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The retarded interactions between neutral molecules at very large separations are calculated by

perturbation of the electromagnetic vacuum state. This state is represented by the Wheeler form of the

electromagnetic vacuum functional. Besides the well-known Casimir attractive R ' potential energy

between polarizable bodies, . the repulsive interaction between one electrically and one magnetically

polarizable molecule proportional to R ' is computed. Also the specific discriminating force between

optically active molecules, with potential proportional to R, is shown to follow similar calculations.

For isomeric molecules this force is repulsive for identical handedness and attractive between

enantiomers.

I. INTRODUCTION

It has been known since the early work of Casi-
mir' that the forces between electrically neutral
systems are considerably changed at very distant
separations from that deducible from Coulomb's
law between the constituent charges. . In the case of
electrically polarizable bodies the potential ener-
gy of the interbody force at these large distances
is

23 n(a) n(b)
4m R'

for isotropic polarizabilities n(a) and n(b) of the
two bodies. This form of potential energy takes
over from the London energy, proportional to R '
and obtained by applying perturbation theory with

the inter-Coulomb energies, at separations R much

larger than the wavelengths associated with the
natural frequencies of (a) and (b). In the case of a
simple atom such frequencies correspond to the
energies of excited electronic states above the
ground state. There are several reviews'- that
summarize the long-range intermolecular forces
in these simple cases. In the domain where Eq.
(1}is valid the polarizable bodies are passive: It
is the fluctuating electromagnetic field that is dy-
namically responsible for the energy shifts. Re-
cently I showed' how the energy (1) can be obtained
from perturbations changing the vacuum state of
quantum electrodynamics. This state has wave
functional

0'g[B] =N exp —. . . d'r d'r'1 " B(r) B(r')
16m' hc r-r' '

present paper the same idea has been used to ob-
tain long-range interactions due to other charac-
teristics of the atoms or molecules. In particular
the energy law"

7 n~(a)n„(b)

16 R(a}R(b) (Rc)2
disc +

3& Eg E2 Rg
a

(4)

where R(a) and R(b) are the optical rotatory
strengths at the levels E, and E, for the two mole-
cules. It is of interest to note that simi?arly hand-
ed molecules repel through (4) but molecules of
opposing handedness attract. This basic difference
also occurs for the London region too.' Unfortu-
nately, in both cases, the discriminating forces
are very weak compared with the equal nondis-
criminating forces that arise from electric polar-
izabilities alone.

that gives a repulsive force between electric body

(a) and body (b} with magnetic polarization n„(b),
is shown to follow immediately. Qf more interest
the specific intermolecular energies between di-
symmetric molecules, specific as between enan-
tiomers, can be deduced by similar arguments.
This goes beyond the two aforementioned R ' laws,
and the reasoning that leads to a potential pro-
portional to R ' in this case is presented on simple
dimensional grounds. The numerical constants of
proportionality are harder to compute but it is
shown that, if each molecule has one strong elec-
tronic level, E„E„that absorbs differentially be-
tween left and right circularly polarized light, the
discriminating energy is

as shown by Wheeler. ' The perturbations that
change the energy Z, of the vacuum state are due
to the presence of the polarizable bodies. In the

II. METHOD

The method employed below to calculate the rele-
vant energy shifts is based on changing the vacuum
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a functional of the canonical pairs (E,A) a,nd

(p q ), +=1, 2, . . . , n. On the other hand the
elementary quantum theory of molecules in given
external fields has Hamiltonian

H„=H „(p,q)+H, (p, q), (6)

energy of the radiation field by the presence of the
molecules and isolating that shift which depends on

the relative position of the molecule pair. The cal-
culation of the shifts is by perturbation theory —but
with no response of the matter. In one obvious
sense the method is complementary to that involved
in calculating energy shifts in external passive
fields. Complete quantum electrodynamics can be
considered as a dynamics based on the Hamilton-
ian

H„,=H»q(E, A)+H „(p,q)+H , (E,.A;p, q),

Hr =H»g (E,A) +H», (E, A) (7)

as the Hamiltonian of the dynamical system. The
canonical pair (E, A) stands alone and H. , de-
pends parametrically on the molecules or atoms
which are passive. No field equations for matter
are to be obtained from H~.

