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Frequency broadening generated by picosecond laser pulses is investigated experimentally
and theoretically near the electronic levels of a PrF3 crystal. Information is obtained on the
role played by the electronic levels on self-phase-modulation and four-photon parametric
emission, and on how the self-phase-modulation spectrum evolves through and beyond the
electronic absorption levels.

I. INTRODUCTION

%%en a sufficiently intense light pulse propagates
through a material, it distorts the atomic configu-
ration, which in turn causes the refractive index

'

to acquire a time dependence. The mechanisms
which can contribute to this refractive index
change' for an ultrashort pulse are direct distor-
tion of electronic clouds, ' librational motion of
molecules or atomic clusters, ' molecular orienta-
tion~ or redistribution, ' or a coupled mechanism.
The time-varying index alters the phase of the
optical wave as it propagates, leading in general
to a broadening of the pulse spectrum. The process
has been called self-phase-modulation (SPM) or
superbroadening. e Spectral broadening was first
observed in CS, by Brewer' and interpreted in
terms of SPM by Shimizu, ' who attributed the
broadening to the molecular orientational effect.
Libration of the CS, molecule has also been pro-
posed to explain these spectra. ' Brewer and Lee'
observed self-focusing of picosecond laser pulses
in CS, and viscous liquids, and suggested that the
index nonlinearity is of electronic origin. Alfano
and Shapiro" using picosecond pulses at 5300 A
observed SPM and self-focusing in various crys-
tals, liquids, and glasses, including liquified and
solidified rare gases. They showed that the elec-
tronic mechanism for SPM is important in all
materials and dominates all other processes in
some materials: e.g., liquid argon and krypton.
Most recently, Bloembergen" proposed an index
of refraction charge resulting from avalanche
plasma formation as the mechanism for SPM.

Nonlinear effects may play an important role as
loss mechanisms in large laser systems. SPM
is an example of such a process. Since the active
medium of a laser possesses mell-defined elec-
tronic energy levels, knowledge of SPM near elec-
tronic levels is of paramount importance.

Traditionally, SPM has been observed in trans-

parent materials"'" and theoretical calculations'
have neglected both nearby electx onic resonances
and material dispersion. In this paper SPM near
electronic levels of PrF, crystal is investigated
experimentally and theoretically to gain additional
information on the SPM process —in particular, on
the role played by the electronic levels and on how
the SPM spectrum evolves through and beyond the
electronic absorption levels.

II. EXPERIMENT

Experimentally the Stokes and anti-Stokes spec-
trum and filament formation from PrF, crystal
is investigated under intense picosecond pulse
excitation at the wavelength of 5300 A. A Nd-
glass mode-locked laser' generates picosecond
light pulses which are converted, in a potassium
dihydrogen phosphate (KDP) crystal, to the second
harmonic at the wavelength of 5300 A. The har-
monic radiation consists of pulses of about Sx10'-
W power and 4-psec duration. The average energy
of a single pulse in a typical train is -3.2 mJ, as
measured with Hadron thermopile. The beam is
collimated by an inverted telescope and enters a
5-cm-long PrF, crystal with a beam diameter of
about 2 mm. The c axis of the crystal is oriented
along the optical axis. The intensity distribution
at the exit face of the crystal is magnified by 10&
and imaged on the 1-mm slit of a Jarrel-Ash —,'-m-
grating spectrograph, so that the spectrum of each,
filament is displayed. The spectra are recorded on
Polaroid type 57 film. The pulse trains are moni-
tored with ITT photodiode and displayed on Tek-
tronix 519 oscilloscope. The spectra are created
by pulse trains whose peak heights vary by no more
than 50%. A combination of a 3-mm wire placed at
the focal point of the imaging lens and/or Corning
filters (Stokes side 3-67, 3-66; anti-Stokes side
5-60, 5-61) is used to prevent any laser light that
has not formed filaments from entering the specto-
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FIG. 1. Absorption spectra of 0.5-mm-thick PrF3
crystal; insert is the level scheme (Hefs. 14 and 15) of
Pr + ions.

graph. A glass beam splitter defects a portion of
the beam into a camera where the filaments are
simultaneously photographed. No visible damage
occurred in PrF, crystal.

