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This is a continuation in the theoretical study of scattering initiated by two coherent beams. Here the

attering by multiple independent centers is discussed. The presence of these centers involves some

problems, which are not present in scattering with a single beam. I show how these problems may be

overcome, thus allowing the phase of the scattering amplitude to be determined experimentally.

I. INTRODUCTION

In most cases, scattering experiments initiated

by a single beam yield information only on the
magnitude of the scattering amplitude but no in-
formation on the phase. Since the phase and magni-
tude are two independent parts of a scattering
amplitude, such incomplete knowledge means that
the scattering amplitude is only partially observed.

There are a limited number of exceptions to the
above statement. A well known case i,s that of the
Coulomb interference method. ' This method, how-

ever, is only useful when the interaction in the
scattering process can be divided into two parts,
one of which is the known Coulomb potential.
Through the interfex ence with the known Ruther-
ford amplitude, the phase of the remaining part
of the amplitude may be determined. The separa-
tion of the interaction into two parts does not'nec-
essarily mean that the scattering amplitude can
also be separated into two parts. Additional as-
sumptions must be added, which reduce the ef-
fectiveness of the Coulomb interference method.
Nonetheless, this method is used in proton-proton
scattering' for the determination of the phase of

the strong nucleon scattering amplitude near the
forward direction. It must be noted that this meth-
od is only valid when the exact Coulombic force
is known or present in a given scattering problem.

The method of phase-shift analysis' is another
exception. ' At sufficiently low energy, the cross
section is isotropic and the s wave dominates the

scattering amplitude. The s-wave phase shift
is then "continuously" followed by taking mea-
surements at somewhat higher energies. As highex

partial waves successively enter, they will be
followed closely and detected from the measure-
ments. The best known applications of this method

are in phase-shift analyses in nucleon-nucleon and

meson-nucleon interactions. '. Even these are not

simple cases because the procedure depends upon

arguments of continuity and other supplemental
assumptions for the correlation of phase shifts at
different energies. In some of these situations the

procedure becomes ambiguous~ when there exists

a number of different sets of phase shifts.
Despite the inevitable difficulties, one of the

goals of quantum mechanics is to measure directly
the phase of a scattering amplitude. One of the
more remarkable attempts is the intensity-corre-
lation method' employed by Hanbury-Brown and

Twiss. They showed, by using two rather intense
and incoherent beams, that it is experimentally
feasible to measure the phase of a scattering am-
plitude up to an angle-independent constant. This
method utilizes the fluctuations in the incoherent
beams. The intexference effects associated with
the fluctuations are detected with coincidence
measurements at two different angles. Such an
experiment- has not been' performed for quantum-
mechanical scattering as yet.

A more recent suggestion is the time-delay
method' for direct phase detex mination. It requires
reproducible wave packets of incident particles;
however, the construction of such wave packets
has not yet been achieved experimentally.

By far it seems to me the most promising ap-
proach for phase determinations is that of using
direct interference experiments. Unf ortunately,
the very short de Broglie wavelength of most
particle beams has discouraged people from seri-
ously considering such possibilities. In a previous
papex", ' I have discussed the fixed-potential scat-
tering of two coherent beams. These are not im-
possible to obtain. There do exist coherent laser
and. electron beams. -Coherent laser beams are
well known. The coherent electron beams, ' al-
though not so familiar, have been employed since
the early 1950's. Unfortunately, the experimental
techniques for obtaining the coherent electron
beams are not receiving the attention they merit. 9

In real scattering experiments the targets are
macroscopic samples -containing many independent
centers. In this paper the scattering of two co-
herent beams by these centers is considered. In
See. II, I lay down the theoretical foundation of
the problem. It is different from that of single-
beam scattering in that the observed cross section
of two coherent beams always depends on the
spatial distribution of the centers. In Sec. III the
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centers are restricted to a plane surface. The
phase of the scattering amplitude is easy to obtain
in this case. For the three dimensions, if the
centers are randomly distributed, the phase can be
obtained thr ough coincidence measurements. '
This is discussed in Sec. IV. In Sec. V, I deal
with the crystal diffraction of two coherent beams.
It is shown that the phase of the structure factor,
which is the scattering amplitude'of a unit cell
in the crystal, can be measured in the diffraction
experiment. The primary experiment" of this
kind was done more than 20 years ago.

