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Effect of strong electromagnetic fields on dilute-gas spectra: The three-level system*
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The effect of a strong perturbing radiation field on spectral lines is studied using an extension of the
Kubo-Zwanzig-Pano relaxation formalism. The problem of a dilute gas interacting with a strong
perturbing field and a weak probe field is solved, assuming a separation of collisional and radiative

processes, by introducing a classical-field renormalization technique. The solution is formulated entirely
in terms of linear-response functions. This method is applied to the problem of the three-level absorber
perturbed by a strong field and probed by a weak field. Multiphoton transitions, double resonance, and

dynamic Stark efFects can be treated as manifestations of this three-level problem.

I. INTRODUCTION

In a previous publication' (hereafter referred to
as I), a method was presented for the calculation
of nonlinear optical effects using the operator
techniques of linear-response theory. In particu-
lar, the saturation of a two-level system was
studied. It is our purpose here to extend this
method to three-level systems interacting with a
strong perturbing radiation field and a weak probe
radiation field. The emphasis of this formalism
is on the concept of single-molecule response
(Green's) function, in distinction to density ma-
trix, ' light amplitude, ' and wave-function' formu-
lations of the prevailing theories. The present
treatment departs from previous ones in obtaining
a nonperturbative solution (cf. Lamb' and Javan'),
expressed in a closed form (cf. Antler and
Townes ), and including high'er-harmonics terms
(cf. Hansch and Toschek'). Therefore, all the
above-cited theories can be obtained as special
cases.

The spectroscopic technique of using a weak
field to probe a system perturbed by a strong
field is a powerful method of studying molecular
relaxation parameters. This method is variously
termed double resonance, laser amplification,
or dynamic Stark effect, depending on the domain
of interest. For example, when applied to plasmas
(dynamic Stark effect) this method can be used to
study the frequency and amplitude of the plasma
oscillations, thus permitting an accurate diagnostic
of the plasma. This effect has been analyzed in
detail by Hicks, Hess, and Cooyere using methods
developed by Autler and Townes4 and Baranger
and Mozer. ' When microwave transitions are
studied by this method (double resonance) the shift
and bxoadening of the absorption lines can be di-
rectly related to the atomic parameters of for-

bidden transitions. A theoretical treatment of this
effect based on the Karplus-Schwinger solution'
for the density matrix undex conditions of satura-
tion has been given by Di Giacomo. ' For optically
pumped transitions (laser ainplification) the princi-
pal emphasis has been on atoxnic-state populations
and the corresponding nonlinear effects, i.e.,
two-yhoton tx ansitions. For this case, extensive
theoretical treatments have been proposed with
various domains of applicability. These have been
summarized by Hansch and Toschek' using a uni-
fied density-matrix treatment.

A major limitation in all the above theoretical
analyses has been the ad hoc introduction of a non-
Hermitian Hamiltonian to represent the effect of
collisional broadening of the various transitions.
This procedure implies certain assumptions nec-
essary to untangle the radiation and collision
processes which are made more explicit in this
work. ' In addition, it may lead to further un-
warranted approximations such as neglecting all
processes of cross relaxation (important in micro-
wave spectra" and in the case of partially over-
lapping lines" ). The principal advantages of the
theory desex ibed here are first, the use of well-
developed linear-response operator methods to
express the nonlinear susceptibility of the gas in
terms of physically accessible quantities at all
intermediate stages of the calculation, i.e., back-
ground populations (unperturbed diagonal density-
matrix elements) and linear-response relaxation
matrices. Second, the diagrammatic method
utilized here permits an explicit solution to all
orders in the field strength.

Sec. II briefly reviews the nonlineax method
presented in I and Sec. HI discusses the various
modifications in the analytical procedure which
are necessary to discuss the two-field problem.
A specific three-level case (without velocity ef-
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fects such as Doppler broadening) is then chosen
and the results presented in Sec. IV. Finally, the
modifications necessary for the inclusion of the
Doppler effect are qualitatively discussed.

II. NONLINEAR RESPONSE

A brief review of the Kubo-Zwanzig-Fano re-
laxation method" "extended to include nonlinear
phenomena in dilute gases, will be presented.
The method and notation follows 1. Velocity effects
are neglected in the following. Their inclusion
will be discussed in Sec. VI.

A dilute gas sample of N molecules each with a
dipole moment p in a classical time-dependent
electric field E(k, f) will have an induced polariza-
tion,

P(n, f) =(N/V) Tr[& e-&"'dp(f)], (1)

mhere V is the volume, R the position of the mole-
cule, and 5p(t} the time-dependent part of the
density matrix of the sample. In the above we
have assumed that in the absence of the external
field the sample is in equilibrium. The density
matrix is then separated into two parts,

"foreign-gas" broadening problem, i.e., we shall
distinguish between the absorbing molecule and
the perturbing molecules (which do not interact
with the radiation). Removal of this restriction
in dilute gases results in a small correction to
the relaxation par ameters. "

(ii) We shall consider here the resonance fre-
quencies and damping coefficients as velocity
independent. This assumption will be further
discussed in Sec. VI.

