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%'e have calculated the ionization rate of hydrogen by an intense electromagnetic field in the dipole
approximation and in an approximation in which this field dominates the electron-proton interaction in
intermediate states. %'e find the transition rate behaves as E ' for linearly polarized fields and
F. 'lnE for circularly polarized fields where E is the amplitude of the electric field. %e have also
calculated the transition rate for excitation of the 2s state and a Raman photon. The result behaves as
(E 'W) for small W' where W is the energy of the Raman photon. We estimate that the method is a
good one for electric field strengths of the order of 2X10" V/cm or higher. This is larger than
available currently.

I. INTRODUCTION

Modern laser technology' makes the observation
of multiphoton-induced atomic transitions possible.
The attempts to describe these transitions theo-
retically may be divided into two classes. The
first, higher-order perturbation theory, ' which
expands in the atom-laser coupling Hamiltonian is
tedious and not applicable to very-high-intensity
lasers. The second, epitomized by the work of
Relss~ is Rll attempt to include the 1Rser to Rll
orders in some way, and then expand in the. re-
maining atom-laser interaction.

The convergence of this procedure is not fully
understood, and there have been doubts cast upon
its accuracy and basic validity. In this work, we
investigate another regime in which the interaction
of an electron with the laser field dominates the
interaction of the electron with other matter. We
shall illustrate with the simplest example of a tar-
get hydrogen atom, and make the dipole approxi-
mation for the laser field. This is an excellent
approximation with any currently available laser.

In Sec. II we briefly describe the method and dis-
cuss the range of parameters needed for the ap-
plicability of the technique. We find i'hat it is not
much beyond present day lasers.

In Sec. III we discuss the ionization rate for both
linearly and circularly polarized lasers, and find
that they behave as E ', where E is the electric
field intensity. This indicates that there is a val-
ue of E at which the rate maximizes, since the
rate is known to rise for smaQ E. A brief descrip-
tion of this work has been published earlier. '

We also discuss the distribution of angular mo-
mentum of the final electron for linearly polarized
light and show that, for strong fields and many
photons, the excitation process acts as a super-
position of angular momentum raising and lowering
processes. This gives a random distribution in
angular momentum (f,) proportional to ((2I.+ l)'~'

x (I) ~/2'[(lL) &]'.
In Sec. IV we obtain the excitation rate to a final

bound state with emission of a single Raman photon
to satisfy the energy conservation requirement.
The 28 state of hydrogen is used as an example. '

II. METHOD

Our starting point is the Hamiltonian describing
a hydrogen atom in its center-of-mass frame in-
teracting with an intense electromagnetic field
treated semiclassically in the dipole approxima-
tion. '

H =P'/2m+ V(r) —(e/m)A(t) ~ P, (2.l)

where the term —,'[e'A'(t)/2m] has been discarded
by a contact transformation. The total wave func-
tion satisfies

(2.2)

where the subscript index specifies the initial con-
dition. We may also define a Green's function 6,
with the operator of Eq. (2,2) in terms of which the
solution to (2.2) is

where

a =(-e/m)A(t) P. (2.4)

Here p,. is the initial condition for p„and 6 is de-
fined to vanish at this initial time. For the linearly
polarized case, we take A(t) to be

A(t) = (E/~) sinut, (2.5)

where E is the electric field strength; note that
for convenience the initial time may be made to
recede to -~ by inserting a switch-on-switch-off
convergence factor into Eq. (2.5).

