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The Hartree-Fock-Bogoliubov equations for a homogeneous boson system at finite temperature are

derived using linearized operator equations of motion. By a partial decoupling of two of the equations,

a temperature-dependent form of the Lippmann-Schwinger equation for a local t matrix emerges

naturally with a fully dressed energy denominator. In order to use a realistic potential the theory is

phenomenologically modified by (i) redefining the chemical potential to remove an unphysical energy

gap, and (ii) removing (possibly divergent) Hartree-Fock-like terms from the single-particle energy. The

resulting set of coupled nonlinear integral equations is solved self-consistently for the Morse-dipole-

dipole and the Frost-Musulin potentials. The excitation spectra obtained are in qualitative agreement

with the observed phonon-roton spectrum, but the temperature dependence is given incorrectly. The

calculations were made at a realistic density and the condensate fraction is about 60% at absolute zero.

I. INTRODUCTION

The energy spectrum of He II has been the sub-
ject of great interest for over three decades.
Landau' originally postulated a two-branch spec-
trum to fit thermodynamic data, on He II. Six years
later' he found that a single-branch spectrum with

a, phonon part at low momentum which smoothly
connected to a roton part at higher momentum gave
better agreement with the data. A decade later
Cohen and Feynman' predicted that the excitation
spectrum should be observable by inelastic neutron
scattering. During the next few years, intense
effort by several groups' resulted in the experi-
mental confirmation of Landau's single-branch
phonon-roton spectrum.

There have been two main theoretical approaches
to the calculation of the phonon-roton spectrum.
Bogoliubov' showed that the energy spectrum of a

- weakly interacting. boson system should be phonon-
like at small momentum by partially diagonalizing
the Hamiltonian. His spectrum involved the

Fourier transform of the potential, which is infinite
for most realistic potentials. Feynman, ' using
a trial wave function and the energy variational
principle, later showed that both the phonon and

roton parts of the spectrum could be obtained if the
experi'mental liquid-structure factor were used.
Although the phonon part of the spectrum was well
described, the roton minimum obtained by Feyn-
man was high by a factor of about 2. Using a more
sophisticated trial wave function which took into
account backflow, Feynman and Cohen' calculated
the roton minimum to within about 20/~ of the ex-
perimental value.

In an attempt to refine the calculation of Feyn-
man and Cohen, ' Burke, Major, and Chester'
used a more general va.riation function and im-

proved the roton energy only slightly. Unfortunate-

ly, they did not obtain good agreement with the

phonon spectrum. In fact, the low-momentum part
of the spectrum calculated from the variational
principle was even less than the observed phonon

spectrum for some values.
Ironically, attempts to improve the Bogoliubov

spectrum also met with difficulties. %hen the

correlations between particles of equal but op-
posite momentum were treated more carefully,
a gap was discovered' in the excitation spectrum
at zero momentum. This gap is unphysical, "but

by calculating high-order diagrams several au-
thors" have shown that this gap vanishes. To
apply the theory to a system with a hard-core
potential between the particles, Brueekner and
Sawada" replaced the ba, re potential in the Ham-
iltonian by a g matrix calculated from a Lippmann-
Schwinger (LS) equation before making the

Bogoliubov transformation. ' This procedure
gave an expression for the excitation spectrum
similar to the one obtained by Bogoliubov, ' except
that the Fourier transform of the potential was
replaced by the I; matrix. Since the g matrix for
realistic potentials is finite, the excitation spec-
trum is now also finite. Brueckner and Sawada"
assumed that essentially all the particles were
in the zero-momentum state, and obtained a pho-
non-roton spectrum in qualitative agreement with
Landau's. ' Unfortunately, when Parry and ter
Haar" took the depletion of the zero-momentum
state into account self-consistently, they showed
that in the Brueckner-Sawada" calculation there
were 2.7 times as many particles excited out of
the zero-momentum state as were in the system.
%hen they performed a self-consistent calculation
using a fixed condensate fraction of 0.50, the roton
dip vanished.
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Since these first calculations, several others
using realistic potentials have been attempted to
obta, in the phonon-roton spectrum from first prin-
ciples. Many other calculations have been made

using model potentials with some adjustable pa-
rameters. In a later section some of these theo-
ries are compared with the calculatioas given
here.

