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1/Z expansion study of the (is)'2s 'S and (1s)'2p 'P states
of the lithium isoelectronic sefluencee

J. S. Onello, L Ford~, and A. Daigarno
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A 1/Z expansion method *s used to calculate the eigenvalues and eigenfunctions for the (1s) 2s '8
and (1s) 2p 'I' states of the lithium isoelectronic sequence. The dipole-length and dipole-velocity forms

of the oscillator strengths for the 2s-2p resonance transitions are compared mth the results of direct
variational calculations for individual values of the nuclear charge Z. It is explicitly demonstrated that
the length formulation of the dipole matrix element is more accurate than the velocity formulation for
the 2s -2p transitions.

I. INTRODUCTION

Recent measurements from rocket-borne instru-
mentation of the sun have established the presence
of a large number of spectral lines both in the ex-
treme ultraviolet and the soft-x-ray region' which
can be attributed to ions of the lithium isoelectron-
ic sequence. Some atomic calculations using con-
figuration-interaction methods have been carried
out for a few members of the sequence. ' Proce-
dures can be developed with which the calculations
can be performed as a function of the nuclear
charge Z and in this paper we use an expansion
in powers of Z ' to calculate the eigenfunctions
and eigenvalues for the (1s)32s 'S and (ls)'2P 'P
states of the entire lithium isoelectronic sequence.
We calculate also the oscillator strengths of the
18'2s-1s'2P transitions.

Eq. (1}reduces to the set of equations
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The set is equivalent to the variational state-
ment that

where the functional J'„"is given by

II. THEORY

The Schrodinger equation for the lithium se-
quence is

The Hamiltonian H is given by

where Ho is the hydrogenic Hamiltonian

Following Dalgarno and Drake4 we introduce a
basis set 4„one of which, C„ is g'„". Without
loss of generality we require that

&4, IIf, I 4 „& = ~,~„,, f, u' =1,2, . . . , ~
&4'a I@a& = &aa'

Then Ep =E'„'. The trial fOrm

Y is the electronic repulsion term

1
V
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ri is the position vector of the ith electron mea-
sured in units of Z 'ap, and energy is measured
in units of Z a.u.

If we expand the eigenfunction g„and eigenvalue
E„according to

leads, when substituted into (f} and (8}, to the re-
sult
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TABLE I. Added conf'igurations and screening param-
eters to the Weiss {1s22s 8) and {1s22P 2Q configura-
tion interaction wave functions {Z=8).

3 2

fi= '(E. -E.) (-P. l g r&IP. ) (13)

and in the velocity formulation by

3 2

fv = s(E. -E.) '
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After the initial diagonalization of the basis set
4, with respect to H, has been performed, the
recurrence relationships (11) and (12) may be rap-
idly evaluated. Provided the expansions converge,
the results are identical to those given by diago-
nalizations of 4„with respect toH, +Z 'V for each
value of Z.

The oscillator strength for a dipole transition
from an initial state P„ to a final state P„. is given
in the length formulation by

(Is)22s 8

mls, =8.S8
$2s&=3.27
piss = 6-74
fls4= 10.08

$3ss =2.40
$2s6 = 3.27
$3s, = 2.19

gls2= 6.49
piss = 8.81
$2s3= 5.62
$2P 4

= 4.21
esp 4= 3.75
$4P4 = 2.99

Configuration

{Is2s)Ss~
{Isis' )ssq
(Is2s' )3sT
{lsss' }3s7
(Is&2s2)1s3
(Is&ls4) ls3

(Is(sss) lse
(2s,2s,)ls,
(Is&2s&) Sls3
(ls, ls4) 3SIs3

(Isness&) WIs3
(2S82sg) Wisp

(Is}23p
(Isis' )Sp,
(Is2s)3P,
(Is2p4) ~P3dg
(Is2p4) 3Psdg
(Issd2) ~D4f

&

(Issd~} D4f(
(Is32p4) 'P Is,

$2P5= 6.20
esp, = 2.29
fsdg = 5.93
f4f )=1.62
gsd2 = 2.33

{Is33p4) iPls2
(2s2P4) 1PIs2
(2s33p 4) &PIs2
(Is32p 4} 3P Is&
(lsssp 4) 3P Is2
(Is2p 5) 3Pls2
(2s2P 4) 3Pls&
(2s32p 4) 3P ls2
(2s33p 4) 3P ls2
(2s34p 4) SPIC&

Using (4), we may generate expansions of oscilla-
tor strengths in powers of Z '. If the eigenfunc-
tions are exact, the coefficients in the length and
velocity forms are identical.

