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Variational calculations in Hilbert space and theorems from the theory of moments are
employed in the construction of Stieltjes-integral approximations to the electric-dipole ab-
sorption and dispersion profiles in atomic helium. A spectrum of discrete transition fre-
quencies and oscillator strengths obtained from variationally determined pseudostates fur-
nishes accurate approximations to the necessary dipole spectral sums. Solution of the ap-
propriate moment equations, or transformation to a basis set of principal pseudostates, pro-
vides the principal frequencies and strengths necessary for Stieltjes imaging the absorption
profile, and for the evaluation of the associated dispersion profile. Bapid convergence is
obtained to values in excellent agreement with the available experimental absorption cross
section, refractive index, and Verdet coefficient, and with semiempirical estimates of the
closely related dynamic dipole shielding factor and Bayleigh-scattering cross section. More-
over, comparison of the discrete pseudospectrum of frequencies and strengths with its
Stieltjes average indicates the presence of approximations to autoionizing states and inelastic
thresholds in the variationally determined photoabsorption profile. These results suggest
that the Stieltjes technique for determining photoabsorption and dispersion profiles is a use-
ful complement to more conventional methods which require the explicit construction of dis-
crete and continuum eigenfunctions.

I. INTRODUCTION

Schrodinger dynamics provides a formal basis
for investigating the resonant absorption' and non-

resonant dispersion' of electromagnetic radiation
in matter. The expressions obtained in the semi-
classical approximation for absorption and disper-
sion cross sections, ' however, generally require
construction of the appropriate complete set of
discrete and continuum target eigenfunctions. 4

Consequently, attention has been devoted to the
formulation of alternative techniques which are
more appropriate for computational applications. '
A recently described Stieltjes-imaging technique
avoids explicit construction of discrete and contin-
uum eigenfunctions, and can provide accurate ap-
proximations to both photoabsorption and disper-
sion profiles. '

In the present paper, the Stieltjes technique is
employed in a detailed ab initio calculation of the
photoabsorption, and dispersion profiles in atomic
helium. Standard Ritz variational calculations and

large basis sets are used to construct an accurate
'S, ground-state eigenfunction and a 'P', spectrum
of square-integrable pseudostates. The latter pro-
vide discrete transition frequencies and oscillator
strengths and associated spectral moments, ' from
which the correct oscillator-strength distribution
is derived employing the Stieltjes-imaging tech-
nique. The necessary principal transition

frequenc-

iess and oscillator strengths are obtained from

solutions of the appropriate moment equations, or,
alternatively, from a transformation of the origi-
nal pseudospectrum to a basis set of principal
pseudostates. It is found that the Stieltjes proced-
ure is rapidly convergent in the case of atomic
helium, and that relatively small numbers of spec-
tral moments (-10) or principal pseudostates (-5)
give highly accurate approximations to the photo-
absorption cross section and refractive index, and

to the closely related dynamic dipole shielding fac-
tor, Verdet coefficient, and Rayleigh-scattering
cross section. Moreover, comparison of the var-
iationally calculated oscillator-strength distribu-
tion and its associated Stieltjes average suggests
the presence of autoionizing line shapes and in-
elastic thresholds at the appropriate frequencies. '

The photoabsorption and dispersion profiles are
defined in Sec. II, variational calculations de-
scribed in Sec. III, Stieltjes imaging discussed in
Sec. IV, and the numerical results presented in

Sec. V. Some concluding remarks are made in Sec.
VI.

II. PHOTOABSORPTION AND DISPERSION

PROFILES

The photoabsorption index and associated re-
fractive index of a dilute atomic gas can be writ-
ten in the forms""

k(&u) = (4mNJc)(oImo. ((u),

10
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n ((u) —1 = 2((No Re n ((d), (1b)

respectively, where ~ is the applied frequency, c
the speed of light in vacuo, No the number of gas-
eous atoms per unit volume, and

are obtained from the functionals"

~[4',"]=& O',"IH"' E-'"~ ~le", &

+&4(s)l) 14o&+&4ol( IA(,')&, (9)

n(z) = df (e)/(e' -z') (2)

is the complex-valued dynamic dipole polarizabil-
ity." In Eq. (2),

where H&'~, E&'~, and po are the atomic Hamiltonian
and ground-state energy and eigenfunction, respec-
tively, and p. is the dipole-moment operator in the
polarization direction. Convenient trial functions
are given by the linear combinations"

df(e)=(I f; (E s—s)+s(E)lds
i=1

(3)
N

y(1) (10)

is the oscillator strength for transition into the
frequency interval e to e +de, with f, and g(e) the
discrete and continuum oscillator strengths and
density, ' respectively, the e, are discrete transi-
tion frequencies, where c„=e, is the first thresh-
old for photoionization, and the Dirac 5 functions
have their customary meaning. The nondecreas-
ing cumulative oscillator-strength distribution

f(e ) = df(e')
(4)

has an infinite number of discontinuous points of
increase (f;}at the e,. values, is generally smooth
in the interval e, &~ &, and has structure in the
neighborhood of autoionizing states and inelastic
thresholds. '

The polarizability of Eq. (2) also determines the
closely related dynamic dipole shielding factor"

y((d) =N+ (d2 Ren((u),

the Rayleigh-scattering cross section'4

o((d) = (24m/9)((d/c)4Ren((d)2,

and the Verdet coefficient"