The need. for yet another microscopic calculation
of the excitation spectrum of He II perhaps requires
some justification. In the present theory, it is
shown that a g matrix emerges naturally from the
Bogoliubov canonical transformation w'hen cor-
relations between particles of equal and opposite
momentum are taken into account. " Thus the
potential does not have to be replaced in an ad hoc
way by the t matrix at the beginning. In addition
the theory given here, w'hich is a modified Har-
tree-Fock-Bogoliubov (HFB) theory" of homo-
geneous boson systems, can be extended to finite
tempex atures in a way similar to that used in
superconductivity. " The temperature dependence
of the boson spectrum has not previously been
calculated from a microscopic theory, presumably
because even the zero-temperature theory becomes
extremely complicated. In addition, several new

realistic interatomic potentials have recently be-
come available for He' by fitting data on the gas-
eous phase and on phase shifts obtained from
helium beam experiments. " Thus, for these rea-
sons it was felt that another calculation of the

energy spectrum of He II was in order.
The results obtained for the energy syectrum at

zero temperature are only in qualitative agree-
ment with the observed phonon-roton spectrum,
but there are no arbitrary parameters to adjust
in the theory. The phonon and roton features of
the spectrum are clearly visible, however. Un-

fortunately, the temperature dependence of the
spectrum is given incorrectly. The calculated
speed of sound decreases as the temperature is
increased, whereas the observed speed is es-
sentially constant. " The calculated roton mini-
mum increases with temperature, in contrast
to the decrease observed experimentally. "

One interesting aspect of the calculation here
is that the g matrix is local, and so in configura-
tion space it can be compared with the bare yoten-
tial. The t matrix is an effective interaction
which takes into account the short-range correla-
tion induced into the wave function by the strongly
repulsive potential. As might be expected, the ef-
fective potential is very much like the bare poten-
tial at large interatomic distances, but at short
range it is much less repulsive.

In Sec. II, the linearized equation of motion for
the annihilation operator of an interacting boson

system is obtained at finite temperatures. In

Sec. III the linearized equation is solved to obtain
the HFB theoxy for a homogeneous system at
finite temperature. Two of the resulting equations
are partially decoupled in Sec. IV without any ap-
proximation to give a local, temperature-depen-
dent t matrix with a fully dressed energy denomi-
nator. Since some unphysical features, like an

energy gap, occur in the HFB theory, it is phe-
nomenologically modified in Sec. V to give a set
of equations that can be solved for a realistic
potential. The solution of the set of coupled non-
linear integral equations is briefly discussed in
Sec. VI. The results are given in Sec. VII and

physically interpreted. In Sec. VIII the calculated
results are compared with other calculations.
Section IX gives a.n evaluation of the theory.

II. LINEARIZED EQUATION OF MOTION

The first use of linearized operator equations
of motion in the context of boson systems was
made by Bogoliubov. ' He approximated the Ham-
iltonian by replacing the operator g, by the-c
numbex' No~', and retained only the quadratic part.
The linearized operator equations of motion were
solved by a canonical transformation. The method
was again used in boson systems by Valatin and

Butler, "but they do not make the Bogoliubov ap-
proximation of replacing g, by a c number. In-
stead, they treated the system, including the con-
densate, as being composed of pairs, in analogy
with the theoxy of superconductivity. " Theix' meth-
od was extended to finite temperatures (T &0) by
Evans and Imry.

For inhomogeneous boson systems the linearized
operator equations of motion were first used by
Qross" in a semiclassical theory of boson wave
fields. A completely quantum-mechanical version
at zero temperature which took into account both
the single-particle condensate and the pairing
correlations was developed by Kobe." The finite-
temperature genera, lization wa, s only recently
given by Fetter, "but his treatment of the con-
densate is slightly different. The plane-wave solu-
tions for the inhomogeneous system give the equa-
tions for the homogeneous system at finite tem-
perature. Howevex, since the method has not
previously been applied directly to homogeneous
boson systems at finite temperature taking into
account both the single-particle condensate and
pairing correlations, it is given here to review
and to establish the notation.

The solution of the linearized equation of motion
gives the Hartree-Fock-Bogoliubov (HFB) theory
for a homogeneous boson system at finite tem-
perature. The HFB theory can also be obtained
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from Green's functions, ""the Gibbs-Bogoliubov
free-energy variational principle, ""Bogoliubov's
principle of compensation of dangerous diagrams
to lowest order, ""and the method of thermo-
dynamically equivalent Hamiltonians. 29 "

The Hamiltonian for an interacting many boson
system is"

H = g (e, —g)a~ a, +-,' g (12 I V I 34)a', a,'a,a, ,

(2.1)

where 1 stands for %,„2for k„etc. The kinetic
energy of the particles with mass m is e„=k'/2m,
and p, is the chemical potential. The matrix ele-
ments of the two-body potential (12 I VI34) are
symmetrized. The creation operators g~~ and the
annihilation operators g„satisfy the usual boson
commutation relations.

For the operator g~ in the Heisenberg picture,
the equation of motion is

id, = [a„ff]. (2.2)

If the Hamiltonian in Eq. (2.1) is substituted into
Eq. (2.2), the nonlinear operator equation

ia, = (e, —y, )a, .+ Q (kj I V I pq)at a~a, (2.3)

is obtained.
For a boson system there can be macroscopic

occupation of the zero-momentum state, which
must carefully be taken into account. A shift
canonical transformation"

k 00 ko& (2.4)

can be made to new "quasiparticle" operators 5„,
which are the same as the particle operators for
k 40, but describe excitati'ons about the conden-
sate amplitude p, for k=0." The condensate am-
plitude p, is a c number, and will be considered
as time independent for the homogeneous system.

