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Binding of positrons to atoms
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Necessary conditions for the existence of bound states for positron-atom systems are derived in terms
of an adiabatic-type approximation by assuming that (i) their mutual potential energy has the form of a
Morse potential and (ii) the first ionization energy of the atom exceeds the binding energy of an
electron to a unit charge of infinite mass. Use is then made of the potential energies of the appropriate
proton-atom systems, which have been determined by ab initio calculations or fitted to spectral or
scattering data, to investigate the seven positron-atom systems to which the present theory is applicable.
It is concluded that helium, nitrogen, and neon, in their ground states, should be incapable of binding
positrons. Binding of positrons to hydrogen, oxygen, argon, and krypton, in their ground states, is not
precluded by the theory, but the binding to krypton seems most likely.

I. INTRODUCTION

There has been much interest in recent years
in the chemistry of so-called "new atoms" ' in
which protons or electrons are replaced by other
fundamental particles of equal charge, such as
positrons or mesons. The existence of some of
these species as well as the analysis of many ex-
periments which involve the interaction of posi-
trons with matter" depends crucially upon
whether or not there exist bound states of certain
positron-atom systems.

A basic approach to determining the existence
and nature of bound positron-atom states is to
solve, in some suitable approximation scheme,
the Schrodinger equation for the positron-atom
system. A self-consistent-field theory of one-
positron many-electron systems has been devel-
oped by Schrader, ' although application of this
method to large systems may well prove prohib-

' itively expensive. Furthermore, in view of the
notorious difficulty of the Hartree-Fock method
in predicting the sign of the dissociation energy
of many molecules, ' predictions of the existence
of bound positron-atom states which result from
such a theory must be regarded with caution. The
same caution applies to Hylleraas-type and other
var iational calculations. '

Another approach to the question of positron-
atom binding is to seek upper or lower bounds to
the number of bound states of the system. In this
way, it may be possible to show that a system
cannot have any bound states or that it must (or
may) possess one or more bound states. Con-
siderable progress has been made in obtaining
upper bounds on the number of bound states (and
hence, necessary conditions for the existence of
any bound states) for a system consisting of a
single particle subject to a spherically symmetric
potential V(r).'' Gertler, Snodgrass, and Spruch9

have derived, within an adiabaticlike approxima-
tion, necessary conditions for the existence of
bound states of a variety of systems. Sufficient
conditions for the existence of N bound states for
a system may be derived from the Hylleraas-
Undheim theorem. "

In spite of the array of theoretical methods
noted above, little if anything is known about the
existence or nonexistence of bound positron-atom
species. In this paper we suggest how available
exPerimental data on proton-atom interactions
may be utilized to predict the nonexistence of
positron-atom bound states. Subject to certain
assumptions about the form of the proton-atom
and positron-atom potentials, our approach makes
use of an adiabatic-type approximation to yield
necessary conditions for the existence of bound
states. The use of experimentally determined
potentials enables us to study more complex sys-
tems as easily as H-e' and He-e+, which have
been the major subjects of previous theoretical
investigations.

In Sec. II we outline our approach and show
how it is related to previous work. ' ' The tet;h-
nique is then applied to a number of atoms and
it is shown that certain of these should be incapable
of supporting a positron-atom bound state. Finally,
we discuss the sensitivity of our results to the
choice of potentials and parameters and we suggest
some limitations and possible extensions.

II. A NECESSARY CONDITION FOR POSITRON
BINDING TO ATOMS

For generality, we will consider a singly charged
positive particle and an N-electron neutral atom
whose nucleus is fixed in space. " Then, expressed
in atomic units, the Hamiltonian of the system can
be taken as
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where r, p, andm refer to the position, momentum,
and mass of the positive particle; all distances are
measured from the nucleus of the atom. We pre-
sume that the system has a ground-state energy
eigenvalue E, that is determined by

(2)

In the extended Born-Oppenheimer (BO} approxi-
mation"' "there is a corresponding smallest
energy eigenvalue, E,(BO}, that is determined by
the pair of equations

V„(~)- V„(~), V„(W = V„,( ) .

