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The e® corrections to the decay rate of orthopositronium are calculated. For this calculation, as
for bound-state problems in general, special attention must be given to infrared and Coulomb terms.
The final result of this calculation is that the e® corrections yield a decrease in the lifetime of
approximately 0.4% which represents a discrepancy of 23 standard deviations with the current

experimental value.

The decay rate of orthopositronium as calculated
by considering only diagram (a) of Fig. 1 is!

T,=(2/971)a®mc?/B) (% -9), (1)

where I', is the reciprocal of the orthopositronium
lifetime, m is the electron mass, « is the fine-
structure constant, c is the velocity of light, and
% is Planck’s constant divided by 27. The decay
rate of orthopositronium has been measured? with
an accuracy that is sensitive to the first radiative
corrections to Eq. (1).

The method used to calculate these radiative
corrections to the decay rate of orthopositronium® *
is essentially the same as the method used to cal-
culate the radiative corrections to the decay rate
of parapositronium.® In particular, the formulation
of the decay matrix element and the resolution of
the infrared and Coulomb problems are as in the
case of parapositronium.

For an electron and a positron in a bound state
the decay matrix element for electron-positron
pair annihilation must be weighted over the relative
momentum distribution of the electron and the
positron to give the decay matrix element from
the bound state:

fm=f Xao (PYM(p)dp . (2)

In Eq. (2), X4 (p) is the relative momentum
distribution between particles “a” and “b”’ and
M(p) is (with an important exception which is
discussed below) the plane-wave annihilation ma-
trix element for the .sum of all diagrams in Fig. 1.
The relative momentum distribution is given by
the Bethe-Salpeter equation. Alekseev® has given
a convenient nonrelativistic solution of the Bethe-
Salpeter equation. Retaining only components of
the wave function (relative momentum distribution)
through relative order « inclusive, the 16-com-
ponent wave function is written as the direct pro-
duct of four-component column matrices:
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X (ab .5/2m>xc(z?"') @@, t20 (3

where the components of § are the Pauli matrices,
x &P is the direct product of the spin wave func-
tions, ¢,(P) is the Schrddinger wave function in
momentum space and the indices a and b indicate
that the various operators act only on particle

a or b. In addition, E is the binding energy and

D, is the zero component of the relative momentum
four-vector. Writing M(p) in terms of four two-
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FIG. 1. Feynman diagrams of order e® and e° for the
annihilation of an electron-positron pair. The solid and
dotted lines represent electron-positron and photon
lines, respectively. Time increases from right to left.
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dimensional square matrices and noting that to the
required order the & function in Eq. (3) may be

:‘Ill=f d3P< M“(p)x +Xp_§_M21(§‘)Xc—xl’

evaluated at p,=0 since E ~ 0(a?) and p2/2m ~O
(a?), we obtain for Eq. (2)

_._sz(-—)x +O(p ~a2W2z( -—)> ‘Po(p-—)’ (4)

where x, and x , are the two-component electron and positron spin wave functions, respectively. To obtain
the bound-state decay matrix element to relative order « we may expand the plane-wave matrix element
in powers of p, and retain only the constant and linear terms in p since v/c~ O(a) for hydrogenic systems.

Then expanding M, (D),

M,, (D), and M,,(P) about H=0 we obtain

U 0
M= f dsp [x’ < 11(0) + Dy aMp(‘ ) ) Xp 2LpM21(0)xe—X’M12(O) ]goo(-—)
T : ’:
(68 B - O o0 k) B0 0

where y(X) is the coordinate space wave function
corresponding to ¢,(P). The orthopositronium
ground-state wave function is even in D: ¢.( D)
=@o( =D). Thus,

M=x, Mu(0)x3¢(x 0). (6)

We mention that the last three terms of Eq. (5)
contribute to the decay amplitude for positronium
in a P state. In Eq. (6), xJ M,,(0)x, is just the
plane-wave matrix element with the initial parti-
cles at rest. Thus, the bound-state decay matrix
squared is

[9 |2 = [9(0)|*[m(0)[?, (7

where ¥(0) is the Schrddinger wave function evalu-
ated at contact and M(0) is the plane-wave annihila-
tion matrix element for the sum of all diagrams

in Fig. 1 evaluated for the initial electron and
positron at rest.