(iii) We shall ignore, following Fano, "statistical
correlations between the absorber and the yer-
turbers and write p, =p, p, where p, pertains to
the absorber (the "system") and p~ to the per-
turbers (the "bath" ). A detailed discussion of
these phenomena (in the context of the linear-
response theory) is given elsewhere. "

With the above assumptions we can drop the
exponential k-dependent factors, and consider
instead of the sum in (6) only a one-molecule term.
Vfe shall henceforth drop all reference to k.

We now Fourier-transform E&l. (5) and obtain

&ip(~)=-G(~)M E(~)p. +(») '

p(f) = p. +dp(f), (2)
M ~ E(&d')&p(~ —&d') d~',

where p, is the time-independent equilibrium part
which satisfies the Liouville equation,

=I.p, =0.Bp

Here, I. is the sample Liouvillian in the absence
of the external field, defined for quantum systems
as

~=g-'[a, x],
X being any dynamical variable of the system with
Hamiltonian H. E, is thus a tetradic (Liouville-
space) operator The tim.e-dependent part, &p(t},
satisfies the Liouville equation,

-Lop(f}=-M E(k f}[p +&ip(f)]
. &&p(f)

Mx =k ' Q [«e&"'"~,x]

defines M as a Liouville-space operator related
to the dipole moment density. Note that the ex-
ternal electric field E is treated classically and

the interaction with the system has been written
using the electri, c dipole approximation. —

To simplify our treatment we shall introduce
at this stage several assumptions:

(i) We shall concern ourselves only with the

G(&u) = (&o+ is —Q '

is the Fourier transform of the Liouville-space
propagator (or retarded tetradic Green's function},

G(f) = fB(f)e-
the B(t) being the Heaviside step function which
vanishes for negative t The so. lution of E&l. (7)
by iteration leads to the following recurrence
relation

p""'(~)=-(») 'G(~) ~ M E(~')

x p&»((u —s)') &f&d', j =1,2, . . . . (10)

The first iteration,

p"'(~) =-G(~)M E(~)p. ,

which is linear in the external field, is the Kubo
solution for linear response and leads to the famil-
iar expression for the ith Cartesian component
of the yolgxization of the sample at the angular
frequency +,

P(~)=-(N/V)Tr[p&G(a&)M E(~)p, ]. (12}

The coefficient of the classical field, E(&d}, in the
above equation is defined as the linear-response
susceptibQity, y«'(~), of the sample.

In I a method for calculating the nonlinear cor-
rections to E&l. (12) was presented. The external
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electric field is decomposed into a superposition
of coherent monochromatic fields,

E(&) = wg [E,'5(&u —&u~) +E~ 5(v + e,)],
k

9=(G '-U} ' (20)

The propagator G, previously introduced in Eq.
(8) should be redefined as a diagonal operator in

HNR,
E- —(E+)* (13) G =(Q+i@ —L) ',

which permits the nonlinear polarizability to be
written in terms of a sum of 6 functions with con-
tributions from various combinations of harmonics
of the fundamental frequencies, i.e.,

n ~ e=g natu„(n~=0, +1, . . . for each k),
k

(14)

where 0 is the diagonal operator whose eigen-
values are the harmonics frequencies,

Q~n)&=n ~~n&&.

Thus, e.g. ,

((n'~ G~n)& =5„„G(n ~).

(22)

(23)

where

n = (n„.. . , n„.. .)
is a set of harmonics numbers and

~ —(~&~ ~ ~ ~a ~ ~ ~ ~ )

(15a)

(15b)

U= ——Q Q M~6~.
k

(17)

To the equilibrium distribution p, corresponds
a HNR "vacuum" (n =0}, which will be denoted
~5». The Fourier component of the polarization
at the harmonics combination of angular frequency
n w is given in HNR by

P, (n &u) =(N/V) Tr(((n~ p, QUp, (0&&&, (18)

where the trace still refers only to the molecular-
sample variables. In the above, Q is a renormal-
ized Green's function obeying the Dyson equation,

Q =G+GUQ,

with the formal solution

(18)

is the set of fundamental frequencies of the field.
The harmonics numbers defined above count num-
bers of photons added to or subtracted from the
radiation field by absorption or emission (instead
of absolute numbers of photons). Therefore, they
can be considered as the classical Liouville-space
analog of the occupation-number representation of
quantum-field theory.

We may correspondingly introduce a harmonic-
number representation (HNR), with basis vectors
~n», in which the field E„' of Eq. (13) is redefined
as an operator, gk', which raises or lowers the
harmonics numbers by one unit:

8 ~n„. . . , n, . . .&&=E' ~n„. . . , n +1, . . .&&.