Then Eq. (4) can be seen to yield
~ 2

E. (Bo)=(q,
~ 2

+ Vs(0')
I V.&

(8)

ties of proton-atom systems —to the extent that
they are adequately describable in terms of the
extended Born-Oppenheimer approximation. In
order to exploit Eq. (7) it is then necessary to
solve Eqs. (3) and (4), a nontrivial matter. How-
ever, we can adapt the inequality to obtain another
one which has the main feature of being easy to
apply. We assume that it is possible to find a
function V„(r) such that

1 N
+atom

0=1
f

and

= V0o (r) ~ &0(r„r)& (3)

+(cp ] V (r) —V„(r)
~ y )

~2
+ V~(~} I ~.&

~ E0(M),

[p'/2m+ Vo(r)] ~ y0(r) & =E0 (BO)] y0(r)&

The basic relation we use here is the Brattsev-
Epstein"' " result that

E0~ E0 (BO) . (5)

E0 0 —E0 &E0 ~ (BO) —E0 (BO), (7)

so that the extended Born-Oppenheimer approxi-
mation provides an upper bound to the actual
binding energy of the particle: the particle will
be bound to the atom only if it is likewise "Born-
Oppenheimer-bound. " This forms a basis for
determining when an absence of binding is to be
expected between positrons and various atoms. '

Since V„o(r) is evidently independent of the mass
of the positive particle, it may be estimated from
appropriate spectroscopic and scattering proper-

To do so, we let E«be the energy eigenvalue
that corresponds to the threshold of dissociation
of the positive particle and E, , (BO) the analogous
quantity determined by the extended Born-Oppen-
heimer approximation. Then Eq. (5} yields

E0.~ -E0-E0, 0 -E0 (Bo)
= [E, , (BO) —E, (BO)]

+[E0
~ ~

—Eo. d (BO}] .

When the first ionization energy of the atom ex-
ceeds that of a hydrogen atom of infinite mass,
both E, , and E, ~ (BO} are the same and refer
to a stationary, bare singly charged positive
particle that is dissociated from the atom. For
such atoms —which we henceforth assume —we
must have

where E,(M) is the lowest energy eigenvalue of
the modified Hamiltonian in which V„(r) replaces
Vao(r). In view of the asymptotic behavior as-
sumed for V„(r), we can safely conclude that the
modified Hamiltonian has a threshold of dissocia-
tion of the positive particle E, ~(M) which is the
same as E0 ~ (BO} and E«. As a result, Eq. (7)
yields

E0 ~
—E0 ~E0 ~ (BO) —E0 (BO)

~E0 ~ (M) —E0(M) . (10)

where D is the minimum value of the potential
and r, and a are parameters determined by the
location of the minimum and the curvature there.
Although it is likely that Eq. (11) will not precisely
satisfy Eq. (8}everywhere, it will certainly do
so for sufficiently small values of r; for values
of r exceeding r„deviations from Eq. (8) can be
expected to be small. " As is well known, many
diatomic molecules are reasonably well described
by such potentials, which have been fitted to ap-
propriate experimental data. For further simpli-
fication, we suppose that the radial part of the
Schrodinger's equation involving V„(r) can be
extended to (-~), as is usually done; this enables

Provided that a V„(r) can be found that satisfies
Eq. -(8), the particle will be bound to the atom only
if it is likewise bound in the modified potential.

For reasons of analytic simplicity, we next
represent V„(r) by a Morse potential" in which
the asymptotic condition of Eq. (8} is satisfied.
It is

V„(r}=D(e "~" "0l —2e 'i" "0l)+E«(M),



10 BINDING OF POSITRONS TQ ATOMS 763

the energy eigenvalues arising from Eq. (11), for
states of zero angular momentum, to be given
in closed form. " The lowest such eigenvalue is
demonstrably not greater than E,(M), so that
Eq. (10) leads to the inequality (all quantities
being expressed in atomic units)

Eo &
—Eo &D[1 —(a /8mD)'~2] 2,

provided that

8mD/a' ~ 1 .