The transition amplitude into a final state pi ~

representing an unbound electron in the field of

j.0
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the px'oton can then be exactly written as

7„=&y(-), Jf'y, &+{y(-), a G"If',}, (2.6)

«1. The essential restriction required for the
method to work is then'

8'» V- 8„. (2.V)

We may conveniently estimate the magnitude of B'
by treating lt elRsslcRlly:

H' = (e/m)(E P/(u) sin(u t = -[(e E v/(u] s in(ut .
(2 6)

The velocity of a driven oscillator is

(( = (e/m)[ Z(u/((u'„- (u')] sin(ut+ v„(,), (2.9)

where +„ is' the frequency of the oscillator and v~
is a homogeneous vibration. Note that the forced
part of u is in phase with the A(t) occurring in H'.
In order for the inequality (2.V) to be satisfied, we
take the forced part of e to dominate the homoge-
neous part, which we estimate as a typical atomic
velocity -e'/k. This inequality is

(e/m)[E(u/((u'„- (u'))»e'/tt . (2.10)

The laser frequency is taken to be small. compared
to the oscillator frequency, which we take as the
atomic frequency

(uz A~/g .
Then Eq. (2.10}can be rewritten

Eg o)1,

(2.11)

(2.12)

where co Rnd Z are measured in natural units

where we have specialized to an initial condition
of a ground-state hydrogen atom, (t(,. The brackets
in Eq. (2.6}are meant to describe a time integra-
tion in addition to the usual spatial inner product.
The first term of Eq. (2.6) is easily shown to de-
scribe single photon absorption, which is impos-
sible fox sufficiently low-energy photons. We
therefore discard it and subsequent single photon
terms. In the remaining term we make our basic
assumption, which is to neglect the Coulomb po-
tential V(r) =-e'/r in the Green's function. The
remaining Green's function is then analytically
obtainable, and the calculation ean proceed. %'e

shall continue this in Sec. III and turn to the
validity of the approximation here.

The essential approximation is that the electron
is dominated by the laser field in the intermediate
state, x'ather than by its interaction with the pro-
ton. This x'equll es that

Ew &&1, (2.12)

which for a CO, laser ((u~ 10 ') requires field
strengths of

E»2QX10 p/cm

while Eq. (2.14) requires only

E»2Vx108 V/cm.

Objections can be raised to this harmonic oscil-
lator model on the grounds that it is unrealistic,
in that the force increases (in magnitude) indefi-
nitely with distance from the center. For the large
amplitude osciQations contemplated here, this
may be particularly important. If we remedy this
by cutting off the restoring force of the harmonic
oscillator at some distance (say, a,), then we get
the inequality Z/(u»1, which is a much less
stringent requirement than either Eq. (2.12) or
(2.14), and which leads to E»3 1x0' V/cm. Evi-
dently, all these estimates ax'e subject to question,
and the only conclusive way of answering the ques-
tions posed here is to continue the perturbation
series of which we have retained only the first
term. Howevex', we emphasize here that the first
term of the method outlined below Eq. (2.6) is ex-
act in the limit E

HI. IONIZATION

We now continue from Eq. (2.6). The Green's
function, with the approximation discussed in Sec.
II, may be written

d3ktd')(rt, r't') = e(t-t')
2

xexp -i t- t' +ik P- r'
2m

+ i K K( ()-ii( }]i-q( ii')),

(2.1)

a(t) =(e/m) dt'X(t')

and g is the usual prescription for encircling a
pole. Insertion of Eq. (3.1) into the remaining
term of Eq. (2.6) yields, after the spatial integrsls
are performed,

(u = (uk/8„, Z = E/(e/2a', ) . (2.12)
d k

dg dpi~4(IV4( t -lVpt ')
(2w)'

The inequality (2.V) then may be written

Z»1, (2.14)

which is less stringent than Eq. (2.12), since (u

xe ' " ' ' ' k a(t}% a(t')

x (ae((t(() a(t')1 a(-) s-(A, )a (t )& (((t g') (2 2}--
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where the W's are the indicated eigenvalues and
the u's are the Fourier transform defined by

«(k ) =fd 'r e '" ' '
n, (r), (3.3)

e i

i«os�(5

g ~ n g (~)&in n) (3.4a)

which is used as

k a(f)k a(f~)e'

where

=P nn'&u'g„(k e)g„e(k C)i "+n e'~i"' " ' &

n, n'