(18)

In the classical strong-field limit, Sk and Sk
commute. The interaction of the sample with the
external field is expressed in terms of these field
operators as

DQD = [Q —L, DUD -Z,-(Q)] (24)

Here, D is the projection operator onto the single-
molecule subspace (in Liouville space), L, is the
(diagonal) matrix of molecular resonance fre-
quencies, and Z, (Q) is a tetradic proper self-ener-
gy (or "relaxation matrix") the Hermitian and
anti-Hermitian parts of which have elements that,
respectively, describe the various shift and re-
laxation rates.

An extremely useful approximation introduced
in I is the assumption that the collisional and
-radiative processes may be disentangled. This
amounts to writing,

DQD =DGD +DGDUDQD. (25)

As a result of this, Z,(Q) in Eq. (24) includes only
contributions of pressure broadening. The terms
neglected in Eq. (25) imply radiative corrections
to the proper self-energy which are supposed to
be small.

The operator D projects on the subspace of all
single-molecule excitations, not only the dipole-
allowed ones. In this subspace, U is invariant,
but it may connect transitions with different multi-
pole character. Consequently, Z, (Q) should also
be defined on the entire subspace, although (as a
result of the thermal averaging) it is reducible
to the various multipole subspaces. "

Equation (18) is a basic result of 1, representing
the nonlinear polarization at the frequency =n

As has been pointed out in I, the usual projec-
tion-operator techniques of Zwanzig and Fano can
be applied to reduce the propagator G, which is
defined on the molecular-sample variables, to an
operator defined on the single-molecule space of
the absorbing molecule, averaging out all the
"bath" degrees of freedom. (The restriction to a
single absorbing molecule is not essential, since,
as already mentioned, the results can be readily
extended to self-broadening, where the gas mole-
cules are identical. } Using the techniques of Zwan-

zig and Fano, 8 in Eq. (20) can be replaced by
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The Dyson equation, in the approximation of Eq.
(25), can be written in a somewhat modified fashion
required for the introduction of the renormaliza-
tion techniques to be used later. Divide the HNR
into two subspaces, the even and odd parts, in
which g, n, is even or odd, respectively. Intro-
duce projection operators for these even and odd
HNR subspaces, denoted Q, and S,. Consider the
projection of Q onto either of these, e.g. ,

0Q+o =&o GX)o+Q, GUQ&, . (26)

In the above, G, like Q, is confined to one of the
two subspaces, depending on its argument Q. How-
ever, U has an odd "parity" in this representation.
Therefore, in the expansion of Q in a power series
of U, only even powers of U will remain after the
application of the projection operators. We can
therefore rewrite Eq. (25) in the form

5), DQD B,= &0 (DGD +DGDWDQD)X)0,

where the binary form

W = UDGDU,

(27)

(28)

D,QD, = [0 —L, —W —Z, (A)] (24b)

Where D, replaces D in Eq. (28) and Z, is now

confined to the odd-parity subspaces. In this case,
the introduction of a projection onto HNR "parity"
subspace is, in fact, irrelevant. It is, however,
necessary if parity is not a good quantum number
of the molecular system in order to express the
Dyson equation in terms of W.

The nonlinear polarization is now expressed
completely in terms of quantities which can be
calculated from linear -response theory. Consider,
for exa.mple, the response to a single-field mode
with frequency w. The appropriate matrix ele-

replaces the original interaction U. —

The above arguments are independent of any
arguments concerning parity in the ordinary sense
(i.e., in the molecular space}. However, intro-
duction of the molecular Green's functions can be
further simplified if parity is a good quantum num-
ber of the gas sample. We may then divide the
molecular projection operator D into even and odd
parts,

D =D, +D, .

Equation (27) now automatically separates the
even and odd projections, D,QD, and D,QD, , with
the intermediate DGD in W of Eq. (28) being pro-
jected onto the opposite-parity subspace since U

also has an odd parity in this representation. For
the calculation of the polarization, we need the odd-
yarity projection,

E~ =E~ =E~, (30)

where E~ is the field amplitude. If we were to
consider several modes with different phases,
the difficulty can be taken care of with a unitary
transformation using the harmonics numbers intro-
duced in Eq. (15a). The details of this procedure
are irrelevant here and will be omitted.

We may now define a nonlinear susceptibility,

g, &(~) = -(N/V)QTr(((1~ y. ; DQDM, p, ~ +I))), (31)

relating P, to E&. The first term in DQD, which
is DGD, gives the linear-response susceptibility
[to which only the ~+I)) term in Eq. (31) contrib-
utes] .