V((d) = (1/2c')(ddn((d)/d(d,

(6)

where N is the number of atomic electrons. In ad-
dition, other dipole properties can be determined
from the polarizability of Eq. (2) or from the dis-
tribution of Eq. (3), including two- and three-body
dispersion forces" and mean energies appropriate
for the penetration of fast-charged particles in
matter ' ~ l7

where the (t), are a basis of square-integrable
pseudostates that satisfy

( y 1
If(o) E(o)1 y &—

& (t), 1(f)q& = 5,), i,j = 1, 2, . . . , M,

(11a)

(1lb}

and are complete in the limit M- ~. Employing
Eqs. (10), (lla), and (lib), the functionals of Eq.
(9) at their stationary points give

n. (~) = —&[()(,')] = Q - (-'
)i=1

(12)

and the polarizability is given by

n ((d }= a, ((u }+ n ((d) =g (13a)

f( = 2e( I& 4;1)(14.& I'.
The approximations of Eqs. (12}, (13a), and

(13b) give the bounds"

(13b)

n, ((d) & n, ((d }, 0 «d «,
n ((d) & n ((d), 0 ~&(d &e»

n((d} & n((d), 0 & (d &e, ,

(14a)

(14b)

(14c }

Q S(-k —2)(u & Q S(-k —2)(d", 0 &(d&e,
0=0 0=0

where

(15)

when the correct eigenfunction ft)0 is employed,
where e, is the correct resonance transition fre-
quency. Power-series expansion of Eq. (14b) gives

III. VARIATIONAL CALCULATIONS

Bounds on the positive- and negative-frequency
components of the polarizability

S(-k) = Q e, f(

s(-s)= J s 'sf(c),
0

(16a)

(16b)

s ( )=f dj( )/2 if% )ss
0

(8) emphasizing that the spectral sums determine the



S TIELT J ES-INTEGRAL APPROXIMATIQNS TQ. . .

polax izability in the normal dispersion interval.
Moreover, consideration of the appropriate func-
tionals" indicates that

8(-k) & 8(-k), )t = 2, 4, 6, . . . ,

when a sufficiently large basis set is employed.
The sums of Eqs. (16a) and (16b) are convenient-

ly written in the alternative forxns

e, (n) and f, (n) obtained from the development of
Eqs. (21)-(25) employing the e~ of Eq. (19b) and the
correct sums 8(-}t}of Eq. (16b). The e, (n), f„{n)
and their approximations e,.(n), f&(n) have certain
useful properties discussed in Sec. IV.'

IV. STIELTJES IMAGING

8(-k) =2(p, l pie, },
8(-a) =2(y, l) le,},

where

(16a)

(18b)

(19a)

e —{ff(0) E(0))f& &)gy g —1

and the ease k =1 has been explicitly included.
From Eqs. (19a) and (19b)

(e, le, ) =—,
' 8(1-k —l), (20a)

(20b)

y)e), i=1, 2, . . . , n.9)- (21)

The g, = (y„y„, . . . , y„,) are obtained from

demonstxating that the spectral sums are deter-
mined by the norms of square-integrable functions.

The e, of Eq. (19b) can be determined in closed
form for simple and model systems. " Moxe gen-
erally, the variational approximations 8~ of Eq.
{19a)are employed in determining bounding approx-
imations [Eqs. (1V) and (16a)] to the spectral sums.
The 8, provide a useful contraction of the original
M-term pseudospectrum [Eqs. (11a) and (lib)],
and can be employed as primitive basis functions
in the construction of a second spectrum of n «M
(principal) pseudostates in the form

The frequencies and strengths (e„f„ i =1,M}
obtained from the pseudospectrum of Eqs. {11a)
and (lib) are basis-set dependent, and should

perhaps be regarded as unphysical, "whereas the
associated spectral moments of Eqs. (16a) and

(16b) are experimentally observable, under appro-
priate conditions. "' Moreover, the latter pro-
vide the necessary and sufficient information for
approximating the polarizability of Eq. (2) using
the frequencies and strengths [e, ()I),f, (n), i =1,n]
of Eqs. (22a), (22b) and (25) that provide principal
representations""

(26)

of 2n spectral moments. In the case n =M, the
original M frequencies e, {j}f)=e, [Eq. (lla)] and
strengths f, (M) =f, [Eq. (13b)] are obtained from
solution of Eq. (26), whereas, for n«M the result-
ing e, (n) and f) (n) can give accurate approxima-
tions to the corresponding values e, (n) and f) (n)
obtained from Eq. (26) employing the correct spec-
tral sums 8(-i)) [—=8 (-k), k & 2n] of Eq. (16b). A

convergent smoothing of the discrete spectrum
[e;,f;, i =1,M] is therefore obtained by noting that
the ne, (n) and f&(n) values (n «M) furnish a histo-
gram approximation to the cumulative oseillator-
strength distribution in the form'26

f ")(e ) = 0, 0 & e & e, (n ),

[H-e, t's) 8] y, =0,

(yQ) lps)) —5

(22a)

(22b)

fi")(~) = Q f, (n), e, (n)&e &e~„(n),

(27)

(S))~ ——~ 8(1 i —j), i,j-=1, 2, . . . , g. (2

The n transition frequencies ~, g} and oscillator
strengths

(25)f, (N) =2~, (n) 1&dog'lul4, }l'

reproduce 2n of the spectral moments 8(-k) iden-
tically, as a consequence of the definition of the

8~,
"and are approximations to similar values

2 e~+, (n) —e~(ny

gi")(e) =0, e„(n)&e . (26)

The cumulative distributions of successive orders

and to the differential oscillator-strength distribu-
tion from the Stieltjes derivative of Eq. (27) in the
form"

g&"&(~)=0, 0 ~~ ~~, (n),
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satisfy the Tchebycheff inequalities

converge to f (e) in the limit of large n. This is
sufficient to ensure that the Stieltjes values of
g(n)(e )