II. SCATTERING BY INDEPENDENT CENTERS

where E is the energy of the beams and m is the
mass of the incident particles. The incident co-
herent beams are described by the wave function

ej&~'+ae'"2' (2.2)

where a denotes the relative phase and amplitude
of these two waves. With respect to each center,
the scattering is independent and the scattered
wave function g, (r) satisfies the Schrodinger equa-
tion

In an idealized scattering experiment, a single
fixed scattering center is bombarded by particles
incident along fixed directions. The effect of the
scattering center on the particles is represented
by a potential energy which is appreciably different
from zero only within a finite region. This is the
starting point for quantum potential scattering
problems. In a previous paper' on scatterings
initiated by two coherent beams, I also took the
same view. In real scattering experiments, there
are complications which arise from the fact that
experimental targets are macroscopic samples
containing many independent scattering centers.
These complications do not usually create prob-
lems in single-beam scattering for which the
number of the scattered particles detected is pro-
portional to the number of independent scattering
centers. However, for coherent-beam scatterings
the problem is not quite so simple.

Let us assume that in the target region there
are N independent scattering centers, by which it
is meant that the scattering from each of these
centers is independent of the presence of the other
centers. The position of each center is denoced

by the vector r, . The coordinate system is so
chosen that its origin is located at the mean posi-
tion of scattering centers (Q", , r& =0). This choice
is just for convenience and does not impose any
restriction. The two incident coherent beams have
the momenta R, and k, such that

e =1'=k'=2m'/a2 (2.1)

2

V'g, (r)+V(r —r, )g, (r) =Eg, (r) (2.3)

where V(r'} is the potential, which is assumed to
be the same for all the centers. The direction of
the scattered wave has been denoted by n.
F, (%„%„n)is the coherent scattering amplitude
for the ith center. To solve the problem, we make
use of a new coordinate system with its origin lo-
cated in the ith center. Then Eqs. (2.3) and (2.4)
have the new forms

S2
&'y,'(r') + V(r')y,'(r') = Et) I(r') (2.5)

q'(r')-=g (r) = e'"~'" "~'+ae'"2'" "&'

ejkr-'+ jk'rj
+ F, (k„k„n) r' (2.6)

where r' =r —r, are the new coordinates and% =kn.
These two equations are the fundamental equations
for coherent scattering by a fixed center, which I
have discussed in detail in the previous paper. '
From the linear properties of both the Schrodinger
equation [Eq. (2.5)] and the incident wave in Eq.
(2.6), we can express the coherent scattering
amplitude as

E,(k„%„n)=f (k„n)e """i"i

+af(k;n)e "" "2"~, (2. I)

where f (R&, n) is the conventional. scattering am-
plitude for an incident beam with momentum k&

scattered by a fixed center with potential V(r').
I shall distinguish two different cases in the

scattering by multiple centers.
Case I (noninterference scattering) If the c.en-

ters are far enough apart in comparison with the
range of force and the wavelength of incident par-
ticles, then each scattering process involves only
one of the centers and does not interfere with scat-
tering from the other centers. The observed dif-
ferential cross section is an independent sum of
each individual scattering:

dZz (k„%„n)= (1+[a)') 'g )F,(R„k„n))'dQ „,

(2.8)

where dO-„ is the solid angle. For a single beam,
Eq. (2.8) has a simple form,

and the asymptotic condition

jAr

g, (r) = e'"~ '+ae'" '2+E,(k„k„n}, (2.4)
rw 00
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dr, (k„k„k)=$)f(k„r)k "" " ''&)'drr-„

=g f(k„n)~'dQ- (2.9)

This is an expected result in conventional scat-
tering. It is stated that the number of scattered
particles that emerge per unit time in a small
solid angle dQ „ is proportional to the number of
independent centers. This type of scattering occurs
quite frequently and plays a very important role
in atomic, molecular, nuclear, and particle phys-
1es.

Case II (interference scattering) If th.e centers
are close together as compared with the wavelength
of the incident particles, then the scatterings from
individual centers will interfere with each other.
This type of scattering occurs in the scattering by
crystals. Here the independence of the N scattering
centers means that the scattering is weak, and that
therefore the wave incident on each center is the
original incident mave, and that the waves scat-
tered by other centers may be neglected in com-
parison with it. Then the total scattering ampli-
tude Ec(k„k„n) from N centers in the target
region is the geometric sum of the individual scat-
tering amplitudes:

Ec(k„k„n)= E((%„k2;n).
=1

(2.10)

HI. PLANE TARGET

As pointed out in Sec. II, the observed differen-
tial cross sections in the scattering of coherent
beams depend on the spatial structure of the target.
In'this section we shall consider a plane target,
in which all scattering centers are confined to a
flat plane, whose normal is parallel to the mo-
mentum difference vector k, -%r. Then

(k, -%,) ~ r, =0 for i =1,2, . . . , ¹ (3.1)

If the seatterings from these centers are in-
dependent and do not interfere with each other,
the observed differential cross section is given by
Eq. (2.8), alld call i)e wl'1'tie(1 as

The experimentally observed differential cross
section has the form

dZ"(k„k„.n) =(1+)a[') ')Ec(k„k„n)['dQ-„.