The harmonics-number matrix elements of the
nonlinear terms can be evaluated by using a dia-
grammatic method described in I. This problem
is distinct from the problem of evaluating the
molecular linear-response Green's functions,
DGD, which are defined on a different space and
can be treated by well-developed methods such as
the Liouville-space techniques. " This enables
one to completely separate the problems asso-
ciated with harmonics of the radiation field from
the molecular absorber problem and thus, avoid
unnecessary assumptions regarding the molecular
Green's functions.

III. TWO-FIELD PROBLEM:
HARMONICS-NUMBER MATRIX ELEMENTS

We consider here the response of a dilute sample
to a weak monochromatic probe field of magnitude
E, and frequency , in the presence of a strong
(saturating) field E,((o,}. We assume that the two
modes are distinct (e.g. , they have distinct fre-
quencies). The expression for the susceptibility
given in Eq. (31) is now generalized to describe
the linear response to the probe field including
the nonlinear effects due to the saturating field.
Since we consider the response linear in E„we
can leave its phase arbitrary and choose the phase
of E, to be zero so that, E,'=E, =E,. In this case
we now have,

ment of the polarization at the frequency & is,

P, (~) = =,'(N/V ) g g Tr (((1~ p. , DQDM, h,'p, ) 0))),

(29)

where p, is the one-molecule density matrix and
Tr is a trace over one-molecule states.

Since we consider here a single coherent mode,
the phase of the field is irrelevant and we can
choose,

P~(u, }= g y, j(m, )E»-— (N/V) g g Tr(((1-»0,~p, DQDM ~ g'p, ~0„02))),
l=ly2

(32)
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where in„n, )) is a two-field HNR state. In the
above, E, is treated in the linear approximation
and hence, DQDM 8,' contains only one probe-
field raising operator g,' and even numbers of
saturating-field raising and lowering operators
8,'. For simplicity both fields will be taken to be
co-linear and polarized in the z direction.

To perform the harmonics-number matrix
elements indicated in Eq. (32) the diagrammatic
notation introduced in I will be used. Circles
represent the HNR matrix elements of each DGD
in the series expansion of D9D (to be denoted
henceforth as G and 9, respectively, for brevity),
solid lines represent an HNR matrix element of
the interaction U, = --,'M ~ E„and a dashed line rep-
resents that of the interaction U, = -M ~ E,. The
general diagram which results from taking the
HNR matrix elements for the various contributions
to the nth-order susceptibility at the probe-field
frequency is shown in Fig. 1. The circles and
lines in this diagram now represent operators
which act in the single-molecule subspace only.
To obtain the complete nonlinear susceptibility
the sum of all paths leading from right to left in
Fig. 1 should be performed for the diagram in
each order and a sum over all orders is then to

be taken. These two summations can be performed
by a method similar to the calculation of proper
self-energy parts in quantum-field theory.

Note that the diagram in Fig. 1 is formed from
two networks: one network, the upper one, con-
tains only Green's functions of the form G(1, n),
where n =0, +1, a2, . . . . This network results from
the action of 8; first in Eq. (32). The lower net-
work contains only Green's functions of the form
G(0, m) and is obtained when 8,' acts first. It is
connected at one end to the upper network by a
dotted line which represents the acti.on of 8,'.
Since, as stated above, the susceptibility is the
sum of all possible paths of all possible lengths
in Fig. 1, we can reorder the summations so that
we sum first with the position of the line repre-
senting 8,' fixed. Consider the first case where
5,' acts immediately to the right. This gives the
sum of all paths of all possible lengths in the upper
network only. This network will be denoted 9(1,0).
It consists of G(1, 0) plus all branches which begin
with a G(1, 0) and end with a G(1, 0). This is il-
lustrated diagrammatically in Fig. 2(a), where we
used a double circle to represent 9(1,0) and the
symbol 'N to represent all branches connecting
G(1, 0) to G(1, 0). The%" is called a "self-energy

9=0 0-00
a)The upper tree of Fig. 1

O = -O~ CS-&& ~ ' " '
b)The self-energy in terms of proper self-energy

8=0 0-M9
c)The Dyson equation

qfp = 1,1 +

d/ Contributions to the proper self- energy

-& -00~- -&

FIG. 1. Typical diagram for the linear response of a
system to a monochromatic probe field, E~, in the pres-
ence of a strong saturation field, E2. Circles represent
Green's functions G(n&, n2). Connecting solid lines rep-
resent the interaction U = —2M E2 and dashed lines rep-
resent U~= -M ~ E&. The diagram is composed of two net-
works, the upper network contains Green's functions of
the form G(1, n2) and the lower network, Green's func-
tions of the form Gp, n2). The two networks are con-
nected only by the interaction U&.