III. CALCULATIONS AND RESULTS

In the method of configuration interaction, the
form for each configuration in the wave function
expansion may be expressed as'

I 4'pen, x) —(x»xe)xK

=(8D~) '"P [ IX&i&x(I)P~P(2)X.n(3) I

—
I xg&,P(I)x,"~o'(2)x.o'(3) I )

(15a)

and

I@&,. i) =(X&x,)'sx.
=l(2D ) "'g (2lx.". (1)x," (2)x.P(3) I

—
I xg~~(I)x,"~P(2)x.~(3) I

—
I Xp ~P(I)X."io(2)X.&(3) I ~.

(15b)

Each single electron X function is a Slater-type
orbital that is normalized but not orthogonal:

TABLE II. Eigenvajues and second-order energies of
0 vl in a.u.

1s22s 2S 1822p P

Weiss
This paper
Exact

-0.3978
-0.4049
-0.4082

-0.5112
-0.5173
-0.5286

or 'S (15b) symmetry The. orbital angular mo-
mentum index ~ specifies the spin-orbital sym-
metry while Dq designates the degeneracy. The
bar over the spin-orbital connotes complex con-
jugation, with the phase of the spherical harmonic
chosen such that Fq „=Fq

Since the I/Z expansion method converges more
rapidly for the higher values of the nuclear charge,
the %eiss wave functions" for the highest pub-
lished Z values (Ovi with Z = 8) were selected to
generate the basis sets. After the addition of the
necessary hydrogenic configurations in the 28 and
'I' wave functions, the variational wave functions
were found to give values of E (Is'2s'S) =-0.39783
a.u. and Ee&(ls'2P'P) =-0.51122 a.u. for the sec-
ond-order perturbed energies. The more aecu-

The e and P spin functions represent the two com-
ponents of spin and the sum over the azimuthal
quantum index p ensures that the electron pair
forming the K shell core will be of either 'S (15a)

Weiss
This paper
variational
&expansion

Exact

'Beference 2.
Beference 3.

-64.226 72
-64.226 72
-64.229 17

-63.783 14

-63;785 90
-63.785 90
-63.789 71
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TABLE III. Energy expansion coefficients E „a.u. TABLE V. Length fL, and velocity fv expansion coef-
ficients.

order s (1s) (1s)22p 2P

-1.125000 00 (0)
1.022 805 22 (0)

-4.048 677 85(-1)
-4.572 466 85(-2)

8.339444 47 (-2)
1.140469 40 (-1)

-3.746 788 13(-1)
-7.531849 24(-1)

9.575483 56(-1)

-1.125 000 00 (0)
1.093 526 14(0)

-5.172 543 17(-1)
-1.459 10130(-1)

9.481 784 55(-2)
-1.525 309 51(-1)

3.478 861 76(-1)
3.823 832 72(0)
4.251 682 97(0)

rate results of Horak et al. ' give En'(Is'2s'S}
=-0.40816 a.u. and E '(1s 2P P) =-0.52858 a.u.

We attempted to improve the Weiss variational
wave functions by selectively increasing the num-
ber of configurations. The second-order energy
of a three-electron system may be given in terms
of second-order energies of two-electron sys-
tems':

Ee'(I s'2s) =E~'(Is' '$) + -,'Ee'(Is2s '$)

+~E"'(Is2s'S) +g(2s),

TABLE IV. 1/Z expansion eigenvalues in a.u. for the
lithium isoelectronic sequence.

-g[(1s)22s 2$] -Z[(1s)22p 2P]

En'(Is 2p} =E(1s 'S)+ E2(e1s2p'P}

+ ,'EN'(1s2P—'P) + g(2P),

where the g(nl)'s are a sum of single-electron in-
tegrals. These forms suggest the addition of con-
figurations of a 'S core nature for the 'S wave func-
tion and the inclusion of configurations with both
'P and 'P core symmetry for the 'P wave function.

In view of the small expansion c'oefficients ob-
tained by Weiss' for certain configurations, the
(5g) 2P", (3P) 2P"', (3d3d')2P"', and (5d3d')'$2P"'
were removed from the 'P wave function. In all,
12 configurations involving seven new optimized
screening parameters (obtained in the standard
variational minimization of total energy) were
added to make a 58 term 'S wave function. Sim-

0
1
2
3
4
5
6
7
8
9

10

0
1.273 O(O)

2.172 2(0)
2.892 4(0)
1.897 8(0)

-7.673 0(0)
-4.095 1(1)
-8.7118(1)

1.5341(2)
1.558 5(3)
3.6234(3)

0
1.262 7 (0)
2.395 O(O)

1.966 1(0)
5.012 8(0)

-6.305 5(0)
-1.368 4(2)
-3.582 1(2)

3.498 0(2)
4.043 9(3)
9.369 7(3)

ilarly, 18 new configurations with 11 optimized
screening parameters were added to make a 60-
term 'P wave function. The values for the addi-
tional screening parameters and the list of new
configurations are shown in Table I. The form of
the configurations for cores of symmetry other
than 'S and 'S follows from using simple angular
momentum coupling techniques to generalize
Eq. (15). Table II contains a comparison between
the variational energies and second order ener-
gies obtained from Weiss's original wave func-
tions with the values calculated here.