(„y
—

( ))
1 fg+g (s) +fg(N) (31a}
2 ~„,(n) -e, (n}

'

&i, (n) =-,' [~„,(n) +e, (n)],

converge to g(e ) in the limit of large n.27

Equations (26)-(31) provide convergent approx-
imations to f(e) and g(e) at a finite number of fre-
quency values, and thus image f(e) and g(e ) in a
subspace of the interval 0 &c & ~. In the limit of
large n, when the correct spectral moments are
employed, the image points become dense, and
the complete functions are obtained from the
Stieltjes values of the histograms [Eqs. (30), (31a),
and (31b)]. Here, however, we have in mind the
use of finite numbers of approximate moments.
Consequently, it is convenient to employ the
Stieltjes data points of Eqs. (30), (31a), and (31b)
obtained from both upper and lower principal rep-
resentations of Eq. (26) for a range of n values. "
This procedure ensures that the points of increase
e, (n) obtained cover the important frequency in-
terval uniformly. Appropriately chosen analytic
forms g(e } and g(e) can be fitted to the total set of

(31b)

f "~(i&(n) -0)&f ""(e~(n) —0) ~f ""(e&(n)+0)

&f "(e &
(n ) + 0) (29)

at the points of increase i~(n) of fi"&(e). [The no-
tation f("ge&(n) s 0) refers to the right-hand/left-
hand limit of fi"i(e) at &g(n), respectively ].More-
over, the Stieltjes values of f&"&(e), defined accord-
ing to

f "}(&y(s)) =—' [f "}(~ (n) —0) +f "(e (n) +0)], (30)

A+i+f( =2g(~i)(&f+1 ~f) & (32)

where the c, are the correct transition frequencies,
and &u, =-,' (e„,+e,). The resulting spectrum is
then employed in evaluating the principal-value
polarizability

Reo. ((u)= P, ', +ff, "g(e)de
ft

and the associated dispersion profiles of Sec. II.

(33)

TABLE II. Spectral sum rules and Cauchy moments
in atomic helium.

Spectral sum Present results b Previous values

S (2)
S (1)
S (0)
S (-1)

12.1120
3.7690
1.9925
1.5048

30 3325 c

4 0837 c

2.0000 d

1 505c

Stieltjes values [Eqs. (30), (31a), and (31b)] so
constructed. Alternatively, one of the points of
increase can be fixed at a specified frequency val-
ue [e„(n)=e], and the remaining frequencies and
strengths obtained uniquely from Eq. (26) using a
fixed number (2n —1) of moments. The associated
histograms [Eq. (27}] obtained in this fashion satis-
fy the Tchebycheff inequalities [Eq. (29)], and thus
can be employed in the construction of Stieltjes
values [Eq. (30)] at the specified frequency point

An appropriate analytic form f (e) can be fit to
a large number of Stieltjes values so obtained, or
the derivative curve g (e } can be constructed di-
rectly from finite differences. "

The continuum oscillator-strength distribution
is obtained directly from the approximation g(e }
in the appropriate frequency interval, whereas,
accurate approximations to the discrete f numbers
are obtained from Eq. (31a) in the form

S(—A) S(-0 )

TABLE I. Variational approximations to spectral
sums in atomic helium.

S(—2)
S (-4)
S (-6)
S (-8)

1.3830
1.5421
2.0407
2.9268

1.3838
1.5461 + 0.0001
2.042 + 0.006

2.95'

1.992 526 7
1.504 771 0
1.383 0189
1.414 9111
1.542 067 1
1.749 848 5
2.040 660 7
2.426 460 2
2.926 767 8
3.568 743 0

10
11
12
13
14
15
16
17
18
19

4.388 329 7
5.432 192 3
6.760 420 0
8.450 108 0

10.600 006 3
13.336 510 9
16.821 358 5
21.261 497 0
26.921 739 6
34.140 980 3

~ Values in Hartree atomic units obtained from Eq.
(16a) and a 90-term pseudospectrum [Eqs. (11a) and
(11b)), as discussed in the text.

~ All values in Hartree atomic units. The sum rules
are discussed by J. O. Hirschfelder, W. Byers-Brown,
and S. T. Epstein, Adv. Quantum Chem. 1, 256 (1964),
and R. Jackiw, Phys. Rev. 157, 1220 (1967); the Cauchy
moments by P. W. Langhoff and M. Karplus, J. Chem.
Phys. 52, 1435 (1970).

b Values obtained from Eq. (16a) and a 90-term pseudo-
spectrum [Eqs. (11a) and (11b)], as discussed in the text.

C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
Exact value from the f-sum rule.

~ P. W. Langhoff and M. Karplus, J. Opt. Soc. Am. 59,
863 (1969).