When Eq. (2.4) is substituted into Eq. (2.3), the
nonlinear equation for the operator b~ is

ib, = (e„—p )b, —py, b„+(k0,
I V I 00)y',

+ p (kI I V Ipq)[b,' b,b, +y,b, ,b,.b, +2y, b„.b,'b,

(2 5)
This equation can be linearized by the standard
method" of replacing all possible pairs of opera-
tors by their average values in the appropriate
grand canonical ensemble. When the linearization
of Eq. (2.5) is performed, the result is

I

b, =(- +«OIVIOOQ;'+f. +g.)y.b,.+U„b,+,b', .

(2.6}

The dressed single-particle energy U„ is defined
as

U =e —p+2(kOI VIOk)g', +f,
where the Hartree-Fock term

f, =2 p (kpl Vlp»(b,'b, )

(2.7)

(2.8}

describes the direct plus exchange scattering
of a particle in the state k with one in the state
p back to the same states T.he term 2(k0 I VIOk)g',
describes the direct plus exchange scattering of
a particle in the state k with one in the condensate,
back to the same states. The pair potential ~, is
defined as

A~ =(k, -kl VIOO)y', +g~, (2.9)

w'here the first term describes the excitation of
a pair of particles from the condensate to the
states k and -R. The second term is defined as

g, = g &k-kIVI pp)(b, b-,), (2.10)

and describes the scattering of a pair of particles
with momentum p and -p and amplitude (b b ) to
the states k and -%.

HI. HARTREE-FOCK-BOGOLIUBOV THEORY

The linearized equation of motion of Sec. II
is solved in this section to obtain the HFB theo-
ry."" Different authors, however, have dif-
ferent results regarding the energy gap, the
chemical potential, and the density. The results
obtained here are identical to the ones obtained
by applying the Gibbs-Bogoliubov free-energy
principle and the compensation of the lowest-order
dangerous diagrams. "

The coefficient of the unit operator in Eq. (2.6)
can be equated to zero, which gives the equation

[-p, + (001 V I 00)y,'+f, +g,)y, = 0 . (3.1)

~u = Ma&~+ U~&-u. (3.2)

In order for the BQP's to be bosons, the BQP
creation and annihilation operators, y~ and y~,
respectively, must satisfy boson commutation re-
lations. The coefficient:s in Eq. (3.2) must then
satisfy

(3.3)

If the condensate amplitude $,40, this equation
determines the chemical potential.

A canonical transformation' on the operator
b, to Bogo1iubov quasiparticles (BQP's) can now be
made, which gives
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k k k k k' k
(3.5}

k k k k k (3.6)

are obtained. In order for these homogeneous
equations to have a nontrivial solution, the deter-
minant of the coefficients must vanish. The BQP
energy,

in addition to being even functions of R. The BQP
operator y, (r} in the Heisenberg picture is as-
sumed to oscillate with the BQP energy E„

(3.4)

where T. is the time.
When Eq. (3.2} is substituted into Eq. (2.6), Eq.

(3.4) fs used, and the coefficients of the creation
and annihilation operators separately equated to
zero, the two equations

This expression is used in Eq. (3.7) to obtain the
BQP energy. When the resulting BQP energy is
evaluated at 4=0, a gap

8,=2y, [-g,(00 I
Vloo&]~', (3.15)

occurs in the excitation spectrum. '
In order to obtain the energy syectrum in the

HFB theory, it is necessary to obtain Lk and Uk

self-consistently, subject to the constraint in Eq.
(3.7). When Eqs. (2.10), (3.12), and (3.9) are sub-
stituted into Eq. (2.9), an integral equation,

b,, =(b-bl vloo&y,'

—g &b-bI Vl-pp&(b, ,/2E, }cot (-,'pz, ),

(3.16)

is obtained. When Eqs. (2.8), (3.10), (3.3), and
(3.8) are substituted into Eq. (2.7), the equation

(U2 b 2) s'2 (3.7) U, = e, —v +2&bo
I v lob&yo

is thus obtained. Equations (3.5} and (3.6) can now

be solved to give + Q(kp I V Ipb&[(U /E ) coth(-,'pE, ) —1]

k/ (3.8) (3.17)

(b~t b ~)
= v', + (u', + U~)s~, (3.10}

when Eq. (3.2) is used. The average BQP occupa-
tion number is given by

~N= [ex (PpE~ —}1] ', (3.11}

(3.9)

when Eq. (3.3) is used.
The average particle occupation number, cal-

culated in terms of the grand canonical ensemble
for free BQP's, is

%&=y'. + Q&b,'b,&. (3.18)

When Eqs. (3.10), (3.3}, (3.11), and (3.8) are sub-
stituted into Eq. (3.18}the result is

is obtained. These two equations are coupled
through Eq. (3.7) in a highly nonlinear way. Before
they can be solved self-consistently, the number
of particles in the zero-momentum state $20 must
be determined.