FIG. 2. (a) Sum of all diagrq. ms of the type contained in
the upper network of Fig. 1 which contribute to the linear
response of a system to a monochromatic probe field E~
in the presence of the saturating field E2. The double
circle represents the sum of chains of linear-response
Green's functions which are of length 1, 3, 5, etc. (b)
Sum of chains of Green's functions described in (a) is
expressed here in terms of proper self-energy inser-
tions, 'N&. This is a sum of chains of linear-response
Green's functions which c~ri~ot be broken into two chains
by removing a Green's function, G(1, 0). (c) Dyson equa-
tion which results from inserting the proper self-energy
part into the diagram in (a). (d) Sum of the diagrams
which are contained in the proper self-energy part of Fig.
2(c). Since %& contains no G(1, 0) Green's-function links,
G(1, 1) is not connected to G(1, -1) as can be seen from
the upper network in Fig. 1.
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insertion" in the language of quantum-field theory.
As is usual%' is now written in terms of a "proper
self-energy insertion, " 'W~ [i.e., a self-energy
insertion which cannot be separated into two parts
by removing one G(1, 0) as is illustrated in Fig.
2(b)]. In terms of this proper self-energy inser-
tion, Fig. 2(a) becomes the Dyson equation illus-
trated in Fig. 2(c) and can be written,

9(1, 0) = G(1, 0) + G (1, 0) %~ 9 (1,0).

The calculation of %~ proceeds in exactly the
same fashion. The contributions to &~ are illus-
trated in Fig. 2(d) where 9» is the "polarization
insertion" for &~, containing all Green's-function
branches which connect W(1, al) to W(1, +1) without
passing through G(1, 0), where

W(1, al) = UG(1, al) U,

is the HNR matrix element of the binary inter-
action introduced in Eq. (28). In the above, and
henceforth, we use U as a shorthand for U, . Since
'N~ contains no G(1, 0}functions, no diagrams
connecting W(1, 1) to W(1, -1) appear. Thus, ~~
is the sum of the two terms which may be written
as

(34)

where W(1, 1) is defined by the first two terms
in Fig. 2(d} and 'e(1, -1) by the second two.

The contribution from the upper network in Fig.
1 can thus be written as

9(1,0) = [G '(0, 1)-W(1, 1) —%'(I, -1)] '. (35)

It can be seen that the nonlinear contributions
from the upper network simply renormalize the
linear-response function. Thus, the functions
w(1, +I) have Hermitian and anti-Hermitian parts
which, in regions where the susceptibility is
Lorentzian, play the role of radiative "shifts" and
"widths. " Since these functions also have reso-
nances, there are regions of the spectrum where
there will be "satellite" peaks occurring also.
This interpretation is the classical-field counter-
part of the "dressed-atom" concept introduced by
Cohen- Tannoudji. " The "dressed atom" is the

where 9(l, M) is the "proper polarization" part of
9„in Fig. 2(d), and also satisfies a Dyson equa-
tion of the same form as Eq. (33). In fact, the
renormalization can be carried out successively
to account for all the possible branches in the
upper network of Fig. 1. This procedure is equiv-
alent to solving an alternating chain of Dyson equa-
tions for "proper self-energies" and "proper
polarizations" of the form

9(1, +2n) = G(1, +2n) + G(1, +2n)

x '%[1, a(2n+ I)]9(l, Nn),

%"[1,a(2n —1)]= W[1, a(2n —1)]

+W[1, +(2n —1)]9(l, Nn)

x%'[I, ~(2n —1)] (n =1,2, . . .),

(3'la)

(O'Ib}

with solutions

9(1,+2n} =(G '(1, +2n)-%[1, s(2n+1)]}

(37c)

%[1,s(2n —1)]= [W '[1, +(2n —1)]-9(1, +2n) }
(n = 1, 2, . . .). (3Vd)

Substituting these solutions into Eq. (33) we obtain
the solution for 9(1,0), the upper network of Fig.
1, in the form of a continued fraction, or Pads
approximant, in the linear-response Green's
functions, as follows:

quantum-mechanical atom propagator renormalized
by including intermediate multiphoton states. This
physical interpretation will be discussed further
below.

The function &(I, +1) in Eq. (34) can also be
evaluated by using the same field theoretic tech-
niques as for 9(1,0). Thus, we can write a Dyson
equation from Fig. 2(d} as follows:

%(1,+I) =W(l, +I)+W(1, al) 9(1, N)%'(I, al),

(36)

(38)

Recall that the summations have been reordered
so as to be performed with the position of U, fixed
relative to a particular type of Green's function.
The first case, calculated above, was the case in

which U, acted first and involved 9(1,0) only, i.e.,
the upper network in Fig. 1. The next case is that
in which U, acts to connect a Green's function in
the lower network to 9(1,0) either directly, if U,
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acts after 9(0, 0), or through a chain of upper-
network Green's functions starting with G(1, +n)
if U, acts after G{0,sn).