~ G. Starkschall and R. G. Gordon, J. Chem. Phys. 54,
663 (1971).
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V. NUMERICAL RESULTS

A basis set of 60 functions formed from appro-
priate configurations of Is-4s, Is'-Ss', 2p, and

Sp orbitals with optimized Slater exponents, multi-
plied by Hylleraas correlation factors, is used to
construct an approximate 'S,' ground-state eigen-
function for atomic helium. '0 Similarly, 90 basis
functions corresponding to both single and double
excltRtlons formed from Rppropl iRte configurations
of j.s-68, 2p-9p, and Sp'-5p' orbitals, multiplied

by Hylleraas correlation factors, are used to con-

struct a'P', pseudospectrum satisfying Eqs. (1la)
and (lib). The nonlinear Slater exponents in the
latter set of basis orbitals are distinct from those
of the ground-state eigenfunction, and are opti-
mized according to the energy lowering of the first
excited state. " Of the resulting e, and f, values,
the first three frequencies and strengths obtained
are in good agreement with accurate values, al-
though the higher frequencies are above the first
(n =1) photoionization threshold. The presence of
autoionizing states, additional (inelastic) photo-
ionization thresholds (n =2, 3, 4), and the double

TABLE IG. Frequencies and strengths that provide upper and lower principal representa-
tions of the atomic-helium spectral sums. '

Upper principal representation" Lower principal representation '

1
2
3

5
6
7
8

10

e, (10)

Q.779 882 42
0.906 31611
1.214 382 63
2.037 52197
4.901 086 14

V; (13)

0.781 156 83
0.903 600 81
1.132 228 58
1.583 568 11
2.510 515 50
5.659 690 17

q,.(16)

0.779 882 42
0.859 250 83
0.962 490 99
1.158 642 41
1.519 7Q5 02
2.331802 07
4.92741790
8.706 760 67

0', (19)

0.779 925 50
0.860 145 73
0.956 483 76
1.125 270 83
1.412 049 93
1.788 240 89
2.437 889 14
5.207 554 62

11.534 623 56

f; (10)

0.284 823 31
0.332 449 98
0.535 69544
0.561 91025
0.273 658 86
0.003 988 89

f,.(13)

0.294 531 70
0.285 078 38
0.405 370 16
0.420 824 40
0.383 601 17
0.201 842 94
0.001 277 98

f; (16)

0.276 515 89
0.140 022 32
0.238 1S448
0.31849652
0.368 879 75
0.411607 SS
0.207 325 47
0.031 090 Q3

0.000404 39

f;(19)

0.277 205 27
0.139223 72
0.214 615 86
0.28Q 950 30
0.308 905 43
0.193505 60
0.352 389 72
0.212 241 27
0.01331393
0.000 17563

8; (10)

0.785 272 21
0.969 71690
1.392 223 33
2.424 529 60
5.874 276 77

(13)

0.779 882 42
0.872 680 97
1.036 649 18
1.3S6 259 86
2.200 752 68
4.599406 04
8.656 417 21

e; (16)

0.780 10094
0.872 102 53
1.007 674 75
1.246 483 99
1.630 793 00
2.419 742 78
5.259 623 49

13.437 557 96

e, (19)

0.779 882 42
0.853465 51
0.926 19147
1.055 741 67
1.261 868 43
1.592 210 82
2.365 716 81
4.771 91185
6.387 974 43

17.302 759 91

f,.(10)

0.336 127 14
0.440 01S59
0.551384 08
0.469 502 04
0.195494 87

f; (13)

0.277 807 99
0.202 31091
0.349 495 58
0.441 792 76
0.457 601 95
0.221 01508
0.042 502 46

f; (16)

0.280 276 08
0.186293 43
0.280 508 83
0.326 346 37
0.315647 44
0.379 055 69
0.214 19178
0.010207 11

f$(19)

0.276 298 25
0.108723 86
0.172 81155
0.236 702 04
0.264 930 70
0.305404 74
0.392 109 72
0.158 779 33
O.OVI 804 QS

0.004 962 46

~ Values in Hartree atomic units that provide principal representations [Eq. (26)] of the

sums of Table I.
"Obtained from Eq. (26) and the sums of Table I, setting e|;(10) = ev (13)= Ws (16) =

W&0 (19)=

and V&(10) = ~&(16) = V& =0.77988242 a.u.
Obtained from Eq. (26) and the sums of Table I, setting c&(13)= C&(19) = I&

——0.779 882 42 a.u.
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ionization threshold are indicated in the pseudo-
spectrum by stabilized or converging poles at the
appropriate frequencies, "discussed subsequently
below.

The first 20 spectral moments obtained from the
ground-state eigenfunction and the 90-term pseudo-
spectrum are shown in Table I, and comparisons
with previous theoretical, semiempirical, and ex-
perimental results are given in Table II. The S(2)
a,nd S(1) sums shown in Table II, which are not
employed in the present development, are poor
approximations to the accurate Pekeris values,
since the basis set employed does not include the
appropriate terms. ' The other sums are evidently
in good agreement with previous values, suggest-
ing that the results of Table I are an accurate re-
flection of the helium dipole spectrum, excluding
the very-high-frequency region.

Transition frequencies and oscillator strengths
that provide both upper and lower principal repre-
sentations of between two and twenty of the sums
of Table I are constructed from solutions of the
appropriate moment equations [Eqs. (26)]." The
Stieltjes values [Eqs. (30), (31a), and (3lb)] of the
72 distinct histograms [Eqs. (27) and (28)] obtained
provide approximately 200 data points for the
cumulative distribution f(e), and 200 data points
for the differential distribution g(e). As an illus-
tration, the frequencies and strengths that pro-