The PrF, crystal is chosen for the experiment
because its electronic levels are suitably located
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on the Stokes and anti-Stokes sides of the 5300-A
excitation wavelength. The absorption spectra of
2-mm-thick PrF, crystal and the energy-level
scheme of Pr" ions" are shown in Fig. 1. The
fluorides of Pr have a structure of the naturally
occurring mineral tysonite with a DM symmetry. "

Typical spectra showing frequency broadening
from PrF, about 5300 A are shown in Fig. 2 for
different laser shots. Because of the absorption
associated with the electronic levels it is necessary
to display the spectrum over different wavelength
ranges at different intensity levels. In this man-
ner, the development of the SPM spectrum through
the electronic absorption levels can be investigated.
Using appropriate fQters different spectral regions
are studied and displayed in the following figures:
in Fig. 3(a) the Stokes side for frequency broaden-
ing (Ps) & 100 cm ' at intensity level (I~~„)of
-10 ' of the laser intensity (I~); in Fig. 3(b) the
Stokes side for P~&1500 cm ' at Is~-10 4I~; in
Fig. 3(c) the anti-Stokes side for vs & 100 cm
at I»„-10'I~; and in Fig. 3(d) the anti-Stokes
side for P~ 1500 c ' at I „™10'I~. Usually
50-100 small-scale filaments 5-50 p, m in diam
are observed.
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FIG. 2. Frequency broadening from PrF3 about the
5300-A psec laser excitation; neutral density (ND) fil-
ters: (a) ND=1.5; {b) ND= 1.5; {c)ND=2. 0; (d) ND
=2.0; (e) ND=1.7, (f) ND=1.4. A mire is positioned
after the collection lens at the focal length.

FIG. 3. Frequency broadening on the Stokes and anti-
Stokes side of the 5300-A excitation. (a) Stokes side,
Corning 3-68 filter, mire inserted, ND=2. 0; (b) Stokes
side, Corning 3-66 filter, mire inserted; (c) anti-Stokes
side, mire inserted, NO=1.0; (d) anti-Stokes side, Corn-
ing 5-61 filter, wire inserted.
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Several salient features are evident in the spec-
tra displayed in Figs. 2 and 3. In Fig. 2 the Stokes
and anti-Stokes spectra are approximately equal
in intensity and frequency extent. , The peak inten-
sity at the central frequency is -10' the intensity
of the SPM at a given frequency. The extent of the
frequency broadening is -1500 cm ', ending ap-
proximately at the absorption lines. Occasionally
a periodic structure of minima and maxima is
observed which ranges from a few cm ' to 100
cm ', and for some observations no modulation
is observed. Occasionally an absorption band
appears on the anti-Stokes side of the 5300-A
line whose displacement is 430 cm ' and whose
width is 400 cm '. In Fig. 3 the main feature
is the presence of a much weaker super-broad-
band continuum" whose frequency extends through
and past the mell-defined absorption lines of the
Pr" ion to a maximum frequency of &3000 cm '
on the stokes side (end of film sensitivity) and
&6000 cm ' on the anti-Stokes side. The in-
tensity of the continuum at a given frequency out-
side the absorption lines is -10 ' the laser inten-
sity.

The observed absorption lines on the anti-Stokes
side of 5300 A are located at 4415, 4653, and
4845 A and on the Stokes side at 5930 and 6109 A.
These lines correspond within ~V A to the absorp-
tion lines measured with a Cary 14. The absorp-
tion coefficients measured from the Cary spectra
are -3 cm ' at 6112 A, 62 cm ' at 5938 A, 46 cm '
at 4852 A, and &100 cm ' at 4412 and 4647 A.

Figure 4 compares the Stokes absorption spectra
of PrF, crystal photographed with —,'-m Barrel Ash
spectrograph with different broadband light
sources. Figure 4(a) is obtained with light emitted
from a tungsten lamp passing through —,'-mm PrF,
crystal; Fig. 4(b} is obtained with the Stokes side
of the broadband picosecond continuum generated
in BK-7 glass passing through ~-m PrF„and Fig.
4(c) is obtained with the broadband light generated
in 5-cm PrF, crystal. Notice that the absorption
line at 6112 A is very pronounced in the spectra
obtained with the continuum generated in PrF„
while with conventional absorption techniques it is
just barely visible. The anti-Stokes spectrum ob-
tained from light emitted from a tungsten filament
lamp passing through ~-mm PrF3 crystal xs given
in Fig. 5{a). This is to be compared with the spec-
trum obtained with broadband light generated in a
5-cm PrF, crystal given in Fig. 5(b).

