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Double-scattering-induced deviations from Ornstein-Zernike behavior near the critical point*
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We consider double light scattering by a simple fluid near its critical point. It is shown that
Ornstein-Zernike-Debye plots of inverse total (single plus double) scattering intensity are not linear, but
show downward curvature at small scattering angles near the critical point. This effect has been
observed experimentally and is usually attributed to a nonzero value for the critical exponent g. We
compare our conclusions with those of Splittorff and Miller, who have found that such downward
curvature can also be caused by density gradients near the critical point.

E(r) = Eoe' ~ ' '+ a d'&' Tg,„(r—r') p(r')E(r'),

where E,e'"" 'is the incident electric field ( a
plane wave with vacuum wave vector k„), and n
is the atomic polarizability;

p(r ') = g 5(r'- R;)

Splittorff and Miller' have recently discussed
the effect of gravity on the light-scattering spectra
of simple fluids near their critical points. Be-
cause of a gravity-induced density gradient which
becomes large near the critical point, they find
that Qrnstein-Zernike-Debye (OZD} plots of in-
verse scattering intensity versus the square of
the (momentum-transfer) wave vector are not lin-
ear, but show downward curvature for small scat-
tering angles. Such curvature has been observed
experimentally and attributed to deviations from
Ornstein-Zernike behavior arising from a nonzero
value of the critical exponent g.2 Splittorff and
Miller discuss the possibility that these effects
may be due instead to density gradients.

We have investigated the effect of double light
scattering on OZD plots, and have found that it
also leads to downward curvature and nonzero
values for the "apparent" exponent g. Whereas
Splittorff and Miller have included only single
scattering and have looked at density gradients,
we have assumed uniform density and looked at
multiple scattering effects; in this sense our work
complements theirs.

We have previously considered' depolarized
light scattering near the gas-liquid critical point.
The only difference in studying double polarized
scattering is that a different element of the dipole
propagator tensor must be used. Since the calcu-
lations are so similar to our previous work, ' we
will only outline them here.

The total electric field at any point in the fluid
satisfies the integral equation

is the instantaneous number density at the point
r' and R; denotes the vector position of the ith
particle. T&, the dipole propagator, is given by

T, (r) =e'"~'(3/r' —3ik„/r' —k„/r) rr
+ e'~~(k2 /r —ik„/r ' —I/r ') I (2

and acts on an oscillating dipole to give the elec-
tric field at a distance r away. Now, we can write

E(r) =E (r)+&E(r), (3)

where Ez(r}, the Lorentz local field, satisfies
Eq. (1) with p(r'} replaced by the average density
p. &E(r), the fluctuating field which gives rise
to scattering, satisfies the integral equation

EE(r) = o. dr' T» (r —r') ' &p(r') [E (r') + &E(r'))
V 0
S

(4)

where &p(r'} =p(r') —p is the density fluctuation
at r', and ko is the wave vector in the medium
(directly related to k„ through the Lore'. tz-Lorenz
index of refraction). AE(r) can be calculated to
arbitrary order in u by iterating Eq. (4). If we
take the incident light to be polarized in the z di-
rection, then polarized-scattering experiments
correspond to measuring the z component of the
electric field at the detector: the (zz) intensity
there is given by

I ';* =& [~z(R)j,[~z(R)],*), (5)

where the angular brackets denote a canonical en-
semble average over fluid configurations.I" can then be written as a power series in n.

R
~ 2The leading term, proportional to e, corresponds

to single scattering and is the only term retained
in most treatments. It is given by

I-"( insleg) =(n') E )'/R')k', pV,S(k), (6)

where Vl is the part of the sample volume illumi-
nated by the incident laser beam, and S(k) is the
usual static structure factor (k=k'-k, is the mo-
mentum transfer —the change in propagation wave
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vector due to the scattering). Ornstein-Zernike
theory corresponds to the result

S(k) = 1+ 4nkp/[h'+ (1/g)'],

(8)

The terms in u' in the series for IP (arising
from cross terms between single and double scat-
tering) have only a small effect on the absolute

where g is the correlation length, while deviations
from Qrnstein-Zernike behavior can be repre-
sented by such forms as'

S(k) = 1+4''p/[k'+(1/g)']i '

scattering intensity and are found to have the same
angular distribution as single-scattering terms,
so they are not of interest here.