vide principal representations of 10, 13, 16, and
19 of the sums of Table I are shown in Table III.
The values obtained from the lower principal rep-
resentations of 10 and 16 sums also result from
explicit transformation to a principal basis set
[Eqs. (21)-(25)] of five or eight pseudostates, re-
spectively. In Figs. 1 and 2 are shown four of the
12 histograms obtained from the principal transi-
tion frequencies and oscillator strengths of Table
III. Also shown in the figures are Stieltjes values
of lower-order histograms obtained employing
fewer moments than the 13 and 16 moments appro-
priate for the frequencies and strengths of Table
III. In Fig. 1, approximately 70 of the 85 Stieltjes
data points obtained using between 10 and 13 sums
are shown, whereas, in Fig. 2, Stieltjes data
points obtained from between 13 and 16 sums are
shown. Comparison of Figs. 1 and 2, and care-
ful examination of the additional histograms con-
structed (not shown), suggests that the Stieltjes
values obtained from representations of between
10 and 20 of the sums of Table I are convergent to
smooth profiles. Moreover, the large number of
data points obtained from the upper and lower prin-
cipal representations suggests that the histograms
associated with additional fixed-point quasiorthog-
onal polynomials are not required in atomic helium.
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FIG. 1. Differential and cumulative oscillator-strength
distributions in atomic helium; solid line (—), Stieltjes
histograms [Eqs. (27) and (28) j obtained from the fre-
quencies and strengths (Table II) that provide a lower
principal representation of 13 spectral sums (Table I);
selected Stieltjes values (0) [Eqs. (30), (31a), and (31b)]
obtained from principal representations of between 10
and 13 spectral sums (Table I); dashed line (—-), fifth-
order polynomial in 1/& fitted to Stieltjes data.

FIG. 2. Differential and cumulative oscillator-strength
distributions In atomic helium; solid line (—), Stieltjes
histograms [Eqs. (27) and (28)) obtained from the fre-
quencies and strengths (Table II) that provide a lower
principal representation of 16 spectral sums (Table I);
selected Stieltjes values (0) [Eqs. (30), (31a), and (31b)]
obtained from principal representations of between 13
and 16 spectral sums (Table I); dashed line (—-), fifth-
order polynomial in 1/e fitted to Stieltjes data.
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TABLE IV. Mean-square deviations of fifth-order polynomial fit to Stieltjes data for atomic
helium. ~

Number
of moments b

Number of data points '
g(~) f(~)

Mean-square deviation
g(e) f (~)

10
10-13
10-16
10—20

8

38
77

143

10
46
91

165

2.58x 10
2.80 x 10
3.78x 10

10.58 x 10

1.93x 10 5

2.34x 10 5

3.34 x 10 ~

10.38 x 10 5

~ Mean-square deviations in Hartree atomic units appropriate for the polynomials

Q.tted to the indicated numbers of Stieltjes data points [Eqs. (30), (31a), and (31b)].
Number of spectral sums of Table I employed.' Numbers of Stieltjes data points [Eqs. (30), (31a), and (31b)] obtained from histograms

[Eqs. (27) and (28)] constructed with indicated spectral sums.
Deviations constructed in the customary manner.

Polynomials in (1/e) fitted to the Stieltjes values
provide convenient analytic forms which accurately
approximate the cumulative and differential oscil-
lator-strength distributions in atomic helium. In
Table IV are shown the mean-square deviations
appropriate for fifth-order polynomials in (1/e)
fit to various Stieltjes values. " The smooth pro-

files g(e) and f(e) obtained in this way from the
various data sets are in excellent mutual agree-
ment, differing by less than a few parts in the
third significant figure in the interval e, & e & 10
a.u. , and the mean-square deviations of Table IV
evidently show very little increase as greater num-
bers of data points are used. The very small scat-

TABLE V. Discrete oscillator strengths in atomic helium.

Transition
frequencies

0.7797, I0.7799]
0.8484, [0.'8486]
0.8725, [0.8727]
0.8836
0.8897
0.8934
0.8958
0.8974
0.8986
0.8994

0.276 26
0.7330(-1)
0.2994 (—1)
0.156(-1)
0.900(—2)
0.564(—2)
0.378(—2)
0.265(-2)
0.193(—2)
0.145(—2)

0.2761 + 0.0014, 0.2762
0.735 + 0.036(-1), 0.73(-1)
0.303 + 0.071(-1), 0.30(-1) e

0.1481(-1), 0.153(—1.) &

0.841(—2), 0.878(-2) ~

O. 518(—2) '
o.34o(-2) '
0.264(-2) "
0 193(—2) h

0.145(—2) h

Oscillator strengths
Present results Previous values

Hartree atomic units are employed. Values in parenthesis indicate appropriate powers
of ten.

C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. Circ. No. 467 (U.S. GPO Washington,
D. C. 1949), Vol. I. Values in brackets obtained from variational calculations [Eqs. (11a) and
(11b)] as discussed in the text.

Strengths of the first three transitions obtained from variational calculations [Eqs. (11a),
(11b), and (13b)] as discussed in the text. Other strengths obtained from Eq. (32), g(e) fit to
the Stieltjes data of Figs. 1 and 2, and f&z

——0.2409(-3) obtained from the Coulomb approxima-
tion (see footnote h).

d M. T. Anderson and F. Weinhold, Phys. Rev. A 9, 118 (1974).
B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).

~ L. C. Green, N. C. Johnson, -and E. K. Kolchin, Astrophys. J. 144, 369 (1966).
g A. Dalgarno and A. L. Stewart, Proc. Phys. Soc. Lond. 76, 49 (1960).
"Values obtained from the Coulomb approximation of J. Hargreaves, Proc. Camb. Philos.

Soc. 25, 91 (1928); A. Burgess and M. T. Seaton, Mon. Not. R. Astrol. Soc. 120, 121 (1960),
using g(e, ) =1.927 obtained from the Stieltjes procedure.



836 P . W. LANGHO F F, J. SIMS, AND C. T. CORCORAN 10

ter evident in the Stieltjes values, and the stability
of simple fifth-order polynomials fit to the data
points, indicates that convergence has indeed been
achieved using between 10 and 20 of the sums of
Table I. Even the lower-order data obtained from
between five and ten moments (not shown) are in
excellent agreement with the smooth profiles ob-
tained from between 10 and 20 spectral sums.