(2.11}

Equations (2.8) and (2.11) form the theoretical
basis for the study of the scattering of coherent
beams by multiple centers. The observed differ-
ential cross sections dZ1"(k„k„n}and dZ~c$„k„n)
depend not only on the single-center scattering
amplitude, but also on the spatial structure of the
target.

dZ,"(k„k„.n) =(1.+]a/')-'i(i

xi f (k„n)+af (kmr n)i'dQ-„. (3.2)

In arriving at Eq. (3.2) I have utilized Eqs. (2.7)
and (3.1).

If the seatterings from the centers interfere with
each other, the observed differential cross section
is given by Eq. (2.11), and has the form

dZ" (k, k„n) = (1+~a~') 'di"

x~ f(t(„n)+af(k„n)j'dQ-„, (3.3)

~)d e-((k-k))'r( Qe-((k-kk)'r (3 4)
)=l j=l

The factor A" depends on the spatial distribution
of centers in the target plane. In arriving at Eq.
(3.2) we have also utilized Eqs. (2.'I) and (3.1). The
differential cross section dZc{k„k„n) in Eq. (3.3)
has been factored into two different parts. One of
them depends on the spatial structure of the target.
The other depends on the single-center scattering
amplitude. The differential cross section
dZz" (k„k„n) in Eq. {3.2) bears the same character.
The factorization simplifies the problem. As we
shall see in Sec. IV, in the scattering of two co-
herent beams this factorization is not always pos-
sible. On the other hand, for the scattering of a
single beam, the factorization is a trivial result, "
as we have encountered in atomic, molecular, and

4
nuclear scatterings, and also in crystal diffrac-
tion s.

If a =0 in Eq. (3.3), we obtain the single-beam
differential cross section

dZ",(~„k„.n)l, =, =a"
I f (&„n)I' dQ -„=W"da(k„n),

(3.5}

where da(%„n) is the conventional differential
cross section mith respect to a single center.
Equation (3.5) expresses the fact that the spatial
factor A.~ can be measured through a single-beam
scattering experiment. The factor A" might be
obtained theoretically, if the spatial distribution
of centers in the plane target is known. As an
example, we will study the special case in which
the centers are randomly distributed. Then the
observed structure factor 4" given by Eq. {3.4)
has to be randomly averaged over these centers.
The products of terms pertaining to different
centers will vanish on performing a random sum
over the positions of these centers, and only the
squared modulus of each term remains, so that

(3.6}

This means that the differential cross section
dZc(k„k„n) in Eq. (3.3) for the interference scat-
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tering with respect to randomly distributed centers
on a plane is equal to the differential cross section
dZz"(R„k„n) in Eq. (3.2) for the noninterference
scattering whether the centers are distributed in
an ordered or a random way on a plane.

As a result of this factorization, the scattering
of two coherent beams by multiple centers con-
fined in a plane becomes a rather simple case.
The experiment will lead to the direct determina-
tion of the real and imaginary parts of the scat-
tering amplitude at all angles. The analysis of
such a determination is the same as in the case
of a single center, which has been considered
previously. ' I shall not repeat such a discussion
here.

IV. NONINTERFERENCE SCATTERING

In this section I make a detailed study of the
noninterference scattering a,s outlined in case I
of Sec. II. For the sake of simplicity, I assume
that the scattering centers are not only far apart,
but also randomly distributed in the three-dimen-
sional target region. This type of scattering with

a single beam is very common, and has been ex-
tensively used in the experimental study of micro-
scopic objects. The experimentally measured
differential cross sections from the single-beam
scatterings have provided us with ample knowledge
of the magnitudes of the scattering amplitude in
the case where the scattering center is a single
atom, molecule, or nucleus. Through the proposed
scattering by two coherent beams, we wish to re-
cover the missing information on the phase of the
scattering amplitude.