From the work of Wheeler (see also Kuchar")
the ground-state functional of H„&in the "q"repre-
sentation is given by Eq. (2). We apply standard
perturbation theory to calculate energy shifts due
to H;, t . In particular for two-body forces we as-
sume

H», (E, A) =H ..'I (E,A) +H(»~it (E,A), (8)

so that the field interacts with (a) and (b) separate-
ly. Then the shift ~, from the unperturbed val-
ue, that depends on the relative position is (in low-
est nonvanishing order)

where the canonical pairs of the charges (p q»}
alone are dynamically operative. H;„,depends on
the electromagnetic fields in a parametric way but
there are no field equations for the electromagnet-
ic field to be obtained from H„.The point of view
taken here is to consider

1

Zp rad

The calculations then depend on evaluating the
functional integrals in

(9)

~ = —2 exp —1+. . . d'rd'r' O', E, B

-1

8n' 1&r'Sc r-r' '

exp —8. . . d'xd'r' dB,1 B(r} B(r')
8w'jgc r-r' ' (10)

where
5

E((r) 4vihce(»v~

since

[E,(r},B&(r').] = wibc@,» g~b (r —r') . (12)

(14)

As discussed in Ref. 5 it is easier to calculate in
the "p" representation for 4 p and a simple scaling

B= (@c)' S E = (Ic)'&'Z

In going from Eq. (9) to (10) we use the Hermitian
nature of H, and express the normalization factor
3f ' explicitly.

III. CALCULATIONS

gives the energy shift in this case to be
/

Vs s(R) = —o.(a)o.(b)hc

,'f exp(-l}—8'(a)A '6 (b)exp(-1)dZ

f exp(-2I)d f
To proceed further and evaluate Eq. (10) it is

necessary to know H~'& and H~„',~. For the first of
the three cases mentioned in the Introduction we
have simple isotropic electrically polarizable sys-
tems so that

and

where

and

(8 '+di') d'r —~ .
8m . kc

'

(16)

(17)

(18)
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I is clearly a number, S and S have dimensions
(length) ', and b. has dimension (length) '. If we
count the dimensions of the numerator functional
integral we find (length) '+' ' ' while the denom-
inator has dimensions (length) ', hence, since the
sole length in the problem is the separation dis-
tance 8 between the molecules

Vs s(R }=—,x (number) .&(a)o(b)Sc
Q7

In the second case where body (a) is electrically

If i", = --,' o.s(a}E'(a) (20)

If/, ' = -k &„(b)B'(b) (21)

Clearly the same dimensional argument goes
through as before and again we have a potential
energy proportional to 8 '

polarizable and body (b) is magnetically polariza-
ble we use

( ) ( ) ( )~
—,'jexp(-I)g'(a)a 'si'(b)exp(-I)dS

E ~ E N pjexp(-2I)d

as a a„bPfc x (another number) .g7

Finally in the case of optically active molecules the interaction Hamiltonian is more complicated. In the
Appendix it is shown that, for randomly oriented molecules,

1 R(a}II~'] =-3, kc(E.curIE+B curlB)' (24)

I R(b)
lfc(E curlE+B curlB)int (25)

with R(a) and R(b) the optical rotatory strengths at active frequencies E,/5 and E,/k. The discriminating
energy can now be written down from Eq. (10) as

Vs (R) =—,, — exp(-I)[E(a) curlE(a)+B(a) curlB(a)]
R(a)R(b)(ac) 2

6 '[E(b) curlE(b )+B{b)curlB(b)]exp(-I)dEX

J exp(-2I}dE
(26)

A count of the length dimensions in these functional integrals leads at once to the dependency of R '. So that

Va (R) = — », && (another number) .
R (a)R (b) (k'c)'

(27)