The double-scattering terms in e' d0 affect the
angular distribution. They can be calculated in a
completely analogous fashion to the depolarized
scattering contributions' [the only difference be-
ing that we look at the ~& rather than the «com-
ponent of the tensor T in Eq. (2)]. We present
only the final result of the calculation here: the
dominant double-scattering contribution near the
critical point is given by

21r fr sin'(9I (double)=(c. 'p~Vzko~EL, ~'/It')4v A'B a~ dP de
(1+asin8 cosQ) [1+asin8 cos(Q+ Q,)]

A, is a linear dimension characterizing the sample
size' (the radius, for a spherical volume), and Q,
is the scattering angle. [Unfortunately, it is vir-
tually impossible to treat theoretically more real-
istic (i.e., nonspherical) sample shapes, and so
me are not able to obtain rigorous estimates of
the geometry dependence of the predicted If(dou-
ble)'s. ]

The total (single-plus-double) scattering inten-
sity can be calculated (numerically) for different
correlation lengths and scattering angles from
Eqs. (I) and (9). Its inverse can then be plotted
in an QZD plot as a function of

k2=4420sin2(P, /2) .
In Fig. 1 me show such a plot, using parameters
for xenon on the critical isochore, 4'0= 105 cm ',
a sample radius 8,= j. cm, and a correlation
length g =600 A (T- T, =0.031'C). Even though
we have assumed Ornstein-Zei nike theory (g =0)
throughout, the QZD plot shows downward curva-
ture due to double-scattering effects. In fact,
Fig. 1 can be fit quite accurately with a functional
form such as Eq. (8): it can also be compared to
Fig. 2 of Ref. 1, where downward curvature due
to density gradients (a completely different cause)
is found.

The value of q which fits the points in Fig. 1 is
near O. V, a rather large value. Theoretically-
predicted values of q (near 0.1) would give, at
least for 40$ & 1, barely observable downward
curvature; thus double-scattering effects can be
much larger than the effects of non-Qrnstein-
Zernike correlation functions. Of course, if the
sample size is smaller, there mill be less double
scattering, and thus less downmard curvature
(for example, a sample radius of 1 mm would
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FIG. 1. OZD plot of predicted inverse scattering
intensity (arbitrary units) vs. sin2(P, /2}, for xenon at
&-&,= 0.031 C, with A~=1 cm. Deviations from
linear behavior are due to double-scattering effects.

give an "apparent" q near 0.1). Still closer to
the critical point, triple and higher-order scat-
tering effects become important and our expres-
sion for the total scattering intensity becomes in-
valid. Our work has assumed that there is a tem-
perature region in which double scattering effects
are visible (giving downward curvature in OZD
plots), while higher-order scattering is still
small.

Because the front-to-back asymmetry of the
double-scattering contributions is so much smaller
than that found for I"(single), the angle dependence
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of the total zz intensity is weaker than what would

be predicted by using (6) for small values of
e =- (T —T,)/T, . This is consistent with recent $(T)
measurements of Lunacek and Cannell, 4 in which
the temperature dependence of the correlation
length g is determined by looking at

R —= [I"(ky) I'-'-(0 )]/I-'„'(0/)

as a function of e: here 0& ~=2kosin(p~, &/2), with

p~ = l5' and @,= 165'. For CO„ for example, and
«10 4, the asymmetry R is smaller than one
would predict from (6). This discrepancy arises
from the onset of small I'-'(double) contributions
(with weaker angle dependence), as is confirmed
experimentally by monitoring the asymmetry and

intensity of the light scattered by a volume imme-
diately above the incident beam.

A complete theory should include both double-
scattering and density-gradient effects simulta-
neously, but we do not think that this would signi-
ficantly change either our conclusions or those of
Ref. 1. It thus appears that downward curvature
in OZD plots can arise from at least three differ-
ent causes (density gradients, double scattering,
and genuine deviations from Qrnstein-Zernike
theory) whose effects are extremely difficult to
separate.
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