In constructing the plane-wave matrix element
squared, it is understood that we average over
initial spins and multiply by 4 since the singlet
contribution is zero in the nonrelativistic limit
and the statistical weight of the triplet states is
4. In addition, we must integrate over final photon
energies, sum over final photon polarizations,
and multiply by the Bose factor 1/3!.

The detailed setting up of the phase-space inte-

J

grals is given in the text by Jauch and Rohrlich.”
Additional details are given by Holt® and Stroscio.?
The reciprocal of the orthopositronium lifetime is

1  a®mc?

P —

1 1
f dK, f dK, X(K,K,) ,
[+ 1_K1

(8)

where in terms of the final photon energies (w,,
w,, and w,), K, =w,/m, K, =w,/m. Furthermore,
w; has been eliminated by use of the energy con-
servation relation w, +w, +w,=2m. X(K,K,) is
now defined in terms of the diagrams in Fig. 1.
The amplitude of the diagram of order ¢® in Fig.

1 is denoted by N and amplitudes of the diagrams
of order e® are denoted by Q. Letting

(FIMD i) =5(p,)Nu( p,) , (92)
(FIM® i) =5(p,)Qu(p) , (9b)

where p, and p, are the electron and positron mo-
mentum four-vectors, respectively, and « and v
are the Dirac spinors we have,

(1M + M [3)2= | T(p,)(N+Qulp,)]?
=[T(p)(N+Qu(p))]
x[@(p)F+Qv(p)]. (10)

Including the averages over initial spins gives,

FIMD +M P [i)2~5 37 3™ [Tal 52 )N+ Qg (D1, ST D1y S )E+R),505( D5, S5)] - (11)

+
31 Szi

Then using,

,21 ua(pus)uﬂ(pus)z ('é];—m)ae ’ (123)

m

r
+

Z va(pz»s)ve(pzys)=— (Lﬁzzm_m“) 5 , (12b)

8

we have
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Defining N’ and @’ by

=—iele €, e N'HN (14a)
Q=-ic*e,, €@, (14b)
we have
(flM(a) +M(5)|i>2 eE)“€>‘2€)\3€Me)‘2€)‘3{tr[N'”")‘ <ﬁ1+m>1—v'/por <' >
o (252 9 () itz
INGTURN ﬂ +m >] 10
x N < L—Zm +0(e ) (15)
Then using v =—D, +ky, (19a)
D et =—gu (16) a%=pi—k , (19b)
X
—h eb. 2
to sum over photon polarizations, and noting that Ki=pi ki /m*, (19¢)
the two terms in the trace of order e® are complex K[=p,k; /m?® (194d)
conjugates of each other we have to the required
order, with &, k,, and k, representing the four-momenta
of the final-state photons. In addition, we write
Z Z (FlM® + 8 |4)2
S1982 Aj,A2,A3 QszC*Qdef‘*‘ch"'Qi*Qj ’ (20)
= mir [N’ <M\ N <_'_ézl_m_>1 where @,., for example, represents the sum of
2m 2m the Feynman amplitudes of diagrams (b) and (c).
o/ Then in the Feynman gauge,
+2m* tr[ReQ’ birm )\ g, <l2+m>] ,
2m 2m o )
Z(ry)y " (d, + m
(17) Qpe=—ie €u€y€n z ( (ra)r"d, )y"
pesr%‘ls 3K1
where the factor of 4m*/e® is inserted so that Eq. " v "
(17) corresponds to the integrand of Eq. (8). +X 7 +Z’27 Z(g)y >,
Letting N correspond to the Feynman amplitude 1Ky
of diagram (a) in Fig. 1 we have, (21)
# v n here
N=—ie3€p€u€n Z l:y (7‘3 +4”:'172’Kff{1+m)7 ] ) where,
s Z(Qi)=-2m2KiReizf (g:) , (22a)
(18)
‘ Z(ry)=-2mPK{ReiZ,(»;) , (22p)
where ) means six permutations over photons,
and and

J

20 g | (1- 22 mg) + B [ L (agprdfondlyy) 2 2t
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with p=—(p? - m®)/m® and X the photon “mass.”