The angular variation of the anti-Stokes and
Stokes spectral emission emitted from PrF, is
displayed in Fig. 6. The light emitted from the
sample is focused on the slit of —,'-m Jarrel Ash
spectrograph with 5-cm focal length lens with the
laser beam positioned near the bottom of the slit
so that only the upper half of the angular spectrum
curve is displayed. In this fashion a larger angular
variation of the spectrum is displayed. Emission
angles &9' go off slit and are not displayed. This
spectrum is similar to four-photon emission pat-
terns observed from glass and liquids" under
picosecond excitation.

m. THEORY

A. Basic equations of self - phase - modulation

The one-dimensional propagation of linearly
polarized light in an absorptive and nonlinear
medium will be studied in this paper. Letting E
denote the electric field strength, D the electric

I
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FIG. 4. Comparison of the Stokes absorption spectra of
PrF3 photograph with different light sources: (a) light
emitted from a tungsten lamp is passed through 0.5-mm-
thick PrF& crystal; (b) SPM light emitted from BK-7 is
passed through 0.5-mm-thick crystal; (c) SPM light is
genexated within the 5-cm PrF3.

FIG. 5. Comparison of the anti-Stokes absorption spec-
trum of PrF3 photograph with (a) light emitted from a
tungsten lamp passing through 0.5-mm-thick crystal;
(b) SPM light generated within the 5-cm PrF3.
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E = 8 cos(kz —&f + y),

D =&, cos(kz —&t+ y)

+I), sin(kz —&f + y),

(2a)

(2b)

where 8, +„S„andy are dependent on z and t.
If one inserts Egs. (2a) and (2b) into Eq. {1)and

neglects second-order derivatives and squares
of first-order derivatives as being small, one ob-
tains the set

displacement, and z the propagation direction,
the wave equation is written as

B2g B D
Bg Bt

It will be assumed that both E and D are describa-
ble by a slowly varying amplitude and phase. Let
& denote the radian frelluencp and k =~(to) /c
denote the propagation constant, where v = c/(e, )
is the speed of light of a weak signal in the medi-
um. Then

The absorptive term of Eq. (5) may be simplified
somewhat by making several approximations. In

the expansion of the product E(t+7) sin&, ~ there
appear resonant terms involving & —~, and non-
resonant terms involving &+ w, . The latter terms
will be highly oscillatory and hence not contribute
appreciably to the absorption, so only the resonant
terms will be kept. A second approximation is
based on the fact that we will be mainly concerned
with pulse propagation through the medium. Thus
8 will be fairly sharply peaked in time and the
phase in the immediate vicinity of the pulse is all
that need enter the formalism. This allows us to
replace y(t+v) by an appropriately truncated power
series: y(t+r)=y(t)+ay(f) Afu.lier discussion
is presented in Appendix A. Combining Egs. (2)
and (5) we then find

3 ~ fg[(d, —(0 + (By/Bt)]
(~/ )2'+[~. —~+(By/B&)]' '

-2k'~ = 2(0 —N2$ + 2025)
Bg BZ B f'0

Bg Bt Bt
(3) f@(x/2)

(r/2)'+[&, ~+ {By/Bt)]'
'

-2ac ~ a=a'e'S-~ X +2~XB B BQ

Bg ' ' Bt Bt

The nonlinearity to be considered in this paper is
the one generated by the common dielectric func-
tion of the form ~, +&,E'. The absorption is due

to a resonant line at frequency , and is described
as a response transform of the electric field. Thus
the electric displacement is given by

D =e, E +e, E' —2f ~t d~ E( t+ r) e&'~' sin(o, v,
oo

(5)

where y is the decay rate for the excited state of
the medium and f measures the strength of the
absorption. In this section we restrict our atten-
tion to the case of a single absorption line, al-
though the extension to the multiline case is trivial.
One notices that the solution of Etl. (1) is compli-
cated by the fact that D is both a nonlinear and

nonlocal (in time) function of E.
A further complication arises from the fact that

the term e, F.' contains an admixture of the third
harmonic of . While this term is of importance
in analyzing third-harmonic generation, since we
are concerned in this paper with the neighborhood
of we ignore the 3 contribution. Thus we write

E' =-,' h'(3 cos(kz —cot+ y) + cos[3(kz —~t+ y)] j,

and simply drop the second term.