(3.4b)

where the (1)/ are the hydrogenic states in question.
Further calculation is facilitated by the identity'

when substituted into Eq. (3.8), since they do not
contribute to multiphoton transitions. The re-
maining expression for T, , is

oo 6 4
T, ,(l) =-i' Q 2, u', '*(k)u, (k)

n=-~

XJ„,(k e)j„(k e) 5 5 . (3.11)
0

Now u, is the transform of the final state of the
electron which to lowest order in the Coulomb in-
teraction is a plane wave. We have been expanding
in this interaction, so we retain this leading term
only, so that

u', '(k) = (2m}25(k —q) . (3.12)

Then the last factor in Eq. (3.11) becomes

5, +(dl = W, —k'/2m+ &()1

e = (e/m (d')E .
The time integrations may now be performed:

~
I

r, 5
= 2liig 6(W, —Wn+ n&(() —n'(())i" "nn'id

nn'

(3.5) =W, —q2/2m+(dl=wn —W +(()1,

which vanishes because of the energy-conservation
6 function in Eq. (3.7). Then the only term of Eq.
(3.11) which survives is the n = l term where the
denominator cancels this zero. The result is

dnk u, "(k)un(k)Jn(k e)Jn (k.Z)
~ ~

(2v)2 W, k'/2m— +n'( +ill
T, n(i) =(- i)' u, (q)Z, (q Z)Z, (q e)i~. (3.13)

(3.6)

In order to identify the photon number l we make
the transformation n=n'- l and rewrite Eq. (3.6)
as

It has been shown' that transitions with different
l's are incoherent, so the transition rate for a
given photon multiplicity is given by

d'
W, =2m

(
56(w, —W, —l(d) (T, ()(l) i' . (3.14)

r 5=-2mi Q 5(W, —W()- l(d)Tn ()(l)
l=-~

so that

d 0
T, ,(l) = i' (lg)n-(n- l)

2w)2

(3 7) Then using the ground state of hydrogen

(q) 8vl/2 5/2/[q 2 + 2] 2 (3.15)

where a, is the Bohr radius, the result may be
written

un )*(k)un(k)J„,(k E)Jn(k X).
Wn —k /2m+ n&()+i@

It is now convenient to use the identity

W, =- L =, dxZ,'(x)Z', (x),
W 16
R„~l',

where

X, = (2e/(u '}(l(u —1)'/' .

(3.16)

(3.17)
n(n —l) 1 e, e, e, +&el

e0+nN N e e Co+en

where

en= Wn —k /2m+i@ .

(3.9) This remaining integral is essentially the integral
over the angle between k and Z.

When the inequality (2.12) is satisfied, A., is large
except for l's very near threshold (1-(()). For
large A, ,

The identities'

Q J„,(x)J'„(x)=6. ..
Wl = (16/'E)(N, /l ),

where

(3.18a)

Q nZ„ i(x)J„(x)=-2'x(6, , + 6, ,)
(3.10)

N, = dxZ', (x) Z', (x) . (3.18b)

allow us to drop the first three terms in Eq. (3.9)
We see from this the 7 ' behavior for large

fields. Since W, is known to be a rising function of
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e for small fields (-72)}, this shows that there is
a field for which 5', is a maximum. ~ Equation
(3.16) also gives an (Y)" behavior for W, , but the
coefficient is probably incorrect because the cri-
terion for the validity of the method may not be
satisfied. We may, however, use E(l. {3.16) to
estimate the field at which the transition rate is a
maximum. It is obtained from

dxZ', {x)J', {x) . (3.19)

This may be solved with sufficient accuracy by ap-
proximating the Bessel functions by the first two
terms of their power series with the result

result is valid for f'r'»c/g'r'.
%e may also investigate the angular momentum

distribution of the final electron by returning to
the expression for the T matrix, E(l. (3.11), and
retaining only the n = l term as above. Dropping
phases Ulls 18

(3.2'I)

