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Parametric integral equation for radial distribution functions
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A.n integral equation is proposed whose solutions approximate the radial distribution functions of
classical fluids whose single-type particles interact with pairwise radial forces. The equation contains a
parameter which is adjustable to improve moderate- and high-density solutions. The equation is applied
to the hard-sphere model of a fluid, solutions are obtained for four densities, and the pressure equation
of state is expressed in terms of a 2 X 2 Pade approximant. A single value of the parameter yields
pressures which are in excellent agreement with "exact" values.

I. INTRODUCTION

This report is a continuation of a previous paper
dealing with the same subject. ' In the interval of
time that has elapsed, numerous Monte Carlo
(MC) and molecular dynamics (MD) computations
have been completed Wi.th the availability of
these numerous "exact" solutions for radial dis-
tribution functions, the time appears right to re-
examine the possibilities of parametric integral
equations. The basic ideas involved will be briefly
reviewed here and a more complete discussion
may be found in Ref. 1.

For systems of classical particles interacting
through pairwise radial forces, thermodynamic
equations of state may be obtained from a knowl-

edge of the radial distribution function g. Two
basic methods have been used to obtain g: (i) "ex-
act" methods, including MC and MD, and (ii) i«e-
gral equations, including the well-known Percus-
Yevick (PY) and convolution-hypernetted chain
(CHNC) equations. ' The integral equations pro-
vide dependable results at low densities, but at
intermediate and high densities large errors may
occur. The "exact" methods provide dependable
results at densities for which the integral equa-
tions yield large errors. The advantages of inte-
gral equations are shorter computer-time re-
quirements and the possibility for inverting the
problem, that is, determining the pair potential
energy given an experimental g.

The PY and CHNC equations are equivalent to
partial summations of terms from the density
expansion for ge8~. Both equations correctly sum
the diagrams (used to represent integrals) through
the first power in density but omit diagrams cor-
responding to higher-density coefficients. Al-
though the CHNC summation includes all of the
diagrams summed by PY plus an additional set,
the PY equation often provides better results than
CHNC, thus indicating that cancellation of omitted
diagrams is important. Parametric integral
equations also sum the diagrams correctly through

the first power in density and in addition contain
a parameter which appears in the higher-order
terms. This parameter is fixed by some well-
defined scheme in efforts to extend the range of
validity for integral equations.

In this paper we propose a parametric integral
equation, give the summation of terms through
the second power in density for ge~@, give the
solutions for g for four densities of hard spheres,
determine the pressure equation of state as a Pade
approximant, and compare the results with the
PY, CHNC, and exact values for pressure.

II. THE INTEGRAL EQUATION

There appear to be a large number of integral
equations which yield the correct first two terms
in the density expansion for ge @ and for which a
parameter appears in higher-order terms. In
an earlier paper' two such equations were con-
sidered and called (A) and (8). Here we introduce
a third such integral equation and call it Eq. (C).
The direct correlation function e is defined by

a(r) = (r) a J a(s)c(ls —
r ()dl,

where r and s represent position vectors,

6 =g-1
u=+/v,

and N is the number of particles in the volume P.
Equation (C) makes the approximation

c =g —1 —a '1n(age~~- a+1),

P =(kT) ',
where (It) is the pair potential energy, k is Boltz-
mann's constant, T is the absolute temperature,
and a is an adjustable parameter. For a =1, Eq.
(C) reduces to the CHNC equation and as a ap-
proaches 0 one obtains the PY equation. In the
calculations reported here, a is chosen to be a
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constant number, but more generally it could be
considered to be a function of r and no difficulties
arise in obtaining solutions to the integral equa-
tion. Figure 1 gives the density expansion for
gew~ through the n' term exactly, for PY, CHNC,
and for (C). The diagrams involve integrals over
Mayer f functions:

f(ij) = f(r,&) =exp[-pp(r, &)]- 1. (6)

A line between the circles i and j indicates the
presence of the function f(i j) in the integrand and
integration is over the coordinates of the dark
circles.