Insertion of Egs. (Va) and (Vb} into E|Is. (3) and

(4) leads to rather complex equations, so further
approximations are warranted. It will be assumed
that the nonlinearity is sufficiently weak that prod-
ucts of nonlinear terms with slowly varying terms
may be dropped. Indeed the assumption of a small

c, term is consistent with writing the dielectric
function in the form co+c~8'+ ~ ~ . In addition it
will be assumed that the absorption is mild enough

so that products of absorptive terms with slowly

varying terms may also be neglected. Finally,
dispersive effects will be disregarded as they are
generally weak. Thus we find the following set of

FIG. 6. Angular variation of the (a) Stokes and (b)
anti-Stokes spectral patterns emitted fxom PrF3 crystal:
(a) Corning 4-(3-67) filters, NO=1.0; (b) Corning 2-(5-60)
filtexs.
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equations for the amplitude and phase:

8$ s8 s~f sy
+ 5 =- 84 +~ —++

Bg Bg 2~0 a Bg
(8)

Also, let

where 4 is the Lorentzian function

n x)=—1 y/2
v (y/2}'+x' '

(9)

(10)

1(f)=H'(f),

so the boundary conditions may be written as

(19)

where X =1/D' and D is the duration of the pulse.
Equations (8) and (9) form the basic equations

governing the self-phase-modulation of light in a,

nonlinear absorptive medium. A solution to these
equations will be sought in the subsequent sections.

B. Solution to self -phase-modulation equations

Before an explicit solution can be found, the
boundary conditions must be specified. In typical
experimental situations one has the pulse injected
into the medium at some boundary, which will be
taken as the point z =0. Thus we assume

$(o, f) =ff(t)

y(0, f) =0, (12}

wllel'e tile fullc'tlo11 H(t) is llsually' sharply peaked
around t =0.

It is profitable to rewrite the basic equations of
self-phase-modulation as a single second-order
nonlinear parabolic equation. Let us introduce
two new independent variables,

]=~ —(s/v) (isa)

(18b)q =t+(s/v).

Then Eqs. (8) and (9) may be combined to give

Bg Bq BP, Bq
{14)

where the following definitions have been. made
for economy of notation:

As discussed in Appendix A, Eq. (10) refers to the
case where the radiative lifetime is shorter than
the pulse duration. In the other extreme, where it
is longer, we replace Eq. (10) by the Gaussian
representation

From Eq. (21) we therefore find

~(t) = ~ —(2Pz/v)I'[f —(s/v)]. (23)

This gives rise to the customary sweep of fre-
quencies observed in self-phase-modulation experi-
ments.

Now we return our attention to the more general
case where absorption is present. It will be as-
sumed that the spectral decay rate y is sufficiently
small that b, may be considered, for all intents
and purposes, a Dirac ~ function. In such a case
it is clear that Eq. (21}represents a solution to
Eq. (14) in a fair portion of the g -q plane. The
resonance region, where

0+ + =0,B+ Bp
BP, Bq

(24)

obviously requires special attention. Physically
this condition gives the condition for resonance
between the instantaneous frequency ~(t) and the
absorption line frequency ~, . The argument of
the & function passes through zero at this point and
absorptive effects are very important. Insertion
of Eq. (21) into Eq. (24) results in an expression
for the resonance frontier:

q =f1(O=- t —[fl/W'(t)].
As an aid to visualizing the form of the above

resonance curve consider a particular form for
a(f). Let

Vl a =q =0.

The range of interest is the domain 1i~ (.
Before undertaking the general solution of Eq.

(14) let us first examine the nonabsorptive limit
(n = 0}of the equation. . The solution which satisfies
Eqs. (19) and (20) is

q ((, n) = pI(])(n- &). (21)

From Eq. {2a) it is apparent that the instantaneous
frequency of the wave is

(u(t) = ar- B+ B+ B(It)

Bt BE Bq
'

& ='r(df/2to. (18) If(t) = 8, sec(ht /),1 (26)
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where 80 is the peak electric field of the input
pulse and v is a measure of the pulse duration.
Expressed in the z —t coordinate system the solu-
tion, to Eq. (25) is

z cosh'((1/7 ) [t —(z/v}]]
z, sinh((1/r) [t —(z/v)] j

where

. Qv7
0 4pg2

(27)

(23)

For values of z less than ~z, ~
there is no real

solution to Eq. (2V) so absorptive effects are com-
pletely absent. In order to understand the signifi-
cance of this statement we return to Eq. (23). It is
observed that the frequency sweep has a term
proportional to z. For small z the sweep is small
and it is possible that &u(t) will not be equal to (d,
for any value of t. Thus absorption is not impor-
tant until the point z =z„where the resonance
occurs. In Fig. '7 we present a schematic presen-
tation of the boundary curve for the two cases
ar —co, &0 and & —w, &0. Here we assume that
e, &0, although this restriction may be lifted with-
out much difficulty. In the remainder of this sec-
tion we will return to the general expression for
the boundary conditions involving H(t) or I(t).