The average of the number operator in the free
BQP grand canonical ensemble is

where P= (ksT} ', bs is Boltzmann's constant,
and T is the absolute temperature. The pair am-
plitude is

N= Q', + —,
' p f(U /E ) coth(-,'pE }—1], (3.19)

(b~b ~&
= u~vq(1+M~}, (S.12)

when Eq. (3.2) is substituted into the average de-
fined in terms of the grand canonical ensemble for
free BQP's.

The chemical potential p. can be determined
from Eq. (3.1) if the condensate amplitude is non-
zero, which gives

I = (00 I vloo)00+f0+8'0 ~ (3.13)

When this equation is used in Eq. (2.7), along
with Eq. (2.9), the single-particle energy is

Ua = ea + (fa fo) (ga +8'0}+ +a

+ [2&bo I v lob&- &b -b I vl oo& —&oo I vl 00&l@0.

when (N& is equated to the actual number of parti-
cles N. Dividing Eq. (3.19}by the volume of the
system 0, we obtain an equation for the density

p =N/0 in terms of the condensate density or the
density in the zero-momentum state p, = p', /g.

For a local potential between the particles, the
matrix element of the potential is

(lcf IVlpq&=(20) '[V, , +V, ]b(R+f, p+q},
(3.20}

where Q is the volume. The Kronecker delta
5(k+7, p+q) is unity if momentum is conserved,
and is zero otherwise. The Fourier transform of
the local two-body potential V(r} is

(3.14) V, = d'y 8'q ' V x), (3.21)
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which depends only on the magnitude of q. All the
equations of this section are simplified by using
the local potential and taking the infinite-volume
limit.

IV. THE REACTION OPERATOR

This t matrix in momentum space t, is shown
to be a local function t(r) in configuration space. "
The function t(r) plays the role of an effective in-
teraction. In many theories a t matrix is inserted
in an gd hog manner at the start. "

An operator t is defined such that it has matrix
elements given by

A reaction operator or t matrix naturally
emerges in this theory, as a result of a partial
decoupling of Eq. (3.16) for th and Eq. (3.19) for

&k —k ( t
~
00) =—n, E/(t) o .

Then Eq. (3.16) divided by (t),
' becomes

(4.1)

&k-k(t(00&=&k-k)V(00&+ p&" "~ ~ Pp)+ P~'~ )cot ((t)E ) (4.2)

Equation (4.2) is a Lippmann-Schwinger (LS) equa-
tion for the t matrix or reaction operator. The
t matrix in Eq. (4.2) describes the excitation of
a pair of particles from the condensate to the
states k and -R. The energy denominator is fully
dressed, since it is the BQP energy E~ in Eq.
(3.7) which appears, rather than e or U . A novel
feature of Eq. (4.2) is that the t matrix is tem-
perature dependent through the factor coth( —,'PE~),
which goes to unity as the temperature T= (ke)6)
goes to zero.

If it is assumed that the potential and the reac-
tion operator are both local, the form of Eq. (3.20)
may be used for both. Equation (4.2) reduces to

t=V, —(2 )
' ,f d'2 V, (t /2E }cath(—,'EE ),

(4.3)

in the infinite-volume limit.
Since a realistic potential V(r) has a strongly

repulsive core, it is easier to solve Eq. (4.3) by
transforming to configuration space. Since the
integral in Eq. (4.3) is of the convolution form, we
obtain

while the terms (f, -f,) —(g, +g, ) in Eq. (3.14)
could be overwhelmingly large compared to the
bare kinetic energy e„and the pair potential b,
Thus to obtain a theory applicable to a realistic
potential it is necessary to make some modifica-
tions.

V. MODIFICATION OF THE THEORY FOR A

REALISTIC POTENTIAL

where the single-particle energy T„ is

(5.1)

Some phenomenological modifications are made
in this section to make the theory applicable to
a system of He' atoms. . These modifications
should occur naturally if higher-order corrections
are calculated, "but this is very difficult to show.

There is no gap in the observed excitation spec-
trum of He II at zero momentum. " The gap in Eq.
(3.15) can be removed phenomenologically by sub-
tracting 2go from the chemical potential in Eq.
(3.13). Then the energy UE in Eq. (3.14) can be
written as

where the kernel is

(4.4) T, = e, +(f, f,) —(g, -g, ) . -
The BQP energy in Eq. (3.7) then becomes

EE = IT.(TE+2p.tE)1,
"'

(5.2)

(5.3)

ff(r, r') = (r'/vr) dp E, ' sin(t)r)

x sin(t)r') coth( —,'PE ) .

The Fourier transform of t(r),

(4.5)

(4.6)

is needed to obtain the energy spectrum from Eqs.
(3.20), (4.1), and (3.7). However, the energy
spectrum in Eq. (3.7) is not valid for a realistic
potential with a strongly repulsive core. The gap
in Eq; (3.15) would be infinite for some potentials, E, = Ie„(e„2p t+, )]~', (5.4)

when Eqs. (5.1), (4.1), and (3.20) are used. The
condensa, te density is p, = (t)',/Q.