The solution of the equation involves an iterative
procedure and is essentially that of Broyles. ' A
digital computer is programmed as outlined in

Fig. 2. A function S is defined as

III. APPLICATION TO HARD SPHERES

We use the same notation and variables for the
hard-sphere model as before. ' The Mayer func-
tion is given by

f(r) =-1, r & d

f(r)=0, r&d

(12)

P*=PP/n= 1 — ' g(r)r'dr,2wnP "d(b r
3 0 dr (16)

where d is the diameter of the hard sphere. Taking
d as our unit of length we define

(14)

(15)

The pressure p is given by

S=G —c,
and its Fourier transform as

(7) which becomes for hard spheres

P+ =1+ —,'[2wn+g(x =1)]. (17) .

B(a) =(aw) * fff S(r)e'"'dr. (8)

In terms of S we obtain

g=e ~(a 'e' -a '+1)

c=e w~(a 'e'w-a '+1) —1 —S.
Taking the Fourier transform of both sides of Eq.
(1) and combining the result with Eq. (7), one
obtains

(2w)'nc'
1 —(2w)'nc

'

In the numerical solution outlined in Fig. 2, mixing
and extrapolation procedures are also sometimes
used. '

To determine the parameter g, it was our in-
tention to select a to give agreement in P* be-
tween "exact" results and the integral equation at
high density. Since the form of the equation en-
sures good results at low densities, the question
remained whether or not the results would be good
at densities between. The exact, PY, and CHNC
values of P* published by Lado' (L) were helpful
in determining the parameter a. Since the PY and
CHNC values bracketed the exact values, and since
a =0 for PY and g =1 for CHNC, it was felt that as
a starting point for determining a I would try

(18)

An examination of Lado's Table I suggested that
one take a=0.27. The results obtained with this
value of a agreed with the exact results within the

DENSITY EXPANSION

g exp(y/kT) = I + n ~ = + n
Guess S

Compute c

Eq. (10)

Compute c

See Eq. (8)

Exact
PY

CHNC

C

+ 0 ~ ~

a=I
a=O

a=l
a= parameter

b=l

b=o
b=o
b=o

+2n2~+ an +bn
2 2

Compare
Guessed S 8-
Computed S

Compute S

See Eq. (8)

When computed S equals guessed S

Compute g

Eq. (9)

Use computed S to determine new S
'I I

Compute S

Eq. (II)

FIG. 1. Density expamsion for the radial distribution
function through the n* term. The integral equation
approximations of PY, CHNC, and (C) are shown.

FIG. 2. Flow diagram for the numerical solution of
the integral equation (C).
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FIG. 3. Radial distribution function for a system of
hard spheres at density n*=0.15 as computed from in-
tegral equation {C).

FIG. 5. Radial distribution function for a system of
hard spheres at density n*=0.55 as computed from in-
tegral equation (C).

1 +A1n +A2 n
1+A,n*+A, n*' (19)

By writing four equations using the four values of
n~ listed above and the corresponding values of
P~, the values of the A's can be determined. The
result thus obtained gives for the integral Eg. (C)
pressure equation of state

accuracy of our numerical solutions and so no ad-
. ditional adjusting of the parameter was needed.

Computer solutions to the integral equation were
obtained for values of n* of 0.15, 0.35, 0.55, and

0.75. The results for g are given in Figs. 3-6.
Previous calculations' have shown that an excel-
lent interpolation formula for P* is given by

A comparison of results (using the values published

by Lado) is given in Table I. Figure 7 is a graph
of g as a function of x for a density of n* =0.80.
Compared, for values of x near 1, are the radial
distribution functions as reported by Lado' and as
obtained from Eq. (C). The agreement between the
three methods is seen to be quite good and the dif-
ferences are probably not much larger than un-

certainties in the numerical solutions. At lower
densities and larger values of x, the differences
in g can be expected to be even smaller. The dif-
ferences between the radial distribution functions
are too small to be shown to good advantage in

Figs. 3-6.