Beyond the resonance curve the argument of the
6 function again vanishes so the general solution
to Eq. (14) may be written as

Integration across the resonance curve results in

eq , aq
'xp

2 pi' + g' (34)

where the minus sign denotes the preresonance
region and the plus sign denotes the postresonance
region. Combining Eq. (34) with Eqs. (21) and (29)
yields

1 1
G(4) = PI(4) exp —

2 )
I,

(

+ (G,
)

(35)

Equations (30) and (35) are differential equations
for the two unknown functions G($) and E($)

It is reassuring to observe that in the limit of
n-0, where the strength of the absorption may
be neglected, we have G($) =PI((). Insertion of
this into Eq. (30} then gives, upon integration,
E($) = -P(I ((), so Eq. (29) reduces to Eq. (21}.
Thus the resonance curve has little influence when

the coupling to the system is small, as should be
expected.

The argument of the exponent of Eq. (35}is posi-
tive, so for nonzero values of o., G($} is less than

PI($). This is interpreted as the attenuation effect
of the absorption by the system.

Let us first examine the solution to Eq. (35} in
the weak-coupling case (small o.). We insert the
a =0 solution for G'(() into the right-hand side to

q ($, n) =&($)+nG(k), (29)

where E($}and G(E) are so far arbitrary. How-

ever, the definition of the resonance curve must
agree when approached from either side, so com-
bining Eq. (29) with Eq. (24) yields

&+&'(5)+&(()G'(5)+G(5) =o (30)

Let us now express the argument of the & function
as

&+ + =Pl'(5)ln -&(t')]8(&(g) 8)-
ag aq

+G'(5)[n -&(()]8(n -&(&)), (»)
where 8(x) =+1 for positive x and zero for negative
x. The argument of the ~ function is discontinuous
but may be handled through the relation

6(ax8(x)+bx8(-x)) = — + 5(x). (32)
1 1 1

Ibl

This relation is readily proven by employing n, (x)
of Eq. (10) and taking the limit y-0.

Consequently Eq. (14}reduces to

&n &n Y I(U ((Il
' IG'(()I)'

(33)
FIG. 7. Resonance curve of Eq. (25) for two cases.

Case 1 is for u & ~~ while case 2 is for ~ &w~.
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obtain a first approximation:

a())=)U)))st()~i )}~ (36)

One may obtain an exact validity criterion for this
approximation by simply demanding o.'«

~
PI'($)~.

Thus the discontinuity is weak.
In the strong-absorption limit (large n) the at-

tenuation is rather severe, so G($) will be small.
As a first approximation we can simply take-

G(&) =0. (37)

The efficacy of this approximation is shown by
noting that -u/~G'(g)~ is then extremely large and
negative, so the right-hand side of Eq. (35}is ex-
tremely small. Integration of Eq. (30}then gives

&(5)= - fl (. (38)

It does not appear possible to find an analytic
solution to Eqs. (30}and (35} in the general case
(arbitrary I and arbitrary o.). We do not attempt
to integrate these equations numerically in this
paper.

S(Z, o) = dt e'")S'(z, t)cos(kz -~t+ y)

(39}

The Fourier integral is performed by again in-
voking the slowly varying envelope and phase as-
sumption. Casting aside the nonresonant term,
we have

1S(Z &) df ei(at-art+ rP) g
4

(40)

IV. FOURIER ANALYSIS OF PULSE

The most readily accessible experimental probe
of the pulse propagation is the Fourier spectrum of
the intensity as a function of Z. Let v denote the
frequency of observation. Then we are interested
in finding the spectral function

expressions for the integral in Eq. (40) may then
be developed in terms of Airy functions, but we
do not pursue them further here. The spectrum
may be expressed in terms of derivatives of the
phase by using the relation