T, ,(f) = I,u[ ' (k)g (k)

x J,(k Z)or, (k e) W, —
2m

The relevant angular momentum part of u[ &(k) is

[u[ ~(k)]z, = [-'(2f.+1)]'r'Pz(q C)P~(k g) . (3.28)

2& 2E+ S '~'
I+2 2l+ I (3.20)

Then the I. dependence of the T matrix can be ob-
tallled from

0 =26 GP

The substitution x= (2fy)' ' changes this to

2)-5/2 dy g 2((2 ' )1/2)y) -1/Re

(3.23)

Then J', may be replaced by its asymptotic form'

J 'o((2ly)"'} = (1/)1)(2/y) '~'[1+ sin(8ly)'r']. (3.24)

The sine term oscillates rapidly and may be
dropped, so that we get

(3.25)

Evaluation for large I yieMs

The use of this theory for values of g-~ is no
doubt incorrect, but the validity can really only be
tested by theories which are known to be more ac-
curate in this range.

For large photon multiplicity, Xr again becomes
large (A. , -)/ l ), but not as fast as the order of the
Bessel function in E(l. (3.16). We must therefore
use the asymptotic form' for l&x,

e(e)- e „,(~" )
e-*'e"[) O()) O+(e /) +)). ''

(3.21)

Then E(l. (3.17) becomes

y 6 aKf 2l 82l
W = dxZ'(x) — e * r2[

o
' 2& 2m

(3.22)

where

&, =[5(2&+1)l '
I dI Pi( }&.(Pu)~r(PI },
-1

(3.29)

p, =k.i

I = —[2(21.+1)]~'L
p

xx dxP, — Z, (x)Z, (x)
o

+ dxP, — [J,(x)Z, (x) -J,"(x)Z", (x)]
P

+ dxP, —
J( )Zx", ( )x

1
(3.31)

where the subscript A on JO, J, indicates thai the
asymptotic foxm for large x is to be used.

The integrals must be treated sepa. rately for the
cases I, even or odd. For even L„ the first inte-
gral is finite for P- ~, and the second vanishes in
this limit. For I odd the first integral vanishes
as p ', and the second is finite. The remaining
integral 18

P=2eq/(o~»1 .
The first observation one can make from E[l. (3.29)
is that I+I. mustbe even. Since P is large, it is
useful to write I, as

),=y(mate))[" 'de~. (-",)Z.(e)Z, (e) ().3O)
0

and to extract the leading terms in P

l P~E4 (3.26)
dxPi ——cos (x- —,rr) cos (x- —,rr ——,Err)

x 2 I 1 1

P m'x

which is an extremely rapid falloff with l. The
—Pr, (i1)[cos-,br+sin(2k', —,hr)] . —1

W gg y P,
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The above calculation can be repeated for circu-
larly polarized radiation, in which case

A(t) = (e/ru) [a„cosset+ a, sin&et]

and Eq. (3.4b) is changed to

k a(t)k a(t')exp(ik [a(t) —a(t')])
nn'(O'J„k~ sin6I J„, ke sin8 i

nn

(3.33)

x exp[-i(n —n')p + i(n&dt —n'&et')], (3.34)

where 8 and ltl are, respectively, the polar and
azimuthal angles of k with respect to the axis de-
fined along the direction of propagation of the
laser, and to an arbitrary g axis perpendicular to
this direction. The remaining operations are iden-
tical with those described for the previous calcula-
tion. In particular, replacement of ut l(k} by a 6
function [Eq. (3.12)] makes the P dependence of
Eq. (3.34) an over-all phase factor in the T matrix.
Therefore, the only difference in the two results
is contained in the arguments of the Bessel func-
tions. The final result is

32(l(u —1)~2 '
dll, tl,

l (I
—)2 (1 2)1/2 0( ll + 1( lP' }

(3.35)

For large A, „amethod similar to that used for
Eq. (3.29) yields

32 (lg —1)' ', „1W = — (
—'+ cos' —' ill) —ln —'A.

