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The free energy for a system of hard spherocylinders with midpoints constrained to random motion
in a plane, serving as a zeroth-order approximation to one layer of a smectic liquid crystal or a
twoMimensional nematic liquid crystal, has been calculated for spherocylinders with a length-to-width
ratio of 5. For p, the number density measured in fractions of close-packed density, less than 0.22, the
partition function itself is evaluated by means of a Monte Carlo scheme employing 22500 mesh points
and 82 possible angles for 25 particles with periodic boundary conditions. For all p the liquid-crystal
free energy is calculated by minimizing a function of the hard-disk free energy plus the orientational
free energy of a "liquid crystal. " The low-density Monte Carlo free energy is found to lie below the
liquid-crystal free energy, but can be extrapolated to cross it at p = 0.23+ 0.01. Maxwell construction
yields a phase-change region for 0.19+0.01 & p & 0.29+ 0.01. A spline polynominal fit to tPe entire
free energy, which interpolates across the phase-change region, does not give strictly constant pressure,
but does imply a phase-change region of 0.20+ 0.01 & p & 0.30+ 0.01 with PA '/NkT = 1.38 + 0.03,
A' being the cross-sectional area of a close-packed system of N rods.

I. DESCRIPTION OF THE MODEL SYSTEM

The model system consists of hard spherocylin-
ders: rods with hemispherical ends. Their cen-
ters of mass are constrained to a plane. The rods
are free to move in the two dimensions of the
plane, and to point in any direction. The only in-
teraction u(r, &) between a pair of rods i and j is an
infinite repulsion when they overlap, so that the
Boltzmann factor exp[-+, ~ u(r„.)/kT] is either 0
or 1 independent of the temperature T, making the
partition function and hence the free energy a func-
tion of the density alone. Since there is no attrac-.
tive part to the potential, one would not expect to
find a distinction between a gas and a liquid phase.
However, as the density slowly increases from
zero towards close packing, it is obvious that the
rods must align in order to reach some of the
higher densities. For this reason one suspects
that a phase change should occur in which the rods
switch from random orientation to alignment in a
direction normal to the plane. If one continues to
increase the density beyond this point, one would
also expect the centers of the rods to fall into a
hexagonal crystalline arrangement of more or less
long range such as has been found in the hard-disk
system. '

In this work we concentrate on the orientational

or "liquid-crystal" phase change. The rods are
first assumed to be extremely stubby, with a
length-to-width ratio of 2. No evidence is found in
this case for a liquid-crystal phase change. They
are then lengthened to a ratio of 5, which gives
rise to the results reported here. The two ends of
each rod are assumed distinguishable.

In the low-density region the partition function
is calculated directly by a minor extension of a
method already used for calculating the free ener-
gy of a hard-disk system. ' The two-dimensional
integrations are carried out using 22500 mesh
points and midpoint trapezoidal-rule integration,
which for the densities considered is far more
than enough to remove the need for extrapolating
to an infinitely fine mesh. The angular integration
is done by dividing the sphere about each particle
into 82 equal-area regions and again using mid-
point trapezoidal-rule integration. This method
fails at about 22% close-packed density, p =0.22,
where with an orientational order parameter of
0.97 the solid angle associated with pointing
straight up, 4w/82, becomes large in proportion
to the solid angle actually available for each par-
ticle in the emerging liquid crystal.

At higher densities advantage can be taken of the
orientational ordering of the system. A fictitious
correlation length r, is introduced which repre-
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sents the closest possible approach of a second
particle and also implies the solid angle available
to the first particle. It turns out that the smaller

r, is, the larger the two-dimensional contribution
to Q becomes, and the smaller the angular contri-
bution becomes. This means that it is possible to
maximize the partition function, or equivalently
minimize the free energy, with respect to r, to
yield a good estimate for the true free energy in

the high-density region.