(43}

which is a restatement of Eq. (9). Then we find

)
v . ay/aq

2 p )(a'y/a g') + 2 (a'y/a g a)7) + (a'y/a vp) (

(44)

where t0 is the root to the equation

v-~+ '~+ '~ =0.
8( Bq,

In the preresonance domain (e.g. , z & ~zaJ, in the
special case considered earlier) Eqs. (45) and
(21) imply that ta is the root to the following equa-
tion:

(45)

28P, z
(x —+ I' t ——=0

v ' v
(46)

m I'" '=4~. il-i, -, .,0

(47)

It should be noted that for o=~, Eqs. (24) and (45)
become identical. Thus the line t =t, and the reso-
nance curve (such as is illustrated in Fig. 7) be-
come one and the same. For o &, the line t =t0
lies in the preresonance domain (i.e. , the domain
continguous with z =0) so obviously Eq. (47) is
valid for o&w, . In the case where o&, the line
resides in the postresonance domain and a new
expression for S(Z, o) must be sought.

Insertion of Eq. (29} into Eq. (44) yields a formal
expression for the spectrum:

the prime denoting differentiation with respect to
argument. The spectrum may then be expressed as

The method of stationary phase is employed in
evaluating the integral. Let t, be the time at which
resonance occurs:

G(~}'" '-
2P iF".G-.2G i, ,0

Now t, is defined as the root of the equation

(48)

8/7
o —40+ =0.

Bt
0

One then finds

(41) (49)o —~+F'(() qG+'(()+G(()~, , =0.

Combining these expression with Eq. (30) yields
the spectrum

8'(f.)'" '=
2 [g(f'.)I

the dots denoting time differentiation. Note that
t0 will, in general, depend on both Z and o. Equa-
tion (42} is valid except in the vicinity of the in-
flection point defined by jo(ta) =0. Then the method
of stationary phase is inapplicable. Approximate

G(t.)
2P i(1 —B')G' + (q —B)G

where t0 is the root of the equation

40 —o'
g=B+

(5o)

(51)

Let us study the particular case of the strong-
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absorption limit (o.'-~). Equation (50) is not of
particular use here unless we have an explicit
solution for G($). However, it is possible to ob-
tain information from Eq. (40) directly through
the use of the Schwartz inequality. We have

g 21 dte'"' ~'+~' &
ZQ4 0

where f, will be specified shortly. Then

(52}

S — dt 0 (53)

The right-hand side vanishes as n-~. Thus we
arrive at the important result that the spectrum is
highly suppressed for frequencies beyond , in
the strong-absorption limit!

V. DISCUSSION

In the experimental results it has been noticed
that a discontinuity in intensity occurs when the
self -phase-modulation frequency extends beyond
the absorption-line. frequency. This discontinuity
is predicted by Eq. (56), which puts an upper limit
on the magnitude of the step. In order to obtain
an estimate for the theoretical magnitude of the
discontinuity one must assign numerical values
to the various parameters that have appeared in
the theory.

First one must have information concerning the
parameters f, z, and ~, appearing in Eq. (5).
Decay rates and resonant frequencies for excited
states of Pr" have been reported in the litera-
ture. " The 'D, -to-ground-state transition has a
frequency lying to the red side of 5300 A and the
Pp z p to -ground -state transitions lie on the blue
side. Let us concentrate on the 'D, state for the
sake of definiteness. Then one has" y =1.1 &&10'

sec ' for the radiative lifetime. The quantity f
can be determined from a knowledge of the ab-

Use the fact that tg' = G/P and note that Eq. (35)
implies an upper bound on G((),

G(&) -.el(&).-"i"'"i (54)

to obtain

d(d, e) — dtf' dt —,e 'tt
t)

1 -n
4 0 f2

(55)

First we note that for pulses the quantity I'($)
will attain a maximum. Secondly we choose f'
=[1(])]'i' and note that this is an integrable quan-
tity since I($) describes a pulse (remember, by
definition, I) 0). Thus

2

S(Z, g}(— dt[i(t}]' '

e-"»ized'imax

(56}
4

sorption coefficient, and this is discussed in Ap-
pendix B. We take ~ =3.6x10" rad/sec and re
place" Ep by 1 to obtain an approximate estimate.
A measurement was made and it was found that
for z =1 cm Iz/I, is roughly 0.1. The laser fre-
quency spread was roughly 10" rad/sec.