(12}

(13)

This condition is necessary for the Morse potential
to be capable of supporting at least one bound
state. To the extent that the Morse potential
adequately satisfies Eq. (8), the same condition
is necessary for actual binding of the positive
particle to the atom under consideration.

Because the problem of determining necessary
conditions for the existence of a bound state has
received attention in both general terms'' "
and in connection with positron-binding, it will
be useful to compare the condition expressed by
Eq. (13) with the necessary condition of binding
given by Schwinger. ' For a particle of mass m
to be bound in a spherical potential V(r), in a
state of zero angular momentum, it is necessary
that

2m dr r V& &
r &1,

0
(14}

where

v&
&

(~) -=I v(r) I, v(~) & 0

=0 V(t) o 0
(15)

If V(r) is identified with the radially dependent
part of V„(r) of Eq. (11), the necessary condition
expressed by Eq. (14) becomes

(8ID/a')( —,
' ——,

' In2+-,'ar, ) ~ 1

or

8mD 1

o 403+0.5«. ' (16)

similar in form to Eq. (13). Since the values of
ar, for the diatomic hydride ions to be considered
here appear to appreciably exceed unity, the two
criteria are not identical. In such cases, Eq. (13)
expresses a stronger necessary condition for the
existence of a bound state for the prescribed
potential than does Eq. (16}."

By setting m equal to unity, the previous ex-
pressions are immediately pertinent to the question
of interest here —the binding of positrons to atoms.
To the extent that the restrictions of Eq. (8) may
sometimes not be satisfied by a Morse potential,
the necessary conditions which have been obtained

lack the absolute rigor which we should like them
to have. This limitation is compensated for by
their easy application.

III. APPLICATION TO POSITRON-ATOM SYSTEMS

The criterion of Eq. (13) is, as noted previously,
applicable only to atoms whose first ionization
energy equals or exceeds that of a hydrogen atom
of infinite mass. There are only seven elements
which satisfy this requirement: hydrogen, nitro-
gen, oxygen, helium, neon, argon, and krypton.

Estimates of the parameters a, D, and r, in
the Morse potentials [Eq. (11)] for these atoms
may be obtained from three sources. These are
(i) spectroscopic experiments, in which measure-
ments are made of the electronic and vibrational
energy levels of the ion AH'; (ii) scattering ex-
periments, in which data on the elastic scattering
of protons by A atoms are inverted to yield in-
formation about the AH' potential; and (iii) ab
initio calculations of the Born-Oppenheimer en-
ergies of AH' at a number of internuclear dis-
tances.

A. Hydrogen

Data relevant to the H, ' potential are available
from both spectroscopic measurements and theo-
retical calculations, with the latter expected to
be somewhat more reliable for this one-electron
system. Herzberg' gives values for the dissocia-
tion energy D, , the vibrational constant ~„and
the internuclear distance at the potential minimum
r„obtained from the experimental results of
Richardson. ' These values permit a determina-
tion to be made of the Morse-potential param-
eters. "

Application of Eqs. (13) and (16) to Herzberg's
values for H, ' yields the results shown in the
first row of Table I. We see that both criteria
allow the species H-e' to be bound, and that the
present criterion [Eq. (13)] imposes more strin-
gent requirements for binding than does the
Schwinger criterion [Eq. (16)] .

Particularly in the case of H, ', where only a
very limited amount of spectroscopic data is
available, the parameters a, D, and r, may be
expected to be known ry, ther imprecisely. The
second row of Table I contains values for these
quantities calculated by Hellmann" from the
spectroscopic tables of Sponer. " Comparison of
the two sets of spectroscopic data affords both an
estimate of the reliability of the parameters and
some assurance that typical variations in the data
or in their analysis do not change the qualitative
conclusions drawn from the criteria for binding.

The potential curve for H, ' may be calculated
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TABLE I. Data relating to the binding of positrons to some atoms A.