For a single scattering center, the measured
differential and total cross sections from two co-
herent beams provide, as I have shown, ' direct
information on the phase of the scattering ampli-
tude. For multiple scattering centers, the prob-
lem is not that simple. We shall see that the di-
rectly measured differential and total cross sec-
tions do not provide any information on the phase
of the scattering amplitude. The reason is not
difficult to explain. Using Eq. (2.7), the nonin-
terference differential cross section in Eq. (2.8}
can be rewritten as

N

dZI (k„k„n)=(1+Ial') ' {If(k„n)l'+Ial'I f(%»n)I' 2+Re[ fa(k„n)f*(k„n)e ""~ "2"&])dQ-„
=1

I

= (1+ lal') ' &[If (&„n)l'+ lal'I f (k„'n)I') d&;. (4 1)

As a result of the random summation, the cross
term in Eq. (4.1) vanishes. The differential cross
section dZ~N(k„k„n} depends only on the magnitude
of the scattering amplitude f(k„n). Equation (4.1)
can also be obtained for two incoherent beams.
Hence the randomness of the scattering centers
has eliminated the coherence effect and dropped
out the phase information in the measured differ-
ential cross section dZz" (R„k„.n).

To recover the lost information one has to em-
ploy the coincidence measurement. The coinci-
dence measurement, which was first introduced
by Dunworth, "has been utilized very extensively
as a method for measuring various properties of
nuclear energy levels. ' There are a number of
different types of coincidence experiments. Here
we shall only refer to the simplest one, which
consists of the coincidence measurement of the

differential cross section at two distinct directions.
For a single scattering center, the coincidence
measurement leads to the observed quantity"

K( (k„k„n,n')

N

Kz"(k„k„n,n') = K, (k„k„n,n').
=1

(4.3)

Using Eqs. (2.7} and (4.2), we can rewrite the
above equation as

=(1+lal') 'I1'i(k„k„n)l'l&j(k„k„n')I', (4 2)

which depends on both the directions n and n'. For
the noninterference scatterings by N independent
centers, the observed quantity in the coincidence
measurement is the direct sum of these quantities
from each individual center:

K,"(k„k.; n, n ) = (1+ lal') "-
glf (k„n)l'+ laf (k„n)l'] [If(k„n')I'+ laf (k„n')I']

=1

+ 2I al' Re[f(k„n)f*(k„n)f*(k„.n') f (k„n')]
+ 2 Re[a f (R„n)f"(R„n)f (k„n')f*(%„n')e ""i "2"i]

+ 2[If (R» n)l' + I af (k„.n) I2] Re[af (k„.n') f*(k„n')e ""& "2"&]

+2[I f(k„n')I +laf (k„n')I']Re[af (k„n)f*(%„n)e ""& "2"s]). (4.4)
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After performing a random summation over the scattering centers, one arrives at the expression

K,"(k„&„n,n ) = (I +
I
al') '& Gl f (k„n)l'+ I af (k„n)l'] [If(k„n')I'+

I af (k„n')I']

+2(a(2 Re[f (k2; n)f*(K„n)f (k„n')f(k„n')]}. (4.5)

For elastic scattering the unitarity relation" can
be expressed as

where

x) f(k„n, ) —f*(k„n,)~', (4.7)

n(k)=n(k, )= /if(k, ; )l*d(): (4.8)

is the conventional total cross section. The sym-
metry with respect to time reversal" yields the
following restriction on the scattering amplitude:

f(k„n, ) =f (-k„-n, ); (4.9)

f(k„n, ) f'(k„-n)= ff(k„n)f (k„n)d()-„

(4.6)

With the help of the above relation, one can per-
form the integration of the measured quantity
Kz"(K„k„n,n') with respect to dQ-„and dQ-„. :

Z (k„k,)-=JK"(k„k„,n')d()-„d()-,

8~'N ~a~'(")' h2(I+(a~2)2

If the potential V(r) is invariant under space re-
flection, "then

f (k„n,) = f (-k„-n,). (4.10)

(4.11)

Here I would like to say a few words about the
noninterference scattering by centers which form
an ideal crystal. This type of scattering depends
on the directional difference (k, -k, ) of two co-
herent beams. If the difference (k, -k, ) is not
equal to a reciprocal lattice vector of the crystal,
then the noninterference scattering by these centers
is essentially equivalent to that by randomly dis-
tributed centers. If the difference (%, -k, ) is equal
to a reciprocal-lattice vector of the crystal, then
the noninterference differential cross section in

Eq. (2.8) can be rewritten as

From Eqs. (4.7), (4.9), and (4.10), we might ex-
press the imaginary part of the scattering ampli-
tude in terms of measured quantities, which can
be obtained through the scattering experiment
with N independent scattering centers:

1+ a'
imf(k„. n)= ~~ ~

[N-'Z,'(t„k,)-o'(k)]'".