We can classify the various contributions to the
polarization according to the arguments of the
specific pair of lower- and upper-network Green's
functions connected by U, . The particular position
of this pair in a branch running from right to left
in Fig. 1 can be made irrelevant by using renor-
malized Green's functions. For this purpose we
write Dyson equations for the lower network analo-
gous to Eqs. (33), (37a), and {37b),

~(0, An) =W(O, +2n)+W(O, An)

We[0, +(2n+1)]%(0,An), (3eb)

g[O, +(2n -1)]= G[0, ~(2n —1)]+G[0, +(2n —1)]

x%(0, An) 9[0, +(2n —1)]

{n=1,2, . . .). (39e)

The formal solutions corresponding to the above

~(0, o) =w(o, o)+w(o, o) [9(o, 1)+9(o, -1)]~(0,0),

(3ea)

where the "proper polarization" 9(0, 1)+9(0,-1)
cannot be divided into two parts by removing a
W(0, 0) interaction. Similarly,

equations are the continued fractions analogous
to Eqs. (37c), (37d), and (38),

'N(0, 0) =[W '(0, 0) —9(0, 1) —9(0, -1)] ', (40a)

m(0, An) = (W-'(0, An) —9[O, +(2n+1)]}-'

(n=1, 2, . . .}, (40b)

9[0, ~{2n —1)]= (G-.'[0, ~(2n -1)]-%(0, An})-'.

(40c)

The sum of all the direct connections of the lower
network to the upper network (i.e., those involving
G(0, 0) and G(1,0) contributes the following term
to the polar ization~

9(1,o) w(0, o) [9(o, 1)+9(o, -1)]. (41a.)

The connection via G(0, al) and G(1, +1) contributes,

9(1,0)~(1,al) 9(0, +1)(1+&(0,0) [9(0,1)

+9{0,-1)]j.
(41b)

Succeeding contributions result from renormalized
functions intervening between &(1,sl) and 9(0, +1)
in the chain of (41b). Thus, the complete sus-
ceptibility which is the sum of all these contribu-
tions plus 9(l, 0) of Eq. (38), can be written as the
infinite product,

y(~, ) = (N/V) Tr-(p 9(1,0) [1+&(1,1){1+9(1,2)(1+ }~(0,2)) 9(0, 1)

+W(1, -1)(1+9(1,-2) (1 + ~ ~ ~ jW(0, -2)) S(O, -1)]
x [1+~(0,o) {9(o,+1)+9(o, -1))]Mp, j. (42)

The single term 9(1,0} is the contribution from
the upper network in Fig. 1; the rest of the terms
are the interference terms coming from the lower
network. Within the approximations stated in
Sec. II, this result is perfectly general and ex-
presses the effect of the frequency mixing which
results from the strong saturating field. Since
Eq. (42) contains Green's functions and interactions
which operate only in the single-molecule Liouville
subspace, it is now possible to perform the indi-
cated trace operation. The rearrangement of dia-
grams which was performed above considerably
simplifies this calculation, as will be seen.

The physical interpretation of the result can be
easily seen since it has been expressed in terms
of linear-response Green's functions. Thus, the
upper network, Eq. (38) can be interpreted as the
linear response at the weak-field frequency modi-
fied by the system response to one weak-field
photon and successively one, two, etc. , strong-
field photons. It is for this reason that we referred

to this result as the classical counterpart of the
Cohen-Tannoudji, "dressed atom. " That is, the
linear response is successively renormalized by
multiphoton intermediate states. The interference
terms in Eq. (42} can be interpreted as the effect
of saturation since only strong-field photons are
included in the lower tree. This can best be seen
by referring to the diagrams in I, p. 761, which
contribute to two-level saturation. These terms
express the effect of the "spectator" yhotons
mentioned by Cohen-Tannoudji in his dressed-atom
theory. As will be seen in Sec. IV, these terms
can be neglected for certain level configurations
in the atomic system. Finally, Eq. (38) bears
a formal resemblance to the Autler-Townes4
solution for the ac Stark effect.

IV. THREE-LEVEL ATOMIC SYSTEM

In order to calculate the single-molecule Liou-
ville-space matrix elements in Eq. (42}, we must
specify an atomic-level configuration. For the
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purpose of comparing our results mith previous
work, a three-level atomic system mill be con-
sidered. %e restrict our attention here to the
thx ee atomic levels mhich are described by parity
eigenstates arranged as in Fig. 3. The transitions
a-5 and 5- c (of energy, respectively, +,~ and

ar„) are assumed to be dipole allowed and hence,
transition a- c will be dipole forbidden. The ex-
tension of this model to the case of folded arrays
(5 above a or below c) is straightforward and is
treated in Ref. 5, among others.