Source of data
D (a.u. ) a(a.u. ~)

(AH+) (AH+)
ro(a.u. )
(AH+)

8mD ~

6
1

0.403+0.5 aro

H

H

H

H

H

N

N

0

Spectroscopic
Spectroscopic '
Calculated d

Calculated
Calculated f

Spectroscopic g

Calculated "

Spectroscopic '

0.103
0.102
0.103
0.103
0.103

0.136
0.125

0.168

0.699
0.683
0.720
0.762
0.683

1.06
1.19

0.964

2.00
2.02
2.04
2.04
2.04

2.04
1.98

1.95

1.69
1.75
1.59
1.42
1.77

0.968
0.706

1.39

0.907
0.915
0.879
0.847
0.909

0.673
0.632

0.744,

' Reference 18.
References 19 and 20.

'References 22 and 23.
Least-squares fit of 74 points (Ref. 25) (1.15 ~ r ~ 20); three parameters.
Least-squares fit of 18 points (Ref. 25) (1.15~r ~ro); one parameter.
Least-squares fit of 57 points (Ref. 25) (roar ~20); one parameter.

~ Reference 30.
"Reference 29.
' References 31 and 32.

to a high degree of accuracy within the Born-
Oppenheimer approximation, since the Schrodinger
equation for this system is separable in confocal
elliptical coordinates. '4 We have employed a non-
linear least-squares fitting procedure to approxi-
mate the accurate numerical results thus obtained
by Wind" by Morse curves of the form of Eq. (11).
In order to obtain reasonable fits to the data, it
was necessary to discard the region of very small
internuclear distances, since the Morse potential
cannot be expected to describe accurately con-
figurations in which the nuclear repulsion is the
dominant energy term.

Table I gives the parameters obtained by a
least-squares fit of Wind's data for the region in
which V„(r) in Eq. (11) is less than the dissocia-
tion energy E, , (M). Again we see that binding
of a positron to a hydrogen atom is not ruled out

by either criterion.
While D and r, appear relatively insensitive to

the details of the fitting procedure, the parameter
a does depend significantly upon the relative-weight
given to various parts of the curve. In order to
obtain an estimate of the error inherent in the
fitting procedure, we carried out two other calcu-
lations in which D and ro were fixed and only a
was allowed to vary. Adopting a procedure sug-
gested by the modified Morse curves used by
Henglein et al." in analyzing scattering data, we
obtained the best value of a for describing the
potential in the small-r region (1.15 &r &r,),
and an analogous value for the large-r region (ro
= r = 20). These procedures produced changes in

a of 5 to 6% in opposite directions, but again, as
shown in the Table, our conclusions about binding
remain unchanged.

These conclusions are completely in accord with
those of Gertler, Snodgrass, and Spruch, 'who
have made direct use of a Born-Oppenheimer
potential determined for H, ' to estimate E, (BO)
of Eq. (4) and to evaluate the integral of Eq. (14).
As a result of the small binding energy they ob-
tained for H-e', they suggested that it is almost
certainly unbound even though they were unable
to prove that contention (as are we). However,
in a later paper Aronson, IGeinman, and Spruch"
have employed a potential that is adiabatic only
with respect to the proton-positron distance" and
thereupon find that positron binding to a hydrogen
atom is not possible.

B. Nitrogen

Data on NH', either experimental or theoretical
are rather limited. Liu and Verhaegen' have
carried out ab initio calculations on the ground
(X's) state of this ion at a number of internuclear
distances. Their results and the corresponding
experimental parameters" are given in Table I.

In spite of the rather large differences between
the theoretical and experimental values, the
qualitative conclusions are identical: the criterion
of Eq. (13) Predicts the species N-e' to be unbound,
while ike Sckwinger criterion [Eq. (16)] makes no
such Prediction. In this case, only the more strin-
gent criterion allows us to rule out binding.
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C. Oxygen

In Table I are presented the parameters obtained
by Herzberg" from an analysis of spectroscopic
data" on the band structure of OH'. The species
O-e+ is allowed by both criteria, but tee uncertain-
ties in the data suggest a need for further experi-
ments and/or a calculation of the OH+ potential
curve.

