(t)&. (3.2V)

If we introduce an infinite set of orthonormal vec-
tors

I gp(t)& which span the complement of X„{t),
then

Q(t) =g Ic,(t)&&4,(t)l,
p=N+ j.

and from Eq. (3.2V) we obtain

[&,(t)l'-Q I& @,(t)lh(t)l@;(t)& I'.
P=E+ y

However, for large negative t we have

(3.28)

where c is nonzero, and therefore Eq. (3.24b)
cannot be satisfied. Similarly, Eq. (3.24a) cannot
be satisfied. It can be shown, however, that a
first-order bound exists, even though a variational
bound does not exist.

C. Useful form for F (t)

We have shown that variational bounds can be
obtained when the i and f--basis sets are identical
physical basis sets. VFe end this paper by deriving
a useful form for E&(t) when the i - and f -basis
sets are identical. We have

l&(jp(t)lh(t}l@;(t)& I-(1/«')l&(t'p(t)lr vl @;(t)& I

(3.29)

and there are an infinite number of vectors I kp(t) &

for which &4(p(t) I r f)l@l(t)& is not zero. Hence
from Eqs. (3.28) and (3.29), we have

the form Al(t) W(t) Al(t), where W(t) is the ma-
trix with elements &h(t)(j) (t)lb{t)$„(t)&. There-
fore [El(t)]' assumes the very simple and sym-
metric matrix form

[S(t)] ' =A, (t)'W(t) A, {t) —A, (t)'N(t) A, (t).
(3.33}

The quantities Al(t), Al(t), and N(t) can be ob-
tained from the (standard) coupled-state calcula-
tions. The evaluation of W(t) is discussed in
Appendix A.

Note added in Proof. The projection difficulties
encountered in the standard approach when a
Sturmian basis set is used can, in fact, be easily
avoided. Suppose, for example, that we wish to
calculate the transition amplitude to the 2s state.
Using the Hylleraas-Undheim theorem an approx-
imate 2s state can be defined by diagonalizing the
target Hamiltonian with respect to the set of N
Sturmian basis vectors. It can be shown that the
approximate transition amplitude (obtained from
the standard coupled-state equations) for transi-
tions to the aPProximate 2s state has a well-de-
fined value. However, this method does not ap-
pear to be variational, although this aspect is be-
ing investigated in more detail.

APPENDIX A

To compute W(t) in Eq. (3.33) it is necessary
to evaluate (for the proton-hydrogen-atom sys-
tem} the following two types of integrals:

yr rÃ-1-tty'-iy'F y r ~N'-1+-pp y

n=l

where we have used Eqs. (2.31) or Eqs. (2.38) to
eliminate the terms containing al„(t). Expanding
4l „(t) in (3.30) we obtain

[Z,(t)]'=i Q a, (t)*,„(t)&0 (t)ltl{t)(j).(t)&
nt, n=l

+ a~ t *a,„ t
tn, n=l

x &tl(t)4) (t)ill(t)4. (t)& (3.31)

Usillg Eq. (2.40), h fll's't slllll ill Eq. (3.31) call
be written in the form

The second sum in Eq. (3.31) can be written in

(P o,„(() P(p (01~('()p (()) s, (()).„
nt=1 n=l.

=iA, (t)'M(t)A, (t)= A, (t)tN(-t)A, (t)

(3.32)

N~ I, ¹

~ I, ' (A1)

dr —2e "F~g r, N~L

where p =r -R. The integral Jx can be evaluat, e
by the rapid differential equation technique due to
Cheshire. '0 In this appendix we describe a tech-
nique, which is similar to spirit to Cheshire s
technique, for evaluating J,.

By first expressing 1/p' in terms of its Fourier
transform, we can reduce 4, to the form

E-J
4, =2~+'v(L+ 1)!F~„(R) —— (aI~~), (A3)

The integrals J„, cannot be evaluated analytically.
Note that
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8 I—„,= -2(n+2) aI„+, , (A5)

and hence to evaluate 42 we must evaluate the inte-
grals I„~ for n =L, L+1, . . . , N. Rather than
evaluate the I„, directly by numerical integration,
it is more expedient to solve a certain set of
coupled differential equations; we now derive this
set. These equations are integrated along the
projectile path.

We first differentiate I„,with respect to the time
t using the relation, valid for l&0,

1 &" sinkR
n-x. o= R

'

(ks+a2)n+x

and integrating by parts once gives

1 2(n+ 1) k coskR
n-1 0 R2 2n+2 R2 ~k2 2&n+2a +a )

(A11)

(A12)

differential equations for In, , n~ L. To this end,
we write out I„,, explicitly. From Eq. (A4) we
have

d . . l+1
4(&) = j& g(&) — jg(&). (As)

However, also from Eq. (A4), we have

After some simple manipulation we obtain, for
l&0, the result

I„,=R(I„, , — I„, , —[(L+1)/R]I„,), (A7)

where the dot denotes the derivative with respect
to t.

To obtain an equation for In, we differentiate
I p with respect to t, using the re lation

kj,(kR) —Rk'j, (kR)
np n1 (ks +as)n+s

0

k coskR
(k2 ~ a2)n+s

Hence, from Eqs. (A12) and (A13), we have

1 2(n+1)
In-1, 0 R2 In+2 Rs (lnp —Rl„g).

(A13}

(A14}

d jc(&)=-jg(&)~

d
(As)

Inserting this expression for I„,, into Eq. (A10)
we then obtain

We obtain

In =-RI„„ (A9)

~ ~ 1, 2n+2 2n
Ini =R R2 2n+2 + R2 Inp +

R In].R a

however from Eq. (A'l) we have

I„,=R[I„,, —a'I„, —(2/R)I„, ] . (A10}

Clearly, if we can express I„y 0 in terms of Inp
and I„„then Eqs. (A9) and (A10) will constitute
a closed set of coupled differential equations for
I„p and I„,. These latter equations, coupled with
Eq. (A7), will then provide a closed set of coupled

(A15)

Equations (A7), (A9), and (A15) provide a set of
first-order coupled differential equations in time
for the integrals In, with n = l, 1+1,. . . , N and
l =0, 1, . . . , L, where ¹L&0, but N and L are
otherwise arbitrary. These equations can be
integrated subject to the boundary conditions
lim, „In, =0 or lim, „In, =0.
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