For a realistic potential the terms (f, -fo)
—(g -go) that modify the single-particle energy
in Eq. (5.2) can be overwhelmingly large. For the
sake of simplicity they are dropped here, but a
more careful treatment of the problem would
result in their being dressed by higher-order
diagrams. " One possibility is that the potential
in these terms is replaced by a t matrix. " The
BQP energy spectrum in Eq. (5.3) then becomes
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so it is necessary to calculate p, and t„self-con-
sistently. Equation (5.4) is the same form as ob-
tained by Bogoliubov' except that pV„has been re-
placed by p, t, . Brueckner and Sawada" obtained
a similar form, but with p instead of po.

The condensate density ean be calculated from
Eq. (3.19). From Eq. (5.1) the function U, in the
approximation we are using here is

~n = ~~ +po~a (5.5)

when Eqs. (4.1) and (3.20) are used. If Eq. (3.19)
is divided by the volume 0, the condensate density

& coth(-,'PE, ) —1} (5.6)

is obtained in the infinite-volume limit. This
equation and Eq. (4.3) were solved self-consistent-
ly for p, and t, for two different realistic potentials
to obtain the energy spectrum E in Eq. (5.4). The
method of solution of these coupled equations is
discussed in Sec. VI.

VI. CALCULATIONS

The system of equations comprising Eqs. (4.4)-
(4.6), (5.4), and (5.6) were solved self-consistently

at various temperatures on an IBM 360/50 com-
puter for two different potentials. The interatomic
helium potentials used are the Morse-dipole-di-
pole-2 (MDD2) potential and the Frost-Musulin
(FM) potential given by Bruch and McGee. "

A detailed discussion of the numerical methods
and the program used is beyond the scope of this
paper. " However, the general method used is
outlined below. For a given temperature, an en-
ergy was assumed in Eq. (4.5), and the kernel
calculated by means of a 32-point Gauss quadra-
ture from 0 to 6 A ' and also from 6 to 50 A '.

Equation (4.4) for the reaction operator &(r) was
solved by the Fredholm method. The integral
equation was converted into a set of 50 algebraic
equations, which were solved by the Gauss-Jordan
elimination method. " The integral in Eq. (4.4)
was truncated at 10 A, and equations were obtained
at every 0.2-A interval of z.

The Fourier transform of the reaction operator
t(x), the t matrix t~, was calculated from Eq. (4.6)
in two steps. The integration was performed using
32-point Gauss quadratures from 0 to 6 A, and also
from 6 to 50 A.

The next step in the procedure was to calculate
the condensate density p, using Eq. (5.6) into which
Eq. (5.4) for E was substituted. The resulting
equation then becomes

p, =p —]2 ) J dip (te, +p i l(e', +2e~ t I
~' oth]] ,pet]e]+2ep t l~-''] —1].

0
(6.1)

Since p, appears on the right-hand side under the
integral, it was necessary to solve Eq. (6.1) by
an iterative m'ethod. For a given system density

p, an initial p, was assumed and the equation
iterated. Convergence to a solution to within less
than one part in 10' was obtained after fewer than
ten iterations. The integral was performed using
32-point Gauss quadratures from 0 to 40 A ', since
the contribution beyond 40 A ' was negligible. In-
creasing the number of steps in the interval did
not affect the value of the integral to the accuracy
of the calculation. The system density p chosen
was 0.0219 atoms A ', corresponding to the ex-
perimental value extrapolated to zero pressure
and temperature.

Kith the value of the condensate density p, deter-
mined, the energy spectrum E in Eq. (5.4) was
calculated. This energy spectrum was used as the
input in Eq. (4.5) to calculate the kernel values,
and the whole process was repeated until self-
consisteney was attained. Up to ten iterations
were required to give convergence to all values
of the energy E, to less than one part in 10'.

VII. RESULTS

The results of the solution of the set of coupled
nonlinear integral equations discussed in Sec. VI
are given in this section and discussed.

The local reaction operator t(r), which is an ef-
fective interaction, calculated from the MDD2
potential at the temperatures 0.00, 2.00, and
3.14 K is shown in Fig. 1. The corresponding
curves for the FM potential are shown in Fig. 2.
The dotted curve shows the original potential, so
the effect of the short-range correlations, induced
in the wave function by the strong short-range re-
pulsion, is to weaken significantly the repulsion.
The form of t(r) for large r is a curve of the gen-
eral shape of V(r), since the integral in Eq. (4.4)
decreases as y '. The structure in the curve
for r &2 A is essentially due to the phonon-roton
behavior of the energy spectrum E in Eq. (5.4)
which occurs in Eq. (4.5). In particular the small
hump at about 1.5 A is correlated with the roton
dip in E . As the temperature is increased, the
term cath(-,'PE ) in Eq. (4.5) becomes larger,
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FIG. 1. Reaction operator t(r) as a function of the
interatomic distance calculated from the Morse-dipole-
dipole-2 (MDD2) potential (dotted curve) of Ref. 17 at
temperatures of 0.00 K (solid curve), 2.00 K (dashed
curve), and 3.14 K (dot-dashed curve).

which makes t(r) in Eq. (4.4) smaller. For higher
temperatures the volume integral of t(r) decreases.
The values of t(r) for r &2 A are generally larger
for the FM potential than for the MDD2 potential,
since the former is more repulsive than the latter.
The MDD2 potential is finite at the origin, where-
as the FM potential is infinite.