Using a large but finite quantization box one may convert these functional integrals in Eqs. (16), (22), and
(26) into mode summations, equivalent to two photons of wave vectors % and%'. For the number in Eq. (19)
we have

g7
, [I+($ ~ k')']cos[$+2) It]dkdk'dQda' =—,

while that for Eqs. (22} and (23) is

7 w 3 p3

2k k'cos[(R+%') R]dkdk'dAdA' =-4
4m'

Finally for the discriminating energy of Eqs. (26) and (27} the constant of proportionality is

ge ksk" '- k '
, J k [1+(k k')'+2k k']cos[(ft+% ) H]dkdk'dfldQ'=- —. (30)

~ith these numerical values in Eqs. (19), (23}, and (27) the retarded interaction potentials quoted in the
Introduction follow.
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APPENDIX

Htot Hmof ++?ad p r

mr Br d3r.

In Eq. (A2), p(r) and m(r) are the electric and
magnetic polarization fields, respectively. '

In di-
pole approximation

p(r) = iu(a )5(r —R,) + p, g}5(r —Ra)

(A3}

m(r) =m(a)6(r —R,)+m(b)5(r —Ro) .

Equation (A2} has been obtained" by ignoring the
diamagnetic interactions quadratic in the magnetic
field and certain field independent-energy shifts
of the form f j™p )'d'r.

In this Appendix a further canonical transforma-
tion is carried out generated by T, i.e.,

-fr fr
Hnew =e Hto, (A4)

which eliminates the H t = —p 'E —m '~ terms in
(A2). It is clear that if T is chosen so that

It is well known" that the conventional nonrela-
tivistic Hamiltonian for neutral molecules inter-
acting with radiation, namely,

g [p, -e„A(q )/c]'
a m ot

can be transformed, and the ep A/c terms elimi-
nated, by the canonical transformation e ' He"
with S= (e/kc) Jq Ad'r. The simplest form of the
transformed Hamiltonian is

If the transition moments are expressed in body-
fixed axes A., p, v =1, 2, or 3, we have

g ~ =Rf ~gg, m ~ =RfgPPl )„,
where Rf~ is the Eulerian matrix. The random
average of R,.„Rf„is

(R, ),Ri ) = —', 5,~5~„ (A10)

and the diagonal term o =m of (A8) becomes

on .~no 1 mon .mno ~ 1 ~on. mno
E —— B —— (E 'B-B'E)

Eno 3 Eno 3 Eno

(A11)

=--,' aeE'--,' a„B'. (A12)

The term in (A6) that gives rise to the H&;i and
Htog of Eqs. (24) and (25) is --,'[T, [T, H,~]] (The
remaining term i[T, Hrad] is needed to give single
absorption and emission of photons. ) The general
m-o matrix element of =,'[T, [T, H.ad]] is, using
Eq. (12),

i (~ratlm llO m lllll~aa)1 ~ E V~f
ff& E E i f f l

nin no

IA (mala ao alo ao)
mn no

terms in ~itti' snd ~mi') . (Atr)

The latter terms in (A13) are higher-order contri-
butions to the polarization effects of (A.12) and the
mixed terms in (A13) have the diagonal (o =m)
contribution

-i[T Hmol]+Hint =0l

then, to second order in e,

H„.=H., +H, - ,'i[T, H, ] i[T,-H,„]
—a [T, [T& H rad ]]

(A5)

6)

-telic(eisa/Eoo)(EiVOEdki"mr +BrVirBggi~i }

(A14)

Again if the random orientation average is taken
of (A14) using (Alo) this term is

The m-n matrix element for T that solves (A5) is (ilc/3E„',)(oiiiin) (nimio) (E ~ curlE+B curlB) .
(A15)

g p~n ~ E jmmnE„ E„ (A7) Finally, since the optical rotatory strength in the
dipole approximation is

With this choice of T the m-0 matrix element of
—i/2[T, H, ] is R„,=1m(o [gi n) (n imago), (A16)

(P, f "P,f"'EfEf +m, "mf"'BfBf
2 E„E„

+
iimr

"m
J E&B& +m&" a& BiE&) . (A8)

the effective interaction energy for molecule (a) is

H~'I = —[R„,(a)kc/3E„',](E curlE+B curlB).

(A17)
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