In Table V are shown the Stieltjes approxima-
tions to the discrete oscillator strengths in atomic
helium obtained from Eq. (32) and the fifth-order
polynomial fit to the Stieltjes data of Figs. 1 and 2.
'These data fits are chosen for this purpose in view
of the remarkably small mean-square deviations
obtained for both g(e) and f (e) (Table IV). In ad-
dition, the derivative of f (c) differs from g (e) by
less than 1% over the discrete frequency interval,
and the transition frequencies obtained from the
other polynomial fits of Table IV differ from the
values of Table V by no more than a few parts in
the third significant figure. Evidently, the Stieltjes
results. of Table V, which are expected to be ac-
curate to at least 5%, are in excellent agreement
with those of the Coulomb approximation" very
near the photoionization threshold, and are also in
excellent agreement with experimental and previ-
ously obtained theoretical values for the lower
resonance transitions. '

The Stieltje's results of Table V and the associat-
ed approximation g(e) to the photoionization profile
are used in the evaluation of the absorption and
dispersion profiles shown in Fig. 3. Values of Eq.
(33) obtained employing the other data fits of Ta-
ble IV differ from the results of Fig. 3 by a few
percent, indicating a moderate sensitivity of the
dispersion profile to the absorption spectrum em-
ployed in its evaluation. Note, however, that the
polarizability in the normal dispersion interval
does not require Eq. (33), but rather is evaluated
directly from the points and weights of Table III
and Eq. (13a). The principal-value pole. rizability
has a minimum in the photoionization continuum
apparently as a consequence of the relatively large
contribution the photoionization profile makes to
the f-sum rule (-1.56). Evidently, the Stieltjes
results are in good accord with the experimental
photoabsorption" and ref ractivity" data.

More detailed comparisons of the Stieltjes re-
sults with the experimental photoabsorption and
refractivity data are given in Tables VI and VII,
respectively. The photoabsorption data of Table
VI is in very good agreement with the Stieltjes
values in the threshold region and at higher fre-
quencies, whereas, in the interval from -1.3-2.4
a.u. the experimental data is uniformly below the
present results. However, the Stieltjes values
are generally within the +1(Y/& estimated error for

the measured absorption index. "Similarly, the
experimental refractivity" values of Table VII are
in excellent agreement with the Stieltjes results.
It is of particular significance to note that the pre-
viously obtained moment-theory bounds, which
employ the S(2) to S(-2) sums, ' are in excellent
agreement with the Stieltjes results.

In Table VIII are shown the Stieltjes results for
1

the Verdet coeff icient and Rayleigh-scattering
cross section, in comparison with previous mo-
ment-theory bounds, ' experimental values, "and
estimates obtained from Eq. (6) using experimental
refractivities for the polarizability. All three in-
dependent sets of values obtained for both the
Verdet coefficient and the Rayleigh-scattering
cross section are evidently in very good mutual
agreement.

Although a detailed investigation of autoionizing
line shapes and inelastic thresholds in the dipole
spectrum of atomic helium is beyond the scope of
the present investigation, it is of considerable
interest to examine the variationally determined
pseudospectrum of discrete transition frequencies
and oscillator strengths for the presence of such
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FIG. 3. Dipole oscillator-strength distribution and
polarizability in atomic helium; solid line (—), Stieltjes
values for the oscillator-strength distribution obtained
from Eqs. (31a), (31b), and (32) and the data of Figs. 1
and 2 as discussed in the text; dashed line (-—), Stieltjes
values for the polarizability obtained from Eq. (13a) and
the data of Table GI in the normal dispersion interval,
and from Eq. (33) and the associated absorption profile
in the photoionization interval, as discussed in the text;
closed circle (0), experimental values; absorption data
from J. A. R. Samson, Adv. At. Mol. Phys. 2, 178 (1966)
and J. F. Lowry, D. H. Tomboulian, and D. L. Ederer,
Phys. Rev. 135, A1054 (1965); refractivity data from
C. Cuthbertson and M. Cuthbertson, Proc. R. Soc. Lond.
135, 40 (1932); C. R. Mansfield and E. R. Peck, J. Opt.
Soc. Am. 59, 199 (1969), and M. C. E. Huber and
G. Tondello, J. Opt. Soc. Am. 64, 390 (1974).
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features. In Table IX are shown the first 30 var-
iationally determined frequencies and strengths,
the associated approximation to the continuum
photoionization oscillator-strength density

I Eq.
(Sla}], and the corresponding Stieltjes results of
Figs. 1 and 2. As indicated above, the first three
e, and f, values are in good accord with accurate
results (Table V), whereas, the two subsequent
e, and f„although below the elastic ionization
threshold (e, =—0.904 a.u. ), do not correspond di-
rectly to any of the correct discrete transitions in
atomic helium. The e, and j, values in the inter-
val 0.9270-1.247 a.u. simulate the elastic (one-
particle} photoionization profile, and the associat-
ed density g(e) obtained directly from Eq. (Sla) is
evidently in good agreement with the accurate
Stieltjes results. Above the 2s2p double-excitation

threshold (-2.21 a.u. ) the spacings of the variation-
al transition frequencies are considerably smaller
than in the one-particle-only ionization interval,
indicating the presence of pseudostates that corre-
spond to two-electron excitations. Moreover, the
2s2p line shape is qualitatively suggested by a
significant peak in the variational approximation
to the photoionization profile at -2.30 a.u. , and the
n =2 inelastic photoionization threshold (-2.40 a.u. )
is indicated by clustered eigenvalues at the appro-
priate position. There is evidently no simple con-
nection between the variational and Stieltjes dis-
tributions g(e), however, above the 2s2p excita-
tion, and additional techniques are required in
order to obtain quantitative estimates for the con-
tributions of the various photoionization channels
to the total profile. "

TABLE VI. Absorption index in atomic helium. '

Wavelength A, Experimental
(A) values b

Present
results ' Wavelength A.