That the effective interaction, the reaction
operator t(r), is less repulsive than the potential
is to be expected. The product of the effective
potential t(r) and the wave function for a nonin-
teracting pair of particles is equal to the bare

60

FIG. 3. t matrix tI, as a function of momentum k
calculated from the MDD2 potential for the temperatures
0.00 K (solid curve), 2.00 K (dashed curve), and 3.14 K
(dot-dashed curve) .

potential multiplied by the correlated pair wave
function. The correlated pair wave function goes
to zero as the bare potential becomes infinite, and
therefore the product is finite. Since the unper-
turbed pair wave function is finite, the effective
interaction, or reaction operator, is also finite
even at small interatomic distances. "

The t matrix I„which is the Fourier transform
of t(r), is shown in Fig. 2 for the MDD2 potential
for the temperatures 0.00, 2.00, and 3.14 K. The
corresponding curves for the FM potential are
shown in Fig. 4. As the temperature increases
the volume integral of t(r) decreases. However,
the volume integral of t(r) is the t matrix at zero
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K (dot-dashed curve).
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FIG. 4. t matrix tI, as a function of the momentum k
calculated from the FM potential for the temperatures
0.00 K (solid curve), 2.00 K (dashed curve), and 3.14 K
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momentum t, . This value must be greater than
zero in order for the excitation spectrum in Eq.
(5.4) to be real. At sufficiently high temperatures
tp becomes negative and the energy spectrum in

Eq. (5.4) becomes imaginary. From both Figs.
3 and 4 the value of t, at 3.14 K is nearly zero,
and for a temperature of 3.15 K the value of t,
would become negative, which indicates a break-
down in the theory.

The ratio of the condensate density to the system
density po/p calculated as a function of the tem-
perature is shown in Fig. 5. For the temperature
T, =3.14 K, Eq. (5.6) has two solutions. One solu-
tion corresponds to the ideal Bose-gas transition
temperature with condensate density p, =0, and

energy spectrum E~ = e~ = k'/2m, at a system den-
sity of p =0.0219 atom A '. Another solution ex-
ists, however, for p, ~0 and E„~e„, so there is a
finite discontinuity in the p, /p curve at T,. For
temperatures above 3.14 K there is no solution for
po &0. Thus this theory of interacting bosons re-
duces to the ideal Bose gas at temperatures above
3.14 K. In other words, the bare BQP become
bare particles for p, =0 at the temperature 3.14 K
and above. " When p, =0 our derivation of the LS
equation in Eq. (4.2) is invalid, because we can-
not divide by zero in Eq. (4.1).

The fraction of the particles in the zero-mo-
mentum state at zero temperature calculated here
is 59.5/p for the MDD2 potential and 56.8/0 for the
FM potential. The zero-momentum density slowly
decreases with increase in temperature. Con-
sequently as the temperature increases, the en-
ergy spectrum in Eq. (5.4) has a decreasing speed
of sound and a less-pronounced roton minimum.

However, at 3.14 K there is a discontinuity in

po, which means that the energy spectrum abruptly
changes from one with a phonon part for pp &0 to
the energy spectrum for a free particle for pp 0.

Using the theory of Gersch, Rodriguez, and
Smith" on the high-energy scattering of neutrons

by He II, Mook, Scherm, and Wilkinson ' found
the condensate fraction to be 2.4 + 1% at 1.2 K.
This value is smaller than the 8.8+1.3)D found

by Harling" at 1.27 K, or the value of 6/q at 1.27
K found by Puff and Tenn. " Our calculated value
thus is much larger than the experimental, but

on the other hand it is positive, in contrast to
some previous calculations. " "

The energy spectra. E, calculated from Eq. (5.4)
for the temperatures 0.00, 2.00, and 3.14 K are
shown in Fig. 6 for the MDD2 potential. The cor-
responding spectra for the FM potential are shown

in Fig. V. The open circles are the experimental
data of Cowley and Woods" at 1.12 K and the dotted
curve is the free-particle energy e, = k'/2m. The
fit to the experimental points is only qualitative,
but it must be emphasized that there are no ad-
justable parameters in this theory which is com-
pletely self-consistent for a realistic potential
and density. The spectrum calculated from the
MDD2 potential at zero temperature is a somewhat
better fit to the data than the spectrum calculated
from the FM potential at zero temperature.

