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Rotational excitation of CH+ by electron impact

Shih-I Chu~ and A. Dalgamo

(Received 1 April 1974)

The cross sections for the rotational excitation of polar diatomic molecular ions by electron impact are
formulated within the Coulomb-Born approximation. The cross sections are finite at threshold. Explicit
calculations are reported for the excitation of CH+,

I. INTRODUCTION

Extensive studies have been carried out of the
rotational excitation of neutral molecules by slow
electrons but little attention has been given to the
rotational excitation of positive molecular ions.
Stabler' has calculated the rotational excitation
of homonuclear molecular ions taking into account
the interaction between the electron and the per-
manent quadrupole moment of the molecule.
Stabler used an expansion of the Coulomb-Born
approximation and retained only the lowest-order
term. His work was extended by Sampson' to in-
clude the effect of the long-range polarization
interaction.

In the case of a heteronuclear molecular ion,
the scattering is dominated by the interaction be-
tween the electron and the permanent dipole mo-
ment of the molecular ion. Various arguments
have been advanced' that demonstrate the validity
of the Born approximation for the description of
the scattering of electrons by neutral molecules
at low energies when the interaction is long range.
The arguments remain valid for molecular ions
provided the Coulomb-Born approximation is used
in place of the Born approximation and indeed
satisfactory agreement was apparently obtained
between the results of Stabler' for the scattering
of electrons by H, ' and the more refined calcu-
lations of Chang and Temkin. '

%'e present here the theory of the rotational ex-
citation of heteronuclear positive molecular ions
by impact with slow electrons using the complete
form of the Coulomb-Born approximation. We
also calculate the cross sections for excitation
of CH', a molecule of considerable astrophysical
significance.

and projection quantum numbers of the CH' ion.
We assume that the molecular ion can be de-
scribed as a rigid rotator having a permanent
dipole moment p, .

The interaction potential between the molecular
ion and electron can be represented in the form

1
V(r, s) = ———P r " 'P~(r" s)Q~,

X=i

where r is the coordinate of the incident electron
relative to the center of mass of the molecule, s
is the internuclear coordinate, and Qz is the ~th
electric moment of the charge distribution of the
molecular ion. Thus Q, = p, and Q, is the quadru-
pole moment of the molecular ion.

We write the total Hamiltonian in atomic units
in the form

H=H +H',

H HO,,„-2 V„—&/r,

a'=- Pr " 9,(-r -s)Q, ",

A=i

and H;,„ is the Hamiltonian for the isolated molec-
ular ion. With this choice of Ho, the unperturbed
wave functions 4' separate into a Coulomb wave
function, g(k, r) = ~k), and a spherical harmonic
function F~„(s) representing the molecular rotator.

From first-order time-dependent perturbation
theory, the probability per unit time, dgo, for an
electron to be scattered from k, to kf while the
mole.".ule undergoes the rotational transition from
j-j' is given by

II. THEORY

%'e consider the process

e+CH+( jm) -e+ CH+( j'm'),
where j and m are, respectively, the rotational

where we have averaged over the projection quan-
tum number m of the initial states and summed
over that, m', of the final states. If v; is the
initial velocity, the total cross section for the
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rotational transition j-j' is

dw
o(q -q') =— dnf

v, dn~

1 k~ 1
4t' k, 2 (2«}}J II t, H'& }I (Qr

(6)

The nonrelativistic Coulomb wave functions are
given by''

and

!k,) = P 4(«(-1} ('e"( "( Y, (k()
g fft

x Y( (r)(k (r) 'F«(k( r)

(kf!= g 4 ((«-1) ('e "(i'f Y, ~(kf)
$m

x Y,„(r){kf()-'F,(k,(),

(6)

and

!k()=e '"«"Z'(1 +i@()e("('

&&,F({ i'(, -1; i(k, r —k, .r))