The number of possible choices in the setsE„..., E„,F„..., F„gives the probability &o, of hav-
ing chosen t out of all available configurations. The
method for using this information exactly parallels
that discussed in more detail in the earlier paper. '

The probability w, of having made a definite
choice of (r, 0) in the specift ed 'order in a given

tria, 1 is given by

II. LOW-DENSITY FLUID REGION

The partition function is given by

yN dg ~ dN g
4r

The probability P(w, ) dw, of observing in a given.

trial a finite value ~t in the range davt is given by

wn( w)dw, , where n(w, )dw, denotes the number of

ordered sets (r, 0) which give rise to values of w,

in the range dw, . Thus we have n(w) dw =

P(w)(1/w) dw. The total number of ways of putting

(r, 5) onto the trapezoidal-rule sites leaving U=O

is

with

U(r, 0}-=Q u(r, ~)/kT,

n= nw dw= du = —=lim
t t l t

(4)

where r = (r„..., r„)and 0 = (0„..., f4). Clearly
U=O if no two rods overlap, and U=~if any two

rods overlap. A denotes the area available to the

system. The integral in Eq. (1}can be evaluated
with a midpoint trapezoidal rule using N„mesh
points in the two-dimensional plane and No in the

angular part so that

Nr Nr Ng
~ ~ ~ ~ ~ ~

Ng
-o( r, o) (2)

1

where r and 0 are constrained to the mesh of trap-
ezoidal-rule points in the expression for Z. The
sum can now be evaluated by a Monte Carlo meth-
od previously used for the hard-disk system. '
A value for r, is first chosen randomly from the
set E, of N„possible values. Those values which

would obviously result in two rods overlapping are
next removed from the set E, to form the--set E,
from which r, is randomly chosen. Similarly,
points are then removed from E, to form the set
E„andso on. With all of the r, 's determined, Ql
for the first rod is now chosen from the set Ql=Ng.
The second rod may conceivably intersect the
first if it is allowed to take on any arbitrary orien-
tation. So certain angles are removed from the
set F, to form the set I'2 from which 02 is chosen.
A similar procedure is used to form the set I, for
picking Q„and so on until all 0, have beenchosen.
The final result of all of this is hopefully a single
configuration in which r and 5 are such that U=O.

Therefore, from Eq. (2),

N p Nt
= lim ~ lim

Nt ~ &t Nt ~~ — ZVtt=l t=l
(6)

P(w, ) is frequently zero for a given trial, since
it may happen that after choosing the first I r, 's
(or 0,'s), the set Ez„(orFz„)from which rz„
(or Qz, ,} is to be chosen becomes the null set.
Conceptually this causes no problem since mt -~
and 1/w, -0, leaving the above relations, which
are exact, correct as they stand. Practically and

It should be noted that the average comes from
taking the observed probability P(su, ) over the cal-
culated probability w, . This gives rise to the
number of ways of arranging (r, 5) which must ex-
ist to account for our having observed these calcu-
lated probabilities as often as we did. It is worth
noting a.t this point that the function exp[ —U(r, 0))
is rather unique in that it is unity for every al-
lowed configuration. For a function f which is not
always unity, e.g. , (g, cos'8, ) exp[ —U(r, 5)],
something which we shall need later for calculating
the orientational order parameter of the system,
it is necessary to include the value of f in n(f, w)
so that the probability P(f„w,) df, dw, in the range
dcv, df, becomes wzn(ft, w, ) dw, df, . The expecta-
tion value of f is then

fn(f, w)f dfdw f [P(f, w)/w]f df dw

f n(f, w)df dw f [P(f, w)/w]df dw
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numerically it leads to difficulties because at suf-
ficiently high densities it is almost always the case
that I/ur, vanishes unless the selection method is
a little more biased than the completely honest one
described above.

The whole purpose of constructing the sets E,
and E, is to avoid making choices in which the rods
are certain to overlap. The same argument can
now be extended to restrict E,- and I', even further
to reduce the possibility of choosing configurations
with vanishing I/w, . There is a tradeoff: smaller
E,'s give rise to larger se, 's and hence to smaller
estimates of n(su, ) = 1/w„but they also lead to
fewer zeros and therefore bettex statistics. In
principle of course the average of a host of such
small numbers should be the same as the average
of one large number and a host of zeros. In prac-
tice, however, we have a problem. While the num-
ber of trials is on the order of a few hundred, the
variations in 1/m, are on the order of 10'. In the
hard-disk paper this was treated by establishing
orthogonal ways of choosing r and then summing
over these ways. However, even there it was
found better to compromise by accepting a small
number of large I/w, ' s than to try to go strictly
along the orthogonal choice route. ' Here- a more
cavalier attitude has been adopted, which is that
of making one category account for almost every-
thing. Restrictions are used so that the E,'s and

E,.'s are small enough to allow an acceptable num-
ber of nonzero I/nt, 's to be encountered in each
set of trial runs conducted under a different re-
striction. Obviously some acceptable (r, 5) are
missed in any given set of runs, which means that
the n(w, ) calculated within the Monte Carlo error
will result in a lower bound to the true n(so, ). That
restriction which leads to the largest value of n(w, )
will therefore yield a lower bound on Z(N, A).