Insertion of these parameters into Eq. (B4) yields
an estimate for f equal to 10' sec '. Insertion of
this into Eq. (16) gives us a value for the param
eter + equal to 'lx10" sec '. Unfortunately, a
definite value for c2 for this material is not known
to us but one might have, typically, e,/e, =10 "
esu. This would define the parameter P appearing
in Eq. (17) as P =700.

If the input intensity is Sx10' W, the pulse dura-
tion is 4&10 "sec, the number of self-focused
filaments is 50, and the filament diameter is 30 p, .
Then the average field strength is 8 =1.4x10' esu.
One can therefore estimate I' „,appearing in Eq.
(56) as I' =8'/v =5x. 10". Then the ratio appearing
in the exponent of Eq. (56) becomes

(57)

0- —,I t ——exp- ' =0. (60)

This implies an almost total suppression of the
signal beyond the absorption resonance. A similar
argument and conclusion occurs for the blue side
of the laser line. The residual weak intensity that
exists beyond the absorption line is not due to self-
phase-modulation. It can arise, however, from
three-wave mixing (four-photon parametric pro-
cess).' "" The previous theory has neglected the
study of this phenomenon, but it is known to occur
in many systems. '" Since we have a continuum
of frequencies created by self-phase-modulation
it might be possible for three such frequencies,
&„(d„and~„to mix to create a signal at fre-
quency , + ('d2 —&, which lies beyond the absorption
line. Since the frequencies are chosen from a
continuum it is possible for phase matching to be
achieved also.

Let us now study the spectrum in the domain
lying between the laser frequency and the absorp-
tion line. It is convenient now to refer to a Gaus-
sian pulse, such as

I=Ie ~ (56)

Insertion into Eq. (47) yields the result

nv 1
4W (3/&') —(4/~') [~, —(z/v)]'

(59)

where t, —(z/v) is given by Eq. (46); i.e., one
must solve the following transcendental equation:
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It is particularly interesting to examine this in
the limit where o is close to +, so

(o —~)v~'
g

v 4zPIp
(61)

If Ip is sufficiently large this will be small com-
pared to v and Eq. (59) will reduce to

S(Z, o) = (62)

4zPIp
vg (2e)~~z (63)

Thus the extent of the self-broadening is propor-
tional to the intensity. Since the energy in the
pulse is proportional to the product of the fre-
quency extent and the intensity spectrum one can
now see why the intensity spectrum must remain
approximately constant.

It is not a simple matter to detect this constancy,
because of the fact that the light tends to break up
into self-focused filaments, all of which have
roughly the critical power in them. Increasing the
incident intensity only creates additional filaments.
It is interesting to note that the same parameters
determining self-focusigg appear in the theory of
self-phase-modulation, pointing to a unity in the
theory of nonlinear optics.

The observed absorption band in the continuum
on the anti-Stokes side at about 400 cm ' away
from the excitation frequency (see Fig. 2) is proba-
bly due to the inverse Raman effect." The ob-
served absorption band is located in the vicinity
where strong Raman bands" are found: 401, 370,
and 321 cm '. The inverse Raman spectrum h."s
been observed before in the self-phase-modulated
continuum generated in benzene and carbon disul-
fide "

Finally we point out that if one were actually to
compute the intensity of the spectrum given by Eq.
(62} the right value of v should be used. There is
evidence" that the picosecond pulse actually con-
sists of an envelope of subpicosecond pulses lasting
on the order of 2&10 "sec. If this is the case
then this value should be employed for ~. As we
mentioned earlier, there is evidence in this exper-
iment for superbroadband four-photon collinear
and angular parametric generation. " A curious
feature of the associated weak-broadband spectrum

a result independent of I,. Thus the low-frequency-
shifted part of the self-modulated signal is inde-
pendent of intensity.

To understand the meaning of this it is important
to examine the frequency extent of the self-phase-
modulation. As one increases the value of o in Eq.
(60}one ultimately reaches a point where no solu-
tion to the equation exists any more. It occurs at

is the existence of a pronounced absorption line at
a position (6112 A) where the linear absorption
would be expected to be rather weak.