Equation (23) is given incorrectly in the literature

in several places.’*” Upon minor rearrangement
of the terms in the square bracket this result

I}

AU(_pz, 73)(7‘3 + m)'yu(dx + m)'}’"

agrees with that of Chou and Dresden® who also

note that Eq. (23) is given incorrectly in various
works.

In addition,

LY+ m)N (s, q)(d, +m)y"

- ;53
Quer =—1€7°€, € € 2

six
perms

KK,

LY+ m)y” (4 + m)A(q,, b)) )

KK,
where after ultraviolet renormalization,
a
Ay(p,P)~Ayy= “37 (Alu +yudy - 27”A3> ’
(25)

with

1 1
Ay =j; dxx [ dyK,/a, 26)

a?/m’=x%+px(l - x)(1=y) +p'x(1-x)y, (27)
Ky=(#" = m)y,(#-m)(1-x) +7,C +(#' -mM |,
+ My (# —m) +kymx(1 +x)(2y - 1)
+i0,, R"m x(1 - x). (28)
The various factors in Eq. (28) are
C=(1=-x)(1=x+xy)(p* -m’)
+(1=x)(1 = x)(p"” —mP), (29a)
Mi=m(1=x%)y, - (1= 2)(1-x3)P,
= (1= x+2xy)(1 - xy)k,, (29b)

J

T'EY (= by, kg, py 4,)(4, +m)y "

Q=—1e%¢,€,€ (
&h (TR TS /] ; 4m“K.§K1
perms
where
T (p’, k', k, p) =Rei2p,- k'T* (p', k', k, p) .

Furthermore,

5 1 1 1
POT(P',k',k,p)=23‘1;§f dvv(l-v)f dxf dy (—“—
0 (o]

[

where

KiK,
(24)
—
My=m(1-x%)y,=(1=-x+xy)(1=%)P,
+(1=x+xy)(1 +x=2xy)k, , (29¢)
0,“,=%i('y”'y,,-7.,7u) s (29d)
where
p==(p*-m’)/m?, (30a)
== (p'2-m*)/m (30b)
puzp‘j +Dy s (30c)
ky=p,—py, - (304)
In Eq. (25) we also have,
' odx 3 1
Aem2h==2 ) % TT YA -5
1 pl(pl2+4pl _4) ,
+p'—p < 2(1-p') Inp
_pp®+4p-4)
———2(1 e lnp) .
(31)
For diagrams (g) and (h) we have,
oy +m)T Y g, by, B
+')’ ( 3 )4m41({£31’(laz 1:1’1) ) , (32)
(33)
N(2)
+), (34)

NO=vu[-¥ +m+p'vx +¥'v = ¥(1 =v)ylyfm+Bvx +¥'v — 1 - 0)y)y, (-8 - B +m+B'vx +¥'v - k(1 -v)yly”,

N%?r = YD[YGYT(# +m) + (ﬂ""m)'ya')/‘r +Yr (ﬁl +%l)7«o - ngoT]yu

(35a)

=YY Y1V p F VoY oY1 + Y2 Y5 oY [DP(1 = vx) + k(1 = v) +RP (1 = 0)y], (35b)

a®=m?(1 —vx) = p?vx(1 —vx) =2 Ev(1 —=v)x = 2p " kv(l —v)xy — 2k k v(1 - 0)y. (35¢)