v2 (lg)2 2 2 g2 2 l

8 1= ~( + 2coslll)
jr l ~leo —1~

For L (and l) even, the first term in the bracket
dominates, and the result for large P is

[(-)'/'/ll] P,(0)ln p .
For L (and l) odd, the integral vanishes for large
P. Therefore, the dominant behavior comes from
even values of L, where

l/2
—ln p[2(2I. + I)]'/'P (0)

( )1+5/2
[2(2L+1)]'/' lnP

ir

(3.32)

either raise or lower the electron's angular mo-
mentum by unity, yielding a statistical distribution
of angular momentum for the final electron,
(3.32). On the other hand, absorption of a circu-
larly polarized photon must raise the angular mo-
mentum by unity each time, so that the final elec-
tron will have a very high angular momentum.
The high-angula. r-momentum components of the
final wave function have small amplitudes in the
vicinity of the atom, which reduces the matrix
element and yields a smaller transition rate.

We should also point out the different results
for even and odd value's of the photon multiplicity.
This has been previously noted by Reiss. '

IV. BOUND-BOUND TRANSITIONS

We shall use a method similar to that used above
to calculate the transition rate to the 2s state with
emission of a photon 8', as required by energy
conservation. We treat the radiation operator for
this photon, Ii„, in lowest-order perturbation
theory. The transition amplitude in this approxi-
mation is

7/l =(g/ ', H„$ l) =(Q/, (1+H'G)H„(1+GH')ltl, ), .

(4.1)

where G is now taken to be Eq. (3.1). The emission
operator for a photon of energy W, and for polari-
zation X in the dipole approximation is

H =(eK/m)(2ll/WV)' 'Zq pe' ' (4.2)

where c q is the polarization vector and V is the
quantization volume of this field. The calculation
will be done for linear polarizations only, since
the angular momentum considerations described
above preclude multiphoton transitions of this
kind for circularly polarized lasers.

Straightforward substitution of G [Eq. (3.1)] into
Eq. (4.1), and performance of the spatial integrals,
yields

t'
Tff = ly dt dt' dt"

2 ~ uf* k Wf 2

k' k'
xE), k g, — u, ke' 'exp'

2m 2m

2
—i W, — t" + ik [ a.(t) —a(t')] —ll(t t"), —

2m

x ln —,lG-1 ~' (3.36}

where

(4.3)

Note that this is smaller than the analogous result
(3.17) for linear polarization by a field-dependent
factor of (1/e) inc. Presumably, this can be ex-
plained from angular momentum considerations.
Absorption of each linearly polarized photon can

y = (el2/m)(2w/WV)'/'.

We again use the Bessel-function expansion theo-
rem (3.4) and perform the time integrations with
the result
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(,)
.„„d'k uP(k)u((k) J„(k ~ e)J„i (k ~ e)(W, —k'/2m)(W, —k'/2m)ye y k

(2w)' (W, —km/2m+n'(((+ i(1)(WI —k/2m+n'(d+ iq)

The substitution n' =n —L allows us to write
(4.4)

2w-i Q 5(Wy+W —W,. —1(d}Ty((l)
f =«oo

and interpret T&,.(l) as the l-photon transition matrix. We obtain

(4.5}

d3k
T«(l}=-(-i)' g n(n —l), u&*(k)u((k) J„(k Z) J„((k e}2w'

(W~ —k'/2m)(W, —k2/2m)yÃq k
(W, —k'/2m + n((( + i(})[Wz —k'/2m + (n - l) &u + i(1] (4.6)

where the symbols have the same meaning as in
Sec. III.