(A)

Experimental
values b

Present
results ~

100.9
107.0
115.8
117.9
122.3
125.2
128.3
131.8
132.8
135.5
139.0
144.8
151~ 5
156.2
160.1
164.6
168.1
171.1
177.8
182.4
185.7
192.8
198.0
202.3
207.2

12.9
9.8
9.6

11.0
12.2
14.9
13.4
13.9
14.2
15.1
16.0
19.6
19.0
22.1
21.9
23.5
23.8
24.4
25.6
28.4
30.2
29.2
31.9
32.9
41.9

8.87
9.92

11.5
11.9
12.8
13.4
14.0
14.8
15.1
15.7
16.5
17.9
19.7
21.0
22.1
23.5
24.5
25.5—
27.7

29.3
30.5
33.1
35.1
36.8
38.8

215.2
220.4
225 ~ 2
231.2
247.2
283.6
303.1
315.0
323.2
335.4
345.0
357.5
364.0
375.7
390.6
397.1
405.7
416.6
425.5
436.5
448.8
464.4
478.0
489.3
503 ~ 0

39.4
40.5
38.6
42.7
53.0
66.0
78.0
79.0
85.0
99.0

101
108
113
120
132
133
140
148
157
160
166
174
184
191
198

42.1
44.4
46.5
49.2
56.7
74.9
84.9
91.1
95.3

102
106
113
116
122
130
133
138
143
148
155
163
173
184
194
208

Values in cm ' appropriate for Eq. (la), with (4nNp/c) —= 69.02 and co Emu(cu) in Hartree
atomic units. To convert wavelength in angstrom umts to frequency in atomic units, use
co (a.u. ) =—455.6/X(A).

Data in the interval 215.2-503.0 A taken from J. A. R. Samson, Adv. At. Mol. Phys. 2,
178 (1966), and in the interval 100.9—207.2 A. taken from J. F. Lowry, D. H. Tomboulian,
and D. L. Ederer, Phys. Rev. 137, A1054 (1965). Selected data points taken from the tab-
ulated values in each case.

Values obtained from the Stieltjes procedure employing the profiles of Figs. 1 and 2 as
discussed in the text. Previous theoretical determinations cited in Ref. 4 are in good accord
with the present results.
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TABLE VII. Dispersion of the refractive index in
atomic helium. '

Refractivity [n (~) —1) x 108

Wavelength A, Experimental Moment-theory P resent
(A) values b bounds ' results

9660
9227
9125
8267
7247
5462
5087
4801
4359
4047
3664
3342
3132
3022
2926
2753
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
920

34.76
34.77
34.78
34.80
34.83
34.95
35.00
35.04
35.05
35.12
35.23
35.36
35.47
35.53
35,59
35.73
37.7
37.3
37.4
37.8
38.3
38.9
39.6
40.7
42.6
45.3
48.5

34.71 + 0 ~ 01
34.72 + 0.01
34.72+ 0.01
34.74 ~ 0.01
34.78 + 0.02
34.89+ 0.04
34.94 + 0.04
34.97+ 0.05
35.05 + 0.06
35.12+ 0.07
35.23 + 0.08
35.36 + 0.10
35.46+ 0.11
35.52 + 0.12
35.59 + 0.13
35.72 ~ 0.15
37.00+ 0.36
37.30+ 0.41
37.66 + 0.47
38.10+0.55
38.65+ 0.65
39.34 ~ 0.79
40.25+ 0.97
41.46 + 1.24
43.16~ 1.66
45.67+ 2.34
48.72 ~ 3.30

34.69
34.70
34.70
34.72
34.76
34.87
34.92
34.95
35.03
35.10
35.21
35.34
35.44
35.51
35.57
35.70
37.01
37.31
37.67
38.11
38.66
39.37
40.28
41.51
43.22
45.77
48.86

VI. CONCLUDING REMARKS

A previously described Stieltjes-imaging tech-
nique' is employed in the ab initio calculation of
dipole absorption and dispersion profiles in atomic
helium. Variationally determined square-inte-
grable pseudostates having appropriate symmetry
provide the dipole spectral sums and principal
eigenstates, frequencies, and strengths necessary
for construction of the profiles. 'The Stieltjes

TABLE VIII. Dispersion of the Verdet coefficient and
Hayleigh-scattering cross section in atomic heliu&. '

Verdet coefficient V(v)

9000
8500
8000
7500
7000
6500
6000
5893
5780
5500
5460
5000
4500
4360
4000
3635

0.203
0.221
0.246
0.283
0.325
0.379
0.441
0.457
0.474
0.522
0.530
0.637
0.800
0.853
1.011
1.253

0.200 + 0.026
0.224 6 0.029
0.253 + 0.033
0.288 + 0.038
0.332+ 0.043
0.385 + 0.051
0.453 + 0.060
0.470 + 0.062
0.489 + 0.065
0.540 + 0.072
0.549 + 0.073
0.657 + 0.088
0.815+ 0.110
0.870 + 0.118
1.039 + 0.142
1.268+ 0.175