10

RADIATIVE CORRECTIONS

For the photon-photon scattering diagram we have
followed the treatment of Karplus and Neuman.®
In addition, Shima’s calculation'® of photon split-
ting in a static field differs from the present work
only in that a static photon is replaced by an in-
ternal photon. For diagram (i) we have

(36)

1
Q;=-e€’e’e )\VGk—inuvox(kp ko, kg, ky)

12e

Fuuc X(kv kza ks’ k4) (2 )

where

1,=bo, (39a)
L=po+k,, (39b)
L=po—k, = ks, (39¢)
Li=po—ky, (39d)
po=—k,(1-y) = ky(z =y) = ks(x ~y), (39e)
a?=2k; k(1 - y)(y —2) +2k,  kyy(x — y)

+2k, Ry(x = y)(y —2) —m?. (39f)

The sum over the six permutations of photons is

1 1 1 1
K“""(—pz,ka,kz,kl,pl)=—lj dvv(l—v)f duuaj dyf dx<
27 J 0 0 o

with
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where £k, is the four-momentum of the internal
photon in diagram (i) of Fig. 1 and,
Mo r(ky, by, Ry Ry) = Fyor(Ry, By, kg, ky)
+Fy ok, By, Ry, Rg)
+F s youlks, By, Ry k1), (37

where

fd4pf dx.[ dyf dz BB =1 +mhy,(B— B +m)y (B = & +m)y (- 14+m)]

(p2 2)4
(38)

accomplished here by the three terms in Eq. (37).
The other three terms differ only by the direction
of the fermion loop momentum in diagram (i),
Fig. 1, and may therefore be accounted for by a
factor of 2 which has been inserted in Eq. (38).
Equation (38) also contains a minus sign associated
with the time ordering of the closed fermion loop.
Diagram (j) corresponds to the amplitude,

Q;=—ie’e €.e EK“ (=Pys ks, ko By, D)), (40)
perms
where
Muun(o) Muun(z) Muvn(4)
2\3 e T 2 >: (41)
(@?) 4(a®) 2a

MO = 4yt — By +m)yV(d, — By +mly "+ 2ml Y Wy = By +my U, = By vy ™y + I (g = By +m)Y(d, — 1, +m)y "]

+y Lo Vs = by +m)Y"d, = By +my Wy o, (42a)

M¥T® = _ 2y°(~f, - fy+m)y* (s = Ty +m)y" v "y,
(= Bo = Lo +mW* Y™y (= Vo +m)y Ty 1y o = 27 (=F, = o +mI*y"y " (B, - Ly +m)y o

YOV W s = B +m)Y” (= B +m)y vy o +Y Y W = B +mly v 1Y, = B v m)y o

-2y Y d, - b rmly "B, - L +m)y,, (42b)
MO = _2(yTyVok — 29V gk 49HyVy M), (42¢)
a?/u? =mfu -2k, kv(1 —uv)x — 2k, * kyvx[u(l - v)y +(1 —u)]

=2k, kyv[u(1 - 0)y +(1 - u)] +2p, k(1 - w)vx +2p, by (1 — uv

+2p, ky(1 =2)[1 = (1= v)y] +23(1 = u)/u, (42d)
L=p,+p,(1—u) ~ k(1 —uvx) = ky(1 — uv) — Byl 1 —u +u(1 - v)y] . (42e)

The terms in Eq. (42a) without powers of [, in the
numerator: (i) contain an infrared factor that can-
cels the infrared factors in Egs. (23) and (31), (ii)
contain a Coulomb term that is linearly divergent

r

in the nonrelativistic limit [see Egs. (47) and (48)],
and (iii) are finite only after we subtract the in-
frared and Coulomb terms and sum over all photon
permutations as indicated in Eq. (40). Likewise,
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the terms in Eq. (42a) with one power of [, in the
numerator must be written in “subtracted form”
after the sum over photon permutations is per-
formed in order to demonstrate cancellation of
infinities.