The slope of the phonon part of the spectrum
gives the speed of sound in the liquid. Both poten-
tials give a speed of sound that is too small.
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FIG. 5. Condensate fraction pp/p as a function of the
temperature ratio T/T~ calculated from the MDD2 and
FM potential. The transition temperature of the ideal
Bose gas is T~=3.14 K at the density p =0.0219 atoms A
The experimental condensate ratio is 0.024+0.01 at 1.2
K (Ref. 45).

FIG. 6. Excitation spectra E~ as a function of momen-
tum k calculated from the MDD2 potential for the tem-
peratures 0.00 K (solid curve), 2.00 K (dashed curve),
and 3.14 K (dot-dashed curve). The free-particle spec-
trum is given by the dotted curve. The open circles are
the experimental data of Cowley and Woods (Ref. 48) at
1.12 K.
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%'orse yet, the experimental speed of sound is
approximately constant from zero temperature
to temperatures above the A, transition. " In our
calculation the speed of sound decreases with an
increase in temperature, contrary to experiment.

In both Figs. 6 and 7 the roton minima are high-
er, shallower, and occur at smaller momentum
than the experimental roton minimum. The ex-
perimental roton minimum decreases with an
increase in temperature. "while the calculated
roton minimum in Fig. 6 increases and becomes
shallower with an increase in temperature. How-
ever, in Fig. 7 there is a small decrease in the
roton energy, but the dip becomes shallower at
higher temperatures. The conclusion is that,
while at low temperatures the modified HFB theory
used here may be qualitatively correct, it gives
generally the wrong temperature dependence for
the speed of sound and the roton minimum. How-
ever, the modified HFB theory cannot be expected
to be valid at higher temperatures, since the
BQP's become more like free particles.

Since the excitation spectrum F., is only in quali-
tative agreement with the experimental spectrum,
a calculation of the heat capacity would give very
poor results indeed. Especially at temperatures
somewhat less that T, the heat capacity would be
poor. At lower temperatures where the phonons
would dominate, the characteristic T' behavior
is obtained. ' '

VIII. COMPARISON WITH OTHER WORK

While the results of Sec. VII are only in qualita-
tive agreement with experiment, they compare
very favorably with previous self-consistent mic-
roscopic calculations using realistic potentials.
The emphasis in this section is on a comparison
with theories that use realistic potentials. Many
other calculations using model potentials have
been made. However, since they have adjustable
parameters, their agreement with the excitation
spectrum may be fortuitous. In any case, they
would not be expected to fit the data on gaseous
helium.

Brown and Coopersmith" using a Slater-Kirk-
wood potential and an Yntema-Schneider potential
obtain excitation spectra that, while having pho-
non-roton form, are too large by an order of
magnitude. For the Slater -Kirkwood potential
their depletion is 10@, while for the Yntema-
Schneider potential their depletion is 7fp. Our
value of about 40/~ is closer to the experimental
value" of 97.6/0 than theirs. Their approach is
to use the HFB theory as obtained by Wentzel"
and Luban, "and to replace the bare potential
everywhere by a A matrix, which is a t matrix
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FIG. 7. Excitation spectra EI, as a function of the mo-
mentum k calculated fromm the FM potential for. the tem-
peratures 0.00 K (solid curve), 2.00 K (dashed curve),
and 3.14 K (dot-dashed curve). The free-particle spec-
trum is given by the dotted curve. The open circles are
the experimental data of Cowley and Woods (Ref. 48) at
1.12 K.

involving bare energy denominators. Since they
also do this in Eq. (3.16) from which we obtained
the LS equation in Eq. (4.2) for the t matrix, their
procedure involves "teeing the tee. " Presumably
this procedure involves over-counting of diagrams
and may explain their large energy. Their cal-
culation is done only at zero temperature, although
it could have been done at finite temperature as
well.

In another recent calculation of the excitation
spectrum, lj/stgaard" uses an extension of the
Brueckner and Sawada theory. " His calculation
also involves replacing the potential by the t
matrix calculated from a LS equation using the
reference-spectrum method, ' which removes the
energy denominator in the LS equation from the
chain of self-consistency. The Hamiltonian is
then partially diagonalized by using the Bogoliubov
transformation. His spectrum is too high by about
a factor of 2, while his depletion is 39-44"$. The
calculation is also done only at zero temperature.

Qstgaard" was the first to plot the reaction
operator in configuration space. Since his & matrix
is nonlocal, it is a function of the relative coordi-
nates between the atoms as well as the momentum.
Even though he used a different method than ours,
he obtained curves similar to our Figs. 1 and 2
for the reaction operator. " In his calculation of
the reaction operator, he had to divide the poten-
tial acting on the perturbed pair wave function by
the unperturbed wave function. Since the unper-
turbed wave function has nodes, the reaction op-
erator is infinite at some points, but these were
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numerically smoothed. His reaction operator
lacks structure for y &2 A, since he used a ref-
erence spectrum" in the energy denominator of
the LS equation.