0.201
0.225
0.254
0.290
0.333
0.387
0.455
0.472
0.491
0.543
0.551
0.660
0.819
0.874
1.Q44

1.273

Rayleigh cross section cr(co) x 10

9227
8267
7247
5462
4801
4359
4047
3664
3132
2753
1900
1700
1500
1300
1100
920

0.0764
0.119
0.201
0.628
1.058
1.558
2.105
3.153
5.986

10.18
49.9
76.7
133
251
567
1500

0.0761 + 0.0000
0.118+ 0.000
0.201 + 0.000
0.626 + 0.001
1.054 + 0.003
1.558+ 0.005
2.104 + 0.008
3.153 + 0.014
5.980 + 0.038
10.17 + 0.085
48.10+ 0.94
77.75 + 1.94
135.1+4.5
259.7 ~ 12.5
582.5+ 44.8
1517+ 206

0.0760
0.118
0.201
0.626
1.053
1.556
2.103
3.150
5.977
10.16
48.12
77.79
135.2
260.1
584.1
1526

Wavelength X Experimental Moment-theory P resent
(A) values b bounds ' results

The refractivity of Eq. (1b) is dimensionless, with
2rN0=-0. 2502x10 6 at STP (O'C, 1 atm) and Re(o(td)) in
Hartree atomic units.

Values in the interval 9600 to 4801 A taken from
C. R. Mansfield and E. R. Peck, J. Opt. Soc. Am. 59,
199 (1969), who suggest an absolute error of +0.09, in
the interv-l 4359 to 2753 A from C. Cuthbertson and
M. Cuthbertson, Proc. R. Soc. 135, 40 (1932), and in
the interval 1900 to 920 A from M. C. E. Huber and

G. Tondello, J. Opt. Soc. Am. 64, 390 (1974), who sug-
gest a probable error of -+3%.

P. W. Langhoff, Chem. Phys. Lett. 9, 89 (1971);
J. Chem. Phys. 57, 2604 (1972).

Values obtained from the Stieltjes-imaging technique
described in the text and the sums of Table I. Previous
theoretical determinations cited in Ref. 5 are in good
accord with the present results.

' The Verdet coefficient of Eq. (7) is in units of p, min/
Oe cm-atm, with 2 c = 1.007 and u d n (~) /d~ dimension-
less, and the Rayleigh-scattering cross section of Eq.
(6) is in units of cm, with (24m/9)(1/c) =6.652x10
and ca~ Re(c. (&a)t) in Hartree atomic units.

Verdet-coefficient data from L. R. Ingersoll and D. H.
Liebenberg, J. Opt. Soc. Am. 46, 538 (1956). Rayleigh-
scattering cross section obtained from Eq. (6) and the
experimental refractivity data of Table VII.

P. W. Langhoff, Chem. Phys. Lett. 9, 89 (1971);
J. Chem. Phys. 57, 2604 (1972).

Values obtained from the Stieltjes-imaging technique
described in the text and the sums of Table I. The cou-
pled Hartree-Fock calculations of the Verdet coefficient
by V. G. Kaveeshwar, K. T. Chung, and R. P. Hurst,
Phys. Rev. 172, 35 (1968), are in good accord with the
present results.
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TABLE IX. Variationally determined pseudospectrum in atomic helium. '

Frequencies Strengths

fj

Oscillator-strength. distribution g(~)

Variational results Stieltjes results

0.779 88
o.s4s 5s
0.872 66
0.885 08
0.900 53
0.927 04
0.970 93
1.043 91
1.16699
1.346 99
1.609 36
2.275 70
2.337 41
2.362 30
2.39142
2.399 83
2.418 91
2.44355
2.472 83
2.492 70
2.524 82
2.562 56
2.588 07
2.636 77
2.673 67
2 ~ 723 15
2.757 96
2.846 97
2.899 77
2.944 29

0.276 255
0.073 299
0.029 935
0.022 374
0.037 127
0.059 718
0.091 901
0.137448
0.188 395
0.182 141
0.264 292
0.034 380
0.098 991
0.231 321
0.014 665
0,.000 610
0.000 086
0.000 552
0.000 442
0.000 025
o.ooo44o
0.000 609
0.000 178
0.000 120
0.000 090
0.000 004
0.000 012
0.000 012
0.000 647
0.002 756

1.727
1.571
1.324
1.029
0.851
0.224
1..080
6.637
4.223
0.909
0.018
0.013
0.017
0.012
0.007
0.014
0.015
0;003
0.003
0.001
0.000
0.000
0.006
0.038
0.025

~ ~ ~

1.712
1.520
1.301
1.064
0.808
0.468
0.322
0.309
0.302
0.296
0.293
0.287
0.280
0.274
0.268
0.260
0.253
0.245
0.237
0.229
0.221
0.211
0.200
0.193
0.184

All values in Hartree atomic units. The E'; and f&
are obtained from variational

calculation [Eqs. (11)-(13)],as discussed in the text.
Values obtained from the 0'& and f&

and Eq. (31a).' Stieltjes profile of Figs. 1 and 2 obtained as discussed in the text.

results are found to be in excellent agreement with
experimental values and jor previously obtained
theoretical estimates of the absorption coefficient,
refractive index, Verdet coefficient, shielding
factor, and Rayleigh-scattering cross section. In
view of the relatively conventional nature of the
computations required, and of the explicit avoid-
ance of eigenstates with scattering boundary con-
ditions, it can be anticipated that the Stieltjes ap-
proach will also prove useful in determinations of
the absorption and dispersion profiles of more
complex systems.
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