N

dZz (k„k„n)=(I+)a(') '
(( f(k„n)(' )

+('a( f(k„n))' +R2e[af(k„n)f*(k„n)e ""& "2"(]jdQ-„
=1

=(I+(a(') 'N(( f(k„n))'+)a[') f (k„n)('+2Re[af(k2;n) f*(k„n)]jdQ-„. (4.12)

The analysis of such a determination is rather a
simple one, which I have discussed in the scat-
tering by a single center previously. ' These above
results are quite easy to obtain. I leave it to the
interested readers.

where n, , P, , and y, are arbitrary integers. From
Eqs. (2.7) and (2.10), the scattering amplitude of
the crystal diffraction has the form

Z",(R„k„n)

V. INTERFERENCE SCATTERING

r ~ = &]a+ P)D + p]c, (5 1)

In this section we assume that the scattering
centers are distributed in three-dimensional space
in an orderly way. That is, these centers form an
ideal crystal. The subject under discussion is
actually a diffraction of two coherent beams by a
crystal.

The position vector of each center is now ex-
pressible in terms of three fundamental lattice
vectors a, 5, and c:

e "" "k"&[f(k„n)+af(k„n)e ""~ "~"&].

(5.2)

In most cases the number N of scattering centers
is usually large. The summation in Eq. (5.2) is
characteristically dependent on the directional
difference (R, -k, ) of two coherent beams. If

k, -k2~K, (5.3)

where K is a reciprocal-lattice vector of the crys-
tal, then the diffractions from the two coherent
beams are incoherent and the resultant diffrac-
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tion would seem to come from two incoherent
beams. This is certainly an uninteresting case. If

k, -R, =K, (5.4)

then the diffractions from the two coherent beams
are coherent and the resultant amplitude has the
form

~&(k k .n) g e-i &k-k r &
~ ri [f (k ' n) + af (It ' n)] .

and

E =f(k„n) + af (k„n)

N

G =~e f(k ky) I' $(k k )2
i=I =1

(5 'f)

(5.8)

In the theory of crystal diffraction, E is called the
structure factor and G the lattice factor, which
depends on the type of the lattice. The factor G

can be determined and investigated by the single-
beam diffraction method. It is presumably the main
topic in the experimental study of crystal diff rac-
tions. The diffraction of two coherent beams does
not provide any new information on this factor.
The structure factor E describes the relative in-
tensities of the various crystal reflections and de-
pends on the contents of the unit cell, that is, on
the number, type, and distribution of atoms in the
cell. In other words, the factor E is the scatter-
ing amplitude from all atoms in the unit cell. In
our case the unit cell is formed by one single scat-
tering center and the factor E, as expressed in
Eq. (5.7), is the scattering amplitude of two co-
herent beams by a single center. The diffraction
by two coherent beams does add new information
on the structure factor E. From the diffraction
of a single beam, one only determines the magni-
tude of the structure factor, which is f(k» n} in
this case. Through the interference between the
diffractions from two coherent beams, the phase
of the structure factor can also be determined.

In crystal diffraction, one is more interested in
the lattice factor G than the structure factor E.
It is stated in most textbooks" that the structure

(5.5)

The experimentally measured differential cross
section in Eq. (2.11) can be expressed as

(5.6)

where

factor is determined from atomic theory. Often
the Born amplitude is quoted as the expression for
the structure factor. This amplitude contains some
truth, but is still far from being a true structure
factor, namely, the scattering amplitude for all
atoms in the unit cell. It is known that not any
function can be the scattering amplitude. In order
to be a scattering amplitude it must satisfy the
unitarity relation. The quoted Born amplitude"
is often a real quantity, which can never satisfy
the unitarity relation. There are many elaborate
theories in atomic physics, but an atomic scat-
tering amplitude, which is free from any approxi-
mation and assumption, is still unknown. The
experimentally and completely measured struc-
ture factor will be helpful to build a more complete
atomic theory.

The crystal diffraction by two coherent beams
is not only feasible theoretically, but is also
realizable experimentally. To be more specific,
the crystal diffraction by two coherent beams was
carried out by Marton, Simpson, and Suddeth"
more than 20 years ago. The main motivation
for their experiment was to show directly the
interference effect of two coherent electron beams
at an energy of 60 keV. The interference fringes
are very luminous, show strong contrast, and are
steady. The data were actually overlooked and
were never analyzed. Twenty years is rather a
long time within the progress of modern physics.
There have been some important developments
in coherent electron beams. With the field-emis-
sion method, " this experiment can be performed
more easily. "

Note added in manusc~iPt. I have learned re-
cently that experiments" have also been done on
the interference effect of two coherent neutron
beams at wavelengths of about 4 A.
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