Two types of restrictions are imposed, one in
the plane and the other on the solid angles. The
restriction in the plane consists of introducing a
core of radius r, greater than twice the radius of
the rods and requiring that no two r, 's are chosen
within a distance less than r, . For each value of
r, employed, the angular restrictions are deter-
mined after all the r,.'s have been picked. The
closest pair of rods are first identified. If one of
the pair is permitted to take on any direction 0„
it may become nearly impossible to find a direc-
tion Q2 for the other rod. Thus one of the two rods
must have its direction restricted to some finite
range of solid angles. Next, a third rod closest to
the palx" ls ldentlf led. A slmllar conslderatlon fox'

0, results in the restriction of the second of the
pair to some finite range of solid angles. But since
its distance to the third rod is larger than the dis-
tance between the original pair, the restriction

need not be as stringent. This procedure continues
until either all N rods are accounted for, or when
an ovex lap becomes unavoidable. The former
gives us a success, the latter a failure. It is to
the credit of this procedure that a reasonable suc-
cess rate, like 5 out of 100, can be collected to
give rise to sets of (r, 5) with U(r, 5) = 0.

The successes give us lower bounds on Z(N, A).
Among several hundred trials run with a typical
value of r, and a typical set of rules for restrict-
ing angular directions, the highest estimates on Z
range from say e~" to 8'". Since what we want 1s
the Helmholtz free energy E which goes as
- ATlnZ, such a range of Z represents an uncer-
tainty of just 1-2% in p. But, in calculating the ori-
entational order parameter, i.e., the mean value
of cos'8, no logarithm is taken. The cos'8 which
corresponds to the largest weight I/w, will domi-
nate the averaging process [see Eq. (6)], causing
the result to emerge from a single trial. This
statistical deficiency can be circumvented by as-
signing the same weight to the five or so top values
of I/w„ the rationale being that values of I/m,
close to its peak value represent the same type of
(r, 0) to within the coarse accuracy needed for de-
termining the order parameter.

After the above has been carried out at one cho-
sen value of r„anew r, is picked and the process
repeated. By varying x, over a wide range of rea-
sonable values, an optimum value will emerge to
give us a maximum among the lower bounds. That
we identify as Z(N, A).

This all works quite well as p increases from 0
to about 0.22, at which the order parameter

o =-(2(3 cos'8 —1))

reaches 0.97. Beyond 0.22, the rods are practi-
cally all aligned vertically. The solid angle of
4w/41 (4v/82 up and 4s/82 down) assigned to the
vertical direction by our coarse grid becomes
larger than the solid angle available to each rod,
which now finds itself in close proximity with many
others. Z(N, A) calculated in the fashion described
in this section becomes overestimated. It now

equals the hard-disk result plus a constant from
the angular integration. This gives us a clue as to
how to proceed to still higher densities in which
the rods can be assumed to be upright in a "liquid-
crystal" ordering.

III. LIQUID-CRYSTAL REGION

The restrictions of the preceding section are
illustrated in Fig. 1. The restriction in the plane
first results in no two xods being closer than r„
as is shown. Rods 1 and 2 are placed with angular
restrictions such as to guarantee that rod 3 could
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Switching to f=i/N and from summation to inte-
gration, we find

1

ln(Zo) =Nln(Q ) —aln(b) f'df
0

= Nln(Q ) —0.05N.

In other words Z could be too high by several per-
cent from this source alone. Next, there is a
compensating feature in that 8 could have been
made a function of i/N, which has the effect of
driving Z up. Finally, these errors are not ran-
dom. They are roughly independent of the density.

IV. RESULTS

The partition function is calculated in the l.ow-
density region directly by the Monte Carlo method
described in Sec. II, and in the liquid-crystal re-
gion by maximizing the right-hand side of Eq. (9)
as a function of x, . The angular correlation func-
tion, o of Eq. (7), is also calculated by similar
methods. The results of these calculations are
given in Table I. Figure 2 is a plot of the liquid-
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FIG. 2. A plot of F/Nk T —ln(47) a) (a being the hexag-
onal cross-sectional area of a rod in the plane) vs A/A',
the ratio of the total available area to the close-packed
area. The Maxwell construction is shown. Solid circles
are Monte Carlo data points; open circles, from the
spline fit of Table I; crosses, from minimizing the liq-
uid-crystal expression as given in either Eq. (14) or (9).