Our enlarged basis sets substantially reduce the
discrepancy between the second order energies
derived from the 45-term trial functions and the
exact values of Horak et al. ' and will necessarily
lead to more precise eigenvalues at large Z. Ta-
ble II shows that in the case of the 'S state, the
eigenvalue for OVI is a small improvement over
the original variational computation and that in the
'P case it is a considerable improvement over the
45-term calculation. Our predicted wavelength
for the 'S-'P spectral line is 1033.6 A compared
to the experimental value 1033.8 A."

Using the basis sets derived from the new varia-
tional wave functions, perturbed wave functions
and eigenenergies for the entire lithium isoelec-
tronic sequence were generated from expressions
(11) and (12). Table II shows the excellent agree-
ment between the eigenenergies derived variation-

6

8
9

10
11
12
13
14

23.42145
34.77316
48.37492
64.226 72
82.328 58

102.680 48
125.282 42
150.13439
177.23639
206.588 41

23.19963
34.477 77
48.006 56
63.785 90
81.815 65

102.095 71
124.626 01
149.406 50
176.437 12
205.717 87

fv

gneiss
This paper
variational
Z expansion

0.1960

0.1988
0.1988

0.2010

0.1995
0.1995

TABLE VI. Oscillator strengths for the 1s22s 2$-

1s 2p P resonance transition of 0 v&.
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TABLE VII. Nonrelativistic 1/Z expansion oscillator
strengths for the (1s) 2s S-(1s)22P P transition of the
lithium isoelectronic sequence. (Relativistic effects are
less than 5% for allZ~14).

Weiss
(Ref. 3) Z exp

Weiss
(Ref. 3)

fv

Z exp

5
6
7
8
9

10
11
12
13
14

0.3664
0.2857
0.2339
0.1960

0.3630
0.2855
0.2346
0.1988
0.1723
0.1520
0.1359
0.1229
0.1121
0.1031

0.3760
0.2915
0.2393
0.2010

0.3607
0.2857
0.2353
0.1995
0.1729
0.1525
0.1363
0.1232
0.1123
0.1032

ally for OVI with those obtained from the 1/Z ex-
pansion theory. The energy expansion coefficients
for the (1s)'2s'S and (Is)'2P'P states of the lithium
sequence are given through eighth order in Table
III. Table IV lists the 1/Z expansion eigenvalues
for the lithium isoelectronic sequence from BIII
to SiXII.

The dipole length and dipole velocity expansion
coefficients for the 2s-2P resonance transition of
the lithium sequence,

f Q Z sf(d-
s=o

f Q Z sf(8)-
s=0

are listed in Table V. The correct value of the
leading term in each series is the hydrogenic value

1.273.' It is reproduced exactly by the length ex-
pansion but the velocity expansion underestimates.
For high Z, then, there is a clear preference for
the values derived from the length formulation.
At low Z some cancellation of error occurs in the
velocity form, ' the correct value of the second or-
der coefficient is' 2.026 compared to the value
2.172 computed for f~' and 2.395 for f»' Mo. st of
the error in f~' and f»" arises in the eigenvalues
and not in the matrix elements, which implies that
greater accuracy could be obtained by using exper-
imental energy differences.

Although all the Hamiltonians responsible for
generating particular forms of the transition ma-
trix elements can be derived from one another by
classical inf initesimal transformations, ' Starace'
has argued recently that in any calculation involv-
ing diagonalization of an approximate nonlocal
Hamiltonian, the length formula is the appropri-
ate expression and the Z-dependent method does
demonstrate in our case its superiority. That it
should be in situations where the levels are close-
ly spaced was demonstrated in an elementary way

by Dalgarno and Lewis. "
Table VI displays the excellent agreement be-

tween the oscillator strengths derived variation-
ally for OVI with those obtained from the 1/Z ex-
pansion theory. Table VII is a collection of values
of f~ and f„ for BIII to SiXIL They differ little
from, but are more securely founded than, the
values recommended by Wiese et al."~
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