An earlier calculation by Byckling" attempted
to extend the Brueckner and Sawada" theory by

using an anomalous self-energy introduced by
Beliaev. " However, his calculation for the zero-
momentum density for hard spheres and the Len-
nard-Jones potential is not done self-consistently.
The input depletion value for the Lennard-Jones
potential was 24% and the output depletion was
132/q, which is not a, physically meaningful result.
Therefore the qualitative agreement he obtained
for the excitation spectrum is probably fortuitous.

Some model calculations have been made for
the condensate density. Luban and Grobman, "
using the temperature-dependent Bogoliubov theory
with a constant interaction, obtain a transition
temperature T„which is higher than the ideal Bose
gas and gives a heat capacity divergent at the
transition temperature with a critical exponent of

Their condensate density has an infinite slope
it a finite value, so there is a finite discontinuity
in p~.

On the other hand, Reatto and Straley, "using
a spherically symmetric 5-function shell poten-
tial, obtained a curve for p, similar to Luban and

Grobman. " In addition they found that p, de-
creased smoothly from T„with decreasing tem-
perature below T„until it became zero at the
transition temperature T, for an ideal gas. Thus
their condensate density p, is double valued above

T,. Which value of p, should have been chosen
could have been determined by calculating the free
energy. Grobman and Luban" imply that the high-
er value is the physical value. We have a tem-
perature dependent t matrix t, in Figs. 3 and 4,
for' which the spectrum becomes imaginary at the
same temperature at which pp 0 is a solution.
Therefore, we are not faced with double-valued
functions, but have a discontinuous change in pp

and E, at the ideal-Bose-gas transition tempera-
ture T,.

A number of authors have used model potentials
for systems of interacting bosons. Goble and
Trainor" have made an extensive study of the
Brueckner and Sawada" hard-core model as modi-
fied, by Parry and ter Haar. " They find a qualita-
tive agreement with experiment as well as a mean-
ingful depletion. , On the other hand, their study
of the hard-core pseudopotential theory of Liu and
Wong" gave somewhat different results, but were
qualitatively the same. Since both theories pur-
port to describe the hard-sphere boson system,
the discrepancy needs to be clarified.

Another calculation based on the Brueckner and

Sawada" theory has been made by Khanna and

Phukan. " By using an effective mass and an at=
tractive well, in addition to the hard core, they
obtain a plectrum which is generally lower than

the experimental one, but is in qualitative agree-
ment with it. Their density is realistic, but con-
trary to Parry and ter Haar, " they obtain a negli-
gible depletion. Their depletion is not obtained
self-consistently, but estimated from a formula
derived in a previous paper. " Thus it appears
that even their qualitative agreement is fortuitous.

Another approach that has become popular is
the density and velocity operator theory of Suna-

kawa, Yamasaki, and Kebukawa. " The energy
spectrum they obtain is the same as the Bogoliu-
bov spectrum with pV, instead of p, V„. By using
a soft core followed by an attractive square well,
they were able to fit the observed phonon-roton
spectrum quite well. The question of condensate
fraction does not enter this theory. In a later
paper" the authors used a Morse potential trun-
cated at about 36 K to obtain even better agreement
with the experimental spectrum. Their truncation
value is roughly the average of the repulsive part
for our self-consistent reaction operator in Figs.
1 and 2. In this theory based on density and veloc-
ity operators, there is a question of the existence
of some of the operators" and of the convergence
of the expansion of the inverse density operator.

IX. CONCLUSION

An original feature of this work is that a t
matrix emerges in a natural way from the Bogoliu-
bov canonical transformation when pairing correla-
tions are taken into account. The t matrix obtained
here is of a generalized form since a completely
dressed energy denominator occurs, apd the t
matrix is explicitly temperature dependent. The
calculations given here are the first to obtain the
temperature dependence self -consistently from
a microscopic theory using a realistic potential. "

The primary conclusion of this work is that,
while qualitative agreement with the experimental
spectrum is obtained by using the modified HFB
theory with a realistic potential and density, the
temperature- dependence of the spectrum predicted
by the modified HFB theory is incorrect. This be-
havior is in marked contrast with superconduc-
tivity, "where a free-electron model is valid above
the transition temperature. There is always the
possibility that without the phenomenological modi-
fications, the summation of BQP self-energy dia-
grams in higher order, "along with the finite-
temperature extension of Bogoliubov's principle
of dangerous diagrams, ' the theory could be
brought into agreement with experiment. The
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dressing would be considerable, however, since
the unperturbed Hamiltonian is not quantitatively
correct. The question of the validity of the per-
turbation expansion is open, since there is no
small expansion parameter.

On the other hand, compared with other micro-
scopic calculations of the excitation spectrum of
HeII discussed in Sec. VIII, the agreement with
experiment is not bad. Those theories involve
the ad hoc insertion of the I, matrix, or a use of
a model potential. The temperature dependence
of the excitation spectrum is not calculated, and
even at zero temperature their agreement with
experiment is at best only qualitative.
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