( k!f=e '"f 'T(1 —iaaf)e'"f'

where or{&)=arg{r(i+1+i(i)) is the Coulomb phase
shift and F (k(r) is the regular solution to the
radial wave equation for orbital angular momen-
tum ),

F (k~) —e tt}«/2 I ( 9) I (2k~)(+le ((}t'

x F(,(iq f, 1; -i(kf r+ kf r)),
where, E, is the confluent hypergeometric func-
tion and q =-k '. To calculate the integral in (6),
we expand the Coulomb wave functions into partial
waves, ' '

XF,(l+ 1 —iq, 2l + 2; 2ikr) .
Consider now the transition matrix element

Af, =(%f, H'@, ) = ( Y(. .(s)!I(s)!Yf„(s)),

where

(10)

X

I(s) -=(kf!H'!k() = —g g 2 1
Y~»(s) ~ (kf!r ~ 'Y„„(r)[k().

X=i p=-X

The angular integrations can be performed by means of the relation

r Y (0 ) Y (0 ) Y (0 )dQ
(2l, +1)(2i2+ 1)(2l~+1) ' (t, l, 1'~ (i( l2 13 }

ly y 1 l2 2 1 l3 3 1 j. 4m !(0 0 Oj~m, m, m3)
'

and we obtain

(kf!r ~ «Y»(r)!k, ) =(4(«)' ' g g i'( 'f(-1)"e' (+'fl[(21(+1)(2lf+1)(2K+1)]'f(I~ '

(0 0 op(m, -m, i)
)( Y, , „,($()Y( (kf)M. .. ', (ll}

where the radial matrix element+ is defined by
oo

M, ~(
'= F, (kfr)r " 'F, (k(r)dr.']'y kq k~ o

r (12)

Hence

1(s}= —Q Q Q Q},T«» ( Y~»(s) Y( (k(}Y, (kf}M«,
X P E ) ly fft]~y

where

(2l(+1)(2lf+1) ' 2 /i( lf
!T ~ «} 4(«5«2( 1 ««e((~«(+tt«)i«( (f-

2K+1
I 0 0 0$ km( -m,. y.)

The transition matrix element A&, can now be evaluated in the form

~ttt

Af( Q Q G«( f gfg ttYtt( t««(kf)M(. ( t

A. P t]l~

(14)
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where

(j j' ~l(j j'
G, "»~&i~ i =~ T, "&»[(2 l& + 1)(2j+ 1)(2j'+ 1)(2A. + 1)] '

0 (m m' —p)

Substituting Az, into Eq. (6) and carrying through the integration and summations, we finally get

(15)

(16)

where

g (2l, +1)(2l,+ 1) ~ '

Thus the calculations of o„reduces to the evalua-
tion of the radial matrix elements M» .

i f

III. ROTATIONAL EXCITATION INDUCED BY
DIPOLAR INTERACTION where

32m4 e2 7f f) ])

9 (e2&&( 1)(e2&ey 1)

"(-X.) I +( fn„-~ny, 1, Xo) I

(19)

For the case of dipole transitions, X =1, the
matrix element in Eq. (11) is equivalent to that
involved in the calculation of the bremsstrahlung
cross section" and can be evaluated directly by
expressing the Coulomb wave function in parabolic
coordinates. The resulting expression is- exact
and we obtain the following useful relation:

Xo = 4n)n~ -/t'.

Thus

(20)

f, C(2j'+1)
~ ~

fbi ~

&0 0 0)

(21)

2

Q (2l, +1)(2lg+1) ' ~ ~M, ',
~

i r& (0 0 0)

To evaluate f», we note that because g, is al-
ways greater than unity, it is necessary to use
the analytic continuation of the hypergeometric
function':

where f = qf-q, , and fz, is a function related to
the E1 nuclear Coulomb excitation, "

TABLE II. The rate coefficient k for the 0-1 excita-
tion of CH' at various temperatures T.

k (10 8 cm3sec ')

E (eV) 0 (A2) E (eV)

threshold~
0.005
0.007
0.010
0.017
0.028
0.045
0.072
0.10

7409
4809
3835
2619
1675
1071

709
491
370

0.20
0.31
0.40
0.50
0.61
0.75
1.01
2.04

229
173
142
121
105
91
73
43

'The threshold energy is 0.003 51 eV.