1 +0.4680n*+ 0.2890n*2
1 - 0.8%4~" +0.09883~") '

(20)

IV. CONCLUSIONS

A parametric integral equation has been shown

to produce excellent results for a single value of

I.O I.O

I

2.0 3.0 I.O

FIG. 4. Radial distribution function for a system of
hard spheres at density 1*=0.35 as computed from in-
tegral equation (C).

FIG. 6. Radial distribution function for a system of
hard spheres at density n*= 0.75 as computed from in-
tegral equation (C).
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TABLE I. Pressure equations of state for hard
spheres. Shownare values of P* as computed by the MC
method (Exact), Lado's integral equation (L), this inte-
gral equation (C), the Percus-Yevick integral equation

(PY), and the convolution-hypernetted chain integral
equation (CHNC) .

4.0 '-'

3.8

n* Exact (C) PY CHNC 3.6

0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8
0.9
1.0

1.240
1.554
1.968
2.52
3.27
4.29
5.71
7.73

10.66
15.0

1.240
1.553
1.966
2.51
3.25
4.24
5.61
7.51

10.24
14.2

1.240
1.554
1.968
2.52
3.26
4.27
5.68
7.68

10.6
15.2

1.239
1.550
1.954
2.48
3.17
4.09
5.32
7.00
9.33

12.6

1.241
1.566
2.01
2.64
3.53
4.81
6.69
9.49

13.7
20.5

3.2

1.02 I.04
FIG. 7. Radial distribution function for a system of

hard spheres at density n ~ =0.80 as computed by MC

(dotted line) (. . .), Lado's equation (dashed line) (- -),
and Eq. (C) (solid line) (—).

the parameter in the case of hard spheres. This
suggests that MC and MD techniques might well
be combined with parametric integral equations to
take advantage of the accuracy of the exact methods
and the reduced computer requirements of the
integral equation. That is, high-density exact
solutions can provide values of the parameters in

integral equations which can then be used to com-
plete the study of the system. The parameter a
can be chosen to be a function of y although in this
study it was felt that a single number for a was
adequate. Perhaps in future, studies it will be
advisable to make use of this additional flexibility
in a.

There are many possible parametric integral
equations similar to Eq. (C). There are also many

possible methods for determining the value, or
values, of the parameter. For example, Hiroike'
has pointed out that approximations introduced in

obtaining integral equations may produce incon-
sistencies so that the energy equation is not satis-
fied. Hence one might adjust the parameter to
satisfy the energy equation. Rowlinson' proposed
a parametric integral equation and obtained a
power series in density for the parameter by re-
quiring consistency in the pressure as computed
by the virial equation of the canonical ensemble
and by the compressibility equation of the grand
canonical ensemble. Carley and Lado' studied two
parametric integral equations and in one case chose
the parameter to give the correct fourth virial
coefficient and in the other case to improve the
third term in the density expansion for ge8~. Lado'
studied the hard-sphere system and obtained his
parameter according to the pressure-consistency
equation (as did Rowlinson); however, he obtained
his parameter through an iterative procedure in-
volving the numerical solutions of the integral

equations. This list is not exhaustive of the meth-
ods which have or might be used to determine the
parameter. Since there are several possible para-
metric integral equations and several possible
techniques of determining the parameters, there
are an enormous number of combinations which
could be studied.

It has not been the purpose of this paper to sug-
gest that this is necessarily the best possible equa-
tion. Past experience with integral equations has
shown that an approximation which is excellent
under one set of conditions is not necessarily good
under all conditions. An advantage of the method
of determining the parameter using pressures from
MC results is the great simplicity. An obvious
disadvantage is that exact results may not be
available and MC and MD calculations require large
computer facilities and time. The parameter, in
this case a, most generally is a function of density,
temperature, and separation distance. That is,
for a given temperature and density there exists
some a(x) which will give the exact radial distri-
bution function. In this study we found that a
constant value for a provided good results for a
system of hard spheres. However, in other cases,
such as for a Lennard- Jones potential, it may be
necessary to sacrifice the simplicity of a constant
value for a to obtain more accurate results. Final-
ly, it would appear to be useful to carry out many
additional studies of parametric integral equations
using various techniques to determine the param-
eters.
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