Instead of attempting the formidable task of
evaluating Eq. (4.6) in general, we again restrict
ourselves to the situation of very large e. By sym-
metry, we replace e q k by eq e E e and perform
the angular part of the k integral

dkk. e J„(k e)cl„((k e)

+1
=2wk dye, J„(keg)J„((km'(,),

which vanishes for even values of L. This selec-
tion rule is just a consequence of the fact that the
initial and final states chosen here have the same
parity. We now insert the explicit forms of the
u's in Eq. (4.6); u, is given by Eq. (3.15) and

u =u =(8w)' 2a 5 2[(k2 —1/4a~)/(k'+1/4a')']

(4.7)

If we now scale k by a, ' and measure all energies
in Rydbergs, the T matrix (omitting an over-all
phase) becomes

T~(= Q n(n —l) dkk'
a, n=-~ 0

+I k2--'
k'+ —' ' k'+1 k'+1 -n+ —ig k'+ —' —Q n —L —ig (4.8)

where W=W/R„,

(w = 2E'/((( ( (4.9)

and the energy conservation 6 function in Eq. (4.5)
relates L and W by

L~ =-, +W. (4.10)

The integrals and sum inEq. (4.8) are evaluated in

the Appendix for the case n»1. For small W the
result may be written

T«(l) = i( 3v22/9 )w(y a/)0(eq i/(w-((('} (4.11).

W = (2"/3'w')(~,'i~ )(1~ —-'), (4.13)

where apl ]37 is the fine-structure constant.
Again, the temptation to perform a sum over L

must be resisted, since the approximations are
not valid for large L.

APPENDIX

We consider the integral and sum in Eq. (4.8):

where the sum is over the two. polarization direc-
tions of the emitted photon. The result is

The transition probability per tznit time for l-
photon absorption can then be obtained from

W~ 2~V d'W
R„R„(2wkc)~

DC( +1
I(= g n(n —l) dkk' du, p

n= 0 -1

&&J„(uk', )J„,(uk')1"(k'), (A1)

&6(W +W —W( —l((() P ~T, (l)~, (4.12) where
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k2-4
(k '+ ~)'(k'+ 1)(k2+ 1 —n~ —iq)(k 2+ 1 —n~ +Q —iq) ' (A2)

and where Eq. (4.10) has been used to eliminate
l in I'(k'). We first replace the J's by their inte-
gral representations

7r

J' (~) dg e al(me+x sine)

2m

and then perform the p. integrations. After some
rearrangement, I, can then be written

dg dg'

x[sin(n ——,
' l)(8 —8') cos—,'l(8+ 8')

+ (-)"sin~i(& —8 ') cos(n ——,'l)(g y g ')]. (A8)

In the limit of large o. we have, approximately,
8=(P+P')/2o and 8' =(P' —P)/2n. Then I, reduces
to

x cosgcos&~Q„(p)e'i" (A3}
I, = —,Q I dp J dp'C, (p)

n p

where x n —2l —+ -"—
2A

(A9)

where

and

(A4)

(A5)

Integration with the use of Eqs. (A4) and (A5) ieads
to the form

I=, Q )n ——,'ljl ( )"t ) dkk'L(k')
ff ~oo ~ OQ

(A10)

P= o(sin& —sin&'). (A6)

+ (-)"sin [n8+ (n —l) 8']

—(-)"sin[n&' + (n —l)8]j. (A7)

We now note that P ~ 0 in the integration range.
Let P' = o.(sin&+ sin&') and express the integral as
over a domain in the P —P' plane. Then

The range of integration on 8 and 0' can be com-
pressed from -w to m to 0 to &r by judicious sub-
stitutions with the result

/ e
I,=, g d8 d&' cos&cos&'C„(P)

n= -~ -e

x(sin[n& —(n —l) 8'] —sin[n& —(n —l) 8]

Evaluation of the sum is straightforx!ard iE we re-
place the sum by an integral,

((k'+1 —n~ —iq}[k'+ —,
' —(n —l)u& —iq]} '= -=, .

(8

(A11}

The remaining k integration is then straightforward

2i k'(k' —g) 8i
(k2+ 1)(k2+ ~)2 9~@2 ' (A12)

Thus we obtain a simple expression for the desired
integral.
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