TABLE I. The error estimates on (F—F0)/NOT are
based on the differences between the top value found and
the first group of three or four values. The error esti-
mate in the order parameter a comes from treating the
top five 1/so~'s as equal and averaging among them. The
standard deviation for p =0.1878 is low because it was
run about 10 times as long as the others, that for p
=0.2178 because of the impending overestimate of the
angular volume. S(p) is determined by minimizing
E =x +s with x =g. [S(p;) —(E Fo)/Nk-T) /sS'; and
s =10 ' Q dt, where d& is the coefficient of the jth (. ~ )+
in Eq. (16j. ss is used rather than the Monte Carlo error
estimates to avoid excessive reliance on the weakest step
of the Monte Carlo procedure and along with the smooth-
ing term to allow for interpolation across the phase-
change region. E is 61.6 while x is 42.4.
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FIG. 3. A plot of (F-F~)/NkT vs p and also of PA'/NkT
vs p as found from Eq. (20) with the spline fit of Table I
given in Eq. (16). Solid circles are the Monte Carlo data
points; crosses, liquid-crystal results from Eq. (14);
open circles, spline fit to the data of Table I. The solid
line is PA'/NkT as found, while the dashed segments are
the authors' extrapolation to find the phase-change region.
Note that A' =¹ is the cross-sectional area of a close-
packed system of N rods.
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crystal free energy, F/NkT= -ln(Z)/N, obtained
from maximizing Eq. (9), along with the Monte
Carlo free energy at lower densities. Maxwell
construction leads to the identification of a phase-
change region extending from p =0.19+0.01 to
0.29+ 0.01 which is remarkably insensitive to
details.

In order to be a bit more rigorous it is conven-
ient to work with the ratio of Z(N, A) to

F —F, -ln(Z/Z, )
NkT N

in general, and that in the liquid-crystal region

f() ln 1 — 1 —4
NkT P' I/2r -1

(14)
where

f(p, ) =-(F -F.*)/NkT (15)

Z, (N, A)—:f d'r, d'r JdA, ~ ~ ~ dO

—(4+)NAN (13)

which conveniently removes ln p from + and avoids
the difficulties at small p. We find then that

represents hard-disk results from HR and g,*de-'
notes the free energy of the noninteracting system
without the angular part. A spline is then fitted to
the entire free-energy curve using the Monte Carlo
results for p &0.22 and the liquid-crystal results
for p & 0.275 with the error assignments given in
Table I. The best fit is given by

(F -F,)/NkT=S(p)

= 0.200+ 6.601p + 17.162p'+ 320.438p' —. 973.121(p- 0.10685)',

+ 946.700(p —0.21990)+ —281.829(p —0.33693)~, (16)

with where a is the cross-sectional area of a rod, so
that with A' = Na and p = Na/A,

(x)', =-

a', x& 0.
(17) PA' ~ & (F/N k T)

NkT Bp
(19)

-eF Na ' Nln T 8 (F/N k T)
sA A Na e(Na/A)

(18)

The values of the spline for the fitted points are
given in Table I and as open circles in Figs. 2 and
3. A single spline with smoothing is used to give
as smooth a fit as possible in order to avoid in any
way biasing the results in favor of a first-order
phase change which seems to be indicated. Less
smoothing sharpens the apparent change only a
little and does not greatly reduce the g', while
more smoothing reduces the apparent phase change
a little and increases the y'. The results thus
seem to be rather independent of the particular
spline used.

The surface pressure can now be found as

Taking into account the part from g„wehave

NkT= 'PA' 2 8

Bp
(20)

The free energy as a function of p along with the
pressure from Eq. (20) are shown in Fig. 3.

It may well have been anticipated that after all of
this the pressure would either give a van der Waals
type of loop or miss the phase change altogether.
In fact the pressure curve is never perfectly flat.
Very little imagination is required to see in Fig.
3 the desired shape. The pressure curve does in-
deed imply that for 0.20+ 0.01 &p &0.30+ 0.01 there
is a phase change with a constant pressure in the
coexistence region of PA' /NkT= 1.38+ 0.03.
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