The actual calculation of the diagrams in Fig. 1
was accomplished by using the symbol manipula-
tion program REDUCE ! for most of the algebraic
calculations, and Gauss-Legendre integration
algorithms to perform some of the necessary in-
tegrations (other integrals were done by hand).
The results of these calculations in the Feynman
gauge are,

T, =[4.785+0.010 +4In(\/m)] (a/mT,,  (43)
Ty =[-2.90£0.15 - 6 In(A/m)] (@/mM)T, ,  (44)
r,,=(-3.4£0.4)(a/mMT,, (45)
Tr;=(-0.5+0.2)(a/mT,, (46)
T;=[3.8+0.4 +2In(A/m) + (7% /v)

+0(v? In(A/m))}(a/m)T, , (47)

where I', is given by Eq. (1) and the subscripts on
'y, for example, indicate that both diagrams (b)
and (c) of Fig. 1 are included. In addition, X is the
“photon mass” and v is the relative velocity of the
electron and the positron. The numerical error
estimates are determined by comparing numerical
calculations with analytic expressions and by com-
paring Gauss-Legendre integration results for dif-
ferent numbers of integration points. We mention
that diagrams (b)-(f), and most of (i) have been
calculated independently by both of us. All differ-
ences between these calculations have been explic-
itly isolated and reconciled.

It is observed that all infrared factors in Egs.
(43)-(47) cancel with the exception of the term of
order v?*In(A/m). This term is, however, of order
a@?1In(x/m) since the Bohr momentum of positronium
is of order a. This treatment of the infrared prob-
lem'*~* could be improved by taking into account
binding in intermediate states.!®'6

The term 7%/v in Eq. (47) is due to the Coulomb
part of the virtual photon interaction in diagram
(j) of Fig. 1. The divergence of the Coulomb term
represents a failure of the Born approximation
and is corrected in the present calculation by the
use of the Sommerfeld factor. It is known that a
method of modifying plane-wave cross sections to
include the effect of the Coulomb interaction is to
multiply by the Sommerfeld factor, which to lowest

order in a is given by,®
S=1+7m1a/v . (48)

Thus the Coulomb corrected cross section o, is
given in terms of the plane-wave cross section ¢
by

o,=0(l+ma/v) . (49)

The last factor in Eq. (49) is exactly the Coulomb
factor multiplying I', in Eq. (47). Thus to remove
the effect of the Coulomb interaction, which is
included in the bound-state wave function of Eq.
(7), we subtract the factor (ra/v) I, from Eq.
(47). That we should include only the transverse
photon contribution from diagram (j) is also made
evident by an examination of the Bethe-Salpeter
equation.3+4:5: 17

The photon-photon contribution, diagram (i) of
Fig. 1, has been previously calculated by two dif-
ferent methods.’® Our result for I';, which was
calculated using the method developed by Karplus
and Neuman® for the photon-photon scattering part,
is in agreement with the previous calculation'® for
the case where the Karplus-Neuman method is
used. We mention that our error estimate is larger
than that given in Ref. 18.

From Eq. (1) and Egs. (43)—(47), the total decay
rate to relative order « is

_2 a’mc
P=g— —— (1*=9)[1+(a/n)(1.8+0.6)]
=(0.7241+0.0010) x 107 sec~". (50)

This is to be compared with the experimental
value,?

T o =(0.7275£0.0015) x 107 sec™ . (51)

There is thus a discrepancy in the amount of ap-
proximately 23 standard deviations in the experi-
mental error. Future theoretical work, with the
purpose of reducing the numerical error estimates
of the present calculation, could possibly consist
of replacing the present Gaussian integration
algorithms by Monte Carlo algorithms and calcu-
lating the binding contributions via the method of
binding in intermediate states. Comparison of
these results with the present results would, at
least, provide an independent check of the present
work.

We are very fortunate to have had the advice of
Professor Charles M. Sommerfield on various
aspects of this calculation.
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