TABLE I. Rotational excitation cross sections of CH'
by electron impact: e+CH' (j =0) e+CH' (j =1).

10
20
30
40
50
60
70
80

100
150
200
300
400
600
800

1000
1500
2000
3000

1.09
18.2
42.7
62.8
77.4
87 ~ 5
95.0
99.9
106
109
107
100

95.0
86.6
80.9
76.9
69.8
65.9
60.6
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I'(y) I'(z —n) I'(y) I'(n —z}E(,P, y, z}=
( }, , (-z) F(n, 1 —y+n, 1 —P+n;1/z)+, . (-z) 8E(P, 1 —y+P, 1 —n+P;1/z).r pr(y-n) ' ' ' r(nry —p)

Then using the relations'

x(d/dx)F(a, b; c; x) = a[F(a + 1, b, c;x) —E(a, b, c; x)]

(b —a)F(a, b, c; x) + aF(a + 1, b, c; x) bF—(a, b + 1, c; x) = 0,

we get

Xo(d/dXO) I E(-i@~ -in~ I' Xo) I

' = Xo(dldXO) [F( iq~-, iq-q, I; Xo)F(iq, , iqz, I; Xo)J

= i(q&qz/& ) [F(i'& + 1,ill, 1;Xo)F( '9i, —i'9~ + 1, 1;Xo)

E( i-Q& + -1, —iraq, 1 i Xo)F(A7), A1q+ 1, 1;Xo)] .

Finally, by means of the Kummer relation'

F( i', -+I, i'&,-1; Xo) (1 Xo) "& ' "y F(i', , gq&+I, 1; Xo),

we arrive at the formula

f,(rl, , t;) =-
9 „1I ((I/ri, )F('g, , i71, , 1 —'g; 1/X, )

32m gg gg 1

x [F(1—ig, , iq, ,-1++; 1/Xo) + e' eF(l —iq~, i'~, 1-—g; I/Xo)] + q, =g~ j,
(22)

where

p =2 arg[r(i~}r(in, }/r(in~}]+l ln ( X, ).
The plane-wave Born approximation to 0 is

equivalent to the replacement of (22) by

(23)

(22) numerically. With a value of 1.70 D for Q„
appropriate to CH', "we have calculated cr in the
energy range from threshold to 2 eV. The results
are given in Table I for the specific case

e +CH'(j=o) =e +CH'(j=1).
3Rm' (k, ki)

f
(24)

We have calculated the expression fz, in Eq.

At threshold; the plane-wave Born approximation
gives a cross section of zero, whereas the Cou-
lomb-Born approximation (22) leads to a large
and finite cross section. Thus in the Coulomb-
Born approximation for large

~ f (,

f„(c& o) -(22~ /9~)(I+o. 218 II I-'"+ ~ ~ ~ ),
so that at threshold,

f„=22' '/9&
and

o,(j-j'=jul) =
2 ~, Q', (2j'+I)8w m', ., j j' 1})

oo o/

(25)

We have also computed the corresponding Max-
wellian-averaged rate coefficients and they are
presented in Table II.

The Coulomb field substantially enhances the
cross section near threshold and electron impact
excitation of the rotational levels of positive mo-
lecular ions may be a significant energy-loss pro-
cess in dense cold ionized plasmas. If emission
from the first excited rotational level of CH' is
detected in interstellar clouds, the cross sections
presented here will be a critical element in its
interpretation. The high efficiency of the rotation-
al excitation of polar molecular ions may modify
the process of dissociative recombination.
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