A possible explanation for this consistent with
the previous theory is as follows: Imagine tracing
the spatial development of the phase-modulation
spectrum. At short distances, where the bounds
of the spectrum have not yet intersected a strong
absorption line, the spectrum is reasonably flat.
Upon intersection with the absorption line we have
shown (see Fig. 7) that the spectrum abruptly
drops. The mechanism of four-photon parametric
generation is presumably responsible for the ap-
pearance of the signal beyond the absorption-line
limit. Also, this explanation is supported by the
appearance of the angular emission pattern (see
Fig. 6). As the spectrum continues to develop one
reaches a point where the limit of the regenerated
spectrum crosses a weak absorption line. The
problem is identical with the previously con-
sidered theory. One can again expect a drastic
drop in the spectrum at the position of this line.
At still further distances renewed four-photon
parametric regeneration accounts for the feeble
signal.

p+(t+t)] .] (A3)

APPENDIX A

In this appendix we work out in some detail the
time integration of Eq. (5). The basic integral we
are confronted with, after having discarded the
antiresonant term, is

t.p
d7' $(t v+) e"' sin[kz —&ut

oo

+ (&g —&0)T + P (t + T )] .
(A1)

Two cases can be discussed, depending on the
relative size of 1/y and the duration of the pulse.
Both limits will be examined in this appendix.

If one assumes that the duration of the pulse is
long compared with the radiative lifetime, then
the factor e~' acts to suppress large contributions
to the integral, so one has approximately

pp
I = dr $(t) e"' sin[kz —&et+ (&u, —&u)v

oo

+rp(t)+ j(t)r], (A2}

and the results of Eqs. ('7a) and (7b) follow directly.
Then a Lorentzian function [see Eq. (10)] appears
in the theory.

On the other hand, if the duration of the pulse is
short compared with the radiative lifetime, one
may neglect y altogether and obtain

0
I = 1m d7 g(t v}+exp(i[kz —~t+ (tu, —&a&)q.
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(A4)

Here X describes the curvature of the pulse and is
given approximately by & = (1/D)2, D being the pulse
duration. Thus Eq. (A3) becomes

po
I =Imh(t) exp[i(kz —&t)] J

d7'

xexp(-X~'+i[(~, —~)~+y(t+~)]J. (A5)

Upon linearizing the phase cp (assuming again ji
is small) one obtains

0
I = Imh(t) exp[i[kz —~t+ y(t)] J

dr

&& exp[-Z7z+ i[&,—~+ j (t}]v'I. (Ae}

A convenient expression is obtained by employing
the method of stationary phase to evaluate this
integral rather than expressing it exactly in terms
of complex error functions. Thus

Z/2

I = 8(t) sin[kz —(et+ cp(t}]

~

~

-[(d~ —~ + y ( t)]
& exp (A7}

It is important to recall that the electric field
pulse depends on space also, i.e., S(t)= F[t —(zP)],
where E is a function peaked at the point t =z/v.
Our main region of interest lies in the neighborhood
of t=z/v, so we can write, approximately,

g(t ~ v) E(i —'=.
v)V

APPENDIX B

In this appendix we relate the strength of the
absorption f to the measured absorption param-
eters. Let us Fourier transform Eq. (5) and as-
sume that the intensity is now weak enough so that
the nonlinear term may be discarded. Then we
find D(&) = e (~)E(~), where

(B1)

and we have dropped the antiresonant term. Using
the relation k = (&u/c) [~(~)]' ' and defining the
attenuation constant as a,« = 2 Imk one has

2~(e )'I' yf 1
att c 4~ ((g ~)2 & y2

=a „(&u,—&u). (B2)

The frequency spread of the laser o~ is here much

larger than the decay rate y. Consequently, as
the light propagates through the medium, a hole
will be burnt in the frequency profile of the laser.
Let ~& be the extent of this hole and let z be the
propagation distance through the crystal. Then the
size of the hole will be determined, in terms of
order of magnitude, by the condition a,«(4~)z -1.
The ratio b &/v~ determines the fraction of power
absorbed by the medium and is thus related to the
incident and outgoing intensities I& and I&, by

see that the only difference is the replacement of
a Lorentzian representation of the Dirac & function
by a Gaussian representation.

The important thing to note is that for small X this
reduces to

I] —Ig
oL I&

(B3)

I = 8(t) sin[kz —&ut+ y(t)) 2m6[&u, —&o+ y(t)].
Combining Eqs. (B2) and (B3) we finally obtain the
desired approximate expression for f:

(AS)

Thus, comparing Eq. (A7) with (7a) and (7b) we

mc(e, )'~'a I, —I )'
z~y I, (B4)
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