The problem of space degeneracy has been dis-
cussed in I, Sec. VII. In the following me shall
proceed as if the degeneracy is absent, for sim-
plicity. However, if we were to consider the level
degeneracy it mould only cause the Green's-func-
tion tetradics to become matrices of larger di-
mensionality. To see this, suppose we associate
with each transition a- 5 in the nondegenerate
case, the Liouville vector ~ab'&& (using the notation
suggested by Baranger. " In the degenerate case,
we have to associate with the pair of energy levels
a, 5 the whole degenerate manifold ~am, (bm, )'&&,

with m, = —j, , —j,+ I, . . . , j, (where j, , m, are the
total angular momentum quantum numbers in the
molecular center of mass coordinates), etc.
Multipole subspaces, ~ab'; jm)) can be formed"
with j running from

~ j,—j,~
to j +j,.. In this

multipole representation, the 6's are invariant
(diagonal in j and m, and independent of m). How-

ever, each time the Liouville-space operator I
is applied it lomexs or raises j by one unit. It is
possible, in principle, to extend the diagrammatic
analysis to take this into account. The nondegen-
erate scheme follomed hexe is equivalent to ne-
glecting all multipole subspaces other than the
dipole (j = I) for odd-parity 6's and the monopole

(j =0) for even parity 6's (those occurring in W).
In order to evaluate the single-molecule Liou-

ville-subspace matrix elements Qf the renormal-
ized Green's functions; me note that since the
interaction, U = --,'M ~ E„ is a parity changing
operator and p, has an even parity (in its diagonal
representation), the Green's functions of Eq. (3%a}
operate on odd-parity Liouville-space vectors.

s (+)

c (+)

I'IG. 3. Configuration and parity of the three-level
system discussed here.

The Green's functions in the W of Eq. (3'Ib} operate
on even-parity vectors.

%'e nom decompose the 9&&-9 single-molecule
Liouville subspace of the three-level system into a
4x4 odd-parity subspace with basis vectors ~ab'&&,

~ba'&), ~bc')&, and ~cb'&& and a 5&&5 even-parity
subspace with basis vectors laa'», I&h'», I«'»,
(ac'», and (ca'».

The Green's-function matrix for the odd-parity
subspace is

G(n„nm) = [(n~(u~ +s~&u2}l —L,~
—n ~ + i I'~] ', (43)

~z =1» +2=+ even

n, =0, n =+odd,

where I is the unit matrix, and I„is the matrix
of resonance frequencies,

QPb 0 0 0

0 0

~bc

4b ~ab; ba ~ab; bc

t+
'sab: ba ~ab ~ab; cb

~ab; cb

&ab; bc

+ab: cb

~bc ~bc; cb

~ab; bc ~bc; cb ~bc

is the matrix of relaxation and cross-relaxation
rates. 6, is the matrix of pressure shifts with a
structure similar to I;.

Ne emphasize here, that generally, neither the
binary-collision assumption, nox' the impact ap-
proximation have to be implied in the above. Thus,
e.g., the I' matrix is not necessarily proportional
to the perturber gas density nox frequency in-
dependent. Thexefore, the present theory can be
applied, for example, to nonlinear effects invol-
ving atoms in partially ionized plasmas where
the binary-collision approximation is not neces-
sary for the electrons and the impact approxima-
tion is invalid for the ions. For most gases at low
pressures, the binary-collision impact theory is
valid and 6, and I; can be calculated in terms of
binary-co1lision matrix elements. '~' In the im-
pact approximation, "4, and I; are independent of
43.

If the lines are sufficiently sharp so that
~~„+~„~»y„+y„then we can neglect the off-
diagonal elements in I'x and +x and obtain for the
odd-parity subspace,



LEWIS KLEIN, MICHEL GIRAUD, AND ABRAHAM BEN-REUVEN

{{if'lG(n„n, )li f '» = (n, &u, +n, &o,

~~s 5v+ 'yo)
-=C„(n„n,),

s~ = 1y Q2 = k evenq

8~ =Oy s2 = + odd~

(45)

&a &ab &ac

+0 ~ab ~b ~bc

-v,", -v,", y, )
Similarly,

{(if'Ic(1,n.)lif'» =(~, +n.~.—~&& -5„+~„)'
~h~~~ lif'&& is lob'&& lbs'&& lbc'&» or lcb'&&.

For particular values of the level spacing, line-
width, and perturbing field frequency , not all
four of the odd-parity Green's functions above will
be near resonance. Thus a major approximation
to be applied later involves the neglect of off-
resonance terms. %hich of the functions are to be
retained will be indicated later when a particular
example is considered.