D. Helium

%bile no spectroscopic data appear to be avail-
able for hydride ions of the noble gases, scattering
measurements have been performed on these
species. 33 In particular, Henglein and co-workers'6
have investigated the scattering of protons by
helium, neon, argon and krypton atoms. They
have used a modification of Eg. (11) in an attempt
to solve the difficult problem of inverting the scat-
tering data to yield the internuclear potential func-
tion. Two Morse potentials are employed with
different values of a, depending upon whether r
is greater than or less than r, . In most cases,
the curvature parameter a for the large-x region
is about 0.8 to 0.9 times that for the small-x re-
gion. This result is in good agreement with our
own fits of the H,

' data (Table I).
If one uses the lower a value (i.e., for the large-

r region) in constructing the V~ of Eq. (B), then
the inequality expressed in that equation may be
expected to hold. In Table II, we give the param-
eters obtained by Henglein et &E."for He-H' scat-
tering. The values of D and z, obtained by Bich
et al. ' from scattering data are also included for
comparison.

Like H~', HeH+ has been of considerable interest
to theorists, principally because of its relatively
small size. Many calculations have been per-
formed, including several" "that give Born-
Oppenheimer potential curves. Results from some
of these calculations are presented in Table II
together with the extremely accurate D and x,
values of %olniewicz. 4' In spite of significant dif-
ferences among the varous calculations and be-
tween the theoretical and experimental param-
eters, the conclusion is unambiguous. Helium
atoms should be incapable of binding positrons.

Here also our conclusions are in accord with
those of Qertler, Snodgrass, and Spruch. ' How-
ever, Khare, Wallace, Bach, and Chodos'4 have
carried out a variational calculation on He-e',
with an opposite conclusion. This latter result
which is in direct contradiction to our conclusion
and that of others, '"has been questioned by
Lebeda and Schrader~' on the grounds that (i) the
variational functions used to describe the bound
and unbound systems are not of comparable flexi-

bility and (ii) the difference between two bounds
is not itself a bound.

E. Neon

The scattering data for NeH' are summarized
in Table II. Also given are two sets of param-
eters obtained from the ab initio calculation of
Peyerimhoff, "the first by the Henglein et al."
modified-Morse-potential analysis, the second by
our analysis of the spectroscopic quantities calcu-
lated by Peyerimhoff. " Again, in spite of sizeable
variations among the various parameter sets, the
conclusion that binding cannot occur remains un-
changed.

F. Argon

The scattering experiments of Henglein et al."
afford the only complete set of data on the ArH'
system (Table II). However, the good agreement
of their values for D and r, with those obtained by
both experimental" and theoretical" methods,
together with the large value of Bma/a', suggest
that further data are unlikely to yield a prediction
of nonbinding of positrons to argon atoms with the
present criterion.

G. Krypton

Only scattering data are available for Kr-H'.
The relatively deep, broad well implied by the
large D and small a values suggests that of the
atoms considered here, krypton should provide
the most favorable environment for binding a
positron. However, our criterion provides only
necessary conditions for binding, and it may be
dangerous to attach further quantitative signifi-
cance to the values of BmD/a'.

IV. DISCUSSION

It is encouraging to note that in every case
presented here, regardless of variations in the
experimental and theoretical parameters used,
the conclusion reached as to the possibility or
impossibility of binding remains unaffected. This
suggests that our criterion is sufficiently in-
sensitive to small variations in the data and in the
method of their analysis that it may safely be
applied even to relatively crude measurements.
Certainly, errors in the determination of the dis-
sociation energy D are unlikely to be large enough
to affect any of our conclusions. The relatively
greater sensitivity of the parameter a and the
greater difficulty of measuring this quantity ac-
curately are somewhat disturbing. Nevertheless,
only in the case of the NH' spectroscopic data
would a change of 15@ in the value of a reverse
our conclusions.
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TABLE II. Data relating to the binding of positrons to noble-gas atoms A.

A Source of data
D (a.u. )

(AH )

a(a.u -i)
(AH )

ro(a.u. )
(A H+)

8mD
CE

1
0,403+0.5 aro

He
He
He
He
He
He
He
He
He
He

Scattering b

Scattering
Calculated
Calculated ~

Calculated &

Calculated "
Calculated '
Calculated ~

Calculated
Calculated i

0.074+ 0.004
0.080
0.059
0.070
0.071
0.071
0.067
0.066
0.078
0.074 94

1.28

1.56
1.68
1.56
1.49
1.60
1.52
1.50

1.46 + 0.04
1.41
1.480
1,432
1.446
1.455
1.444
1.464
1.446
1.463 24

0.361

0.194
0.198
0.234
0.256
0.209
0.229
0.277

0.748

0.642
0.623
0.653
0.673
0.642
0.660
0.672

Ne Scattering b

Ne Scattering
Ne Calculated"

Ar Scattering "
Ar Scattering d

Ar Calculated 0

Kr Scattering b

Kr Scattering

0.084 + 0.004
0.083
0.081

0.148 + 0.004
0.155
0.151

0.164 + 0.004
0.17

1.22

1 25c
(] 52) m

0 87c

0.72

1.87 + 0.06
1.90
1.83

2.48 + 0.13
2.35
2.61

2.78 + 0.11
2.9

0.451

0.415
(0.280) m

1.56

0.649

0.647 (0.557)

0.408

0.713

~ Reference 18.
Reference 34.' Modified morse potential (Ref. 26) value given for a is for the outer part of the curve

(r ~ro) where the curvature is smaller.
Reference 35.

~ Reference 36.
Reference 37.

g Reference 38.
"Reference 39.
' Reference 40.
& Reference 41.
"Reference 42.
' Reference 43.

Values in parenthesis calculated from a value obtained from Peyerimhoff's spectral
parameters.

"Reference 26.
0 Reference 47.

While the limitation of the present method to
only seven elements of the periodic table is rather
severe, the possibility of treating krypton and
xenon as easily as hydrogen and helium offers at
least some compensation. In addition it may be
possible to extend our approach to utilize proton-
molecule scattering data" for obtaining bounds on
the binding energies of positrons to relatively
spherical molecules with sufficiently high first
ionization energies.

Although we have been able to compare theo-
retical with spectroscopic and theoretical with
scattering data, no system has come to our atten-
tion for which both sufficient spectroscopic and
scattering data are available for parallel deter-
minations of the Morse-potential parameters.
Such a point of overlap might provide a useful

check of both the present approach and of the inver-
sion techniques which have been applied to the
scattering data. It would seem that the ArH' and
KrH' systems, which appear from the scattering
experiments to be quite strongly bound, might
provide interesting subjects for spectroscopic
investigation.

As for experimental verification of the existence
of bound positron-atom systems, our calculations
clearly point to krypton as the most likely atom
to bind a positron. The large value of 8mD/a'
and the fact that the upper bound" on the binding
energy is twice as great (0.061 a.u. or 1.6 eV} for
krypton as for any other atom, are certainly sug-
gestive, if not conclusive. The next most likely
candidate from a practical point of view appears
to be argon.
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The results we have obtained have explicitly
dealt with the possibility of positrons being bound

to atoms only when the latter are in their ground
states. In the course of experiments designed
to ascertain the existence of bound positron-atom
states, it is conceivable that the atoms may be
excited to states that differ appropriately from
the ground state, e.g. , have a different electronic
spin. In such cases, the method which has been
described could be used if the relevant data for
the corresponding proton-atom system were avail-
able. Lacking such information, we are unable to
preclude the possibility of positron binding in such
cases. In fact, despite the negative results that

we have obtained for helium, nitrogen, and neon,
the possibility that excited states of these atoms
may give rise to bound positron-atom states must
not be lost sight of.
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