The Green's-function matrix for the even-parity
subspace lg

G(n„n, ) =[(n,ar, +n, (&,)I —I„-n,+iio] ', (4'I)

8~ =ly 82=+ oddy

n, =0, n, =+ even,

where

g +Q 0 ~ ~ ~ ~ ~ ~ ~ ~ac ac

0 0 0

0 0 0

0 0 0

(48)

G„(1,n, ) (n, = 0, D, H, . . . , even),

G„(O, 1},

G„(o, -1),
and at even-parity stages,

(52a)

(52b)

(52c)

=G,~(1, n, ) (n, =1, n, =+odd),

(51)

where, here, li f'&) is either lac'» or lcs')).
We have given now all the matrix elements which

occur in the various Dyson equations.
It has been remarked previously that ~, and ,

are to be considered as distinct frequencies. In
addition, it will now be assumed that &„and (d„
are distinct transitions and that , b& b, . The
contrary case could equally well be treated by the
same transformation as that used to treat folded
arrays. If now, ~, is used to probe a region
covering ~b, and ~„and we assume that &,&(d„
(i.e., &u, is used either to saturate the a-b transi-
tion or is a strong off resonant field), the number
of near-resonance Green's functions that must be
included is considerably reduced. For these con-
ditions, in fact, we need consider only the fol-
lowing, at odd-parity stages,

~ ~ ~ ~ e ~ 0 e ~ ~ ~
ac

Gg~ gy(0 0) (i f =0 b c)

G„{1,n, ) {n,= +1, +3, . . . , odd).

(52d)

(52e)

e e 1 t I e I I 0 e ~ 0sac

~ac

~ac

{(ii+
I G(0~ 0) I ff +

&&
= i (~g )~y = G» ~;yy(0& 0)y

where

(50)

where y„ is the linewidth of the forbidden transi-
tion a- c, y, is the relaxation rate of level a, etc.,
and the o's are corresponding cross-relaxation
rates. Unlike the simplification used in Eq. (45) we
cannot here neglect all off-diagonal matrix ele-
ments. In the case of sharp nonoverlapping reso-
nances we still must consider the off-diagonal
elements explicitly written in Eq. (49). In the case,
n, =n, =0, only the three zero-resonance terms
isa'», lbb'», and lcc'» contribute,

Equation (52a} implies that there will be spectral
resonances near ~, =(u„ (the resonance line) and
4o, =~„an,~„where n, is an even integer, and
Eq. (52e) implies resonances near ~, =~„sn,tu„
where n, is an odd integer. It can thus be seen
that a simple parity argument is the reason for
which even numbers of photons of the strong field
contribute "satellites" symmetrically placed about
the resonance line, while odd numbers of yhotons
yield satellites symmetrically placed about the
forbidden-line position. In addition, as shall be
seen later, complicated effects such as dynamic
Stark widths and shifts are also contained in com-
binations of these functions. The Green's func-
tions in Eqs. (52b)-{5M) are those which contribute
to the saturation of the (a, b) pair of levels, as can
be seen by comparison with the two-level theory in
I.

The fact that Eqs. (52a)-(52e) list the only
Green's-function matrix elements needed, con-
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siderably simplifies the calculation of the suscepti-
bility. To see this, consider the contribution
from the first term in Eq. (42),

Tr[p9(1, 0)Mp, l=«p I9(1,0)IMp, )),

where p, is represented in Liouville-space by the
bra vector,

where the matrix element in Eq. (55) is the only
contribution to R,, . The function W(1, +1}in Eq.
(55} is the renormalized interaction defined in Eq.
(36}. A calculation of its matrix elements involves
a knowledge of the effect of M, which transforms
between even- and odd-parity subspace vectors
as follows:

« p I
= p„«ba'I + p„«ab'I + p„«bc'I + p „«cb' I

and Mp, by the ket vector,

(53)

ff Ml aa')) = g h, lba'» —P, ,J ab'&),

n Ml cc'» = p „lbc"» —P .,I
cb'»,

Ml bb')) = -Ml aa')) -Ml cc')),

IMP.»=(p. Iab'» —p .Iba'»)(p -p.)

+ ( p .I
bc'» -p. I

cb'»)( p. - p ) (54)

Since 9(1,0) satisfies the Dyson equation (33),
a G(1, 0) Green's function acts both to the right
and to the left. From Eq. (52a), we see that 9(1,0)
therefore selects the lbc')) state from IMp, &) and
is diagonal in lbc')), thus

k Mlac'»=p&. Ibc'» —P, ,Jab'»,

8 Mica'»=ps Iba'))-p slcb'&),

k Ml

ah+�

)) = p, ~ I
b b+

&&
—p, ~, I

aa+
&&

—p, ~, l
ac+ &&,

k Mlha')) = p „Ica')) —P, ,Jbb')) + g„laa')),

8 Mlbc'» = P,&lac='» —p,&lb b' »+ P,&l cc'»,

I Ml cb ')) = P ~, l
bb

'
&&

—p ~,l
cc'

&&
—p g„l ca')) .

(57)

((bc'I 9(1,0)l bc')) = [G„'(1,0)

—((bc'Im(1, 1)+'e(1, -1)l bc'»]

Note that the contribution in Eq. (55) is propor-
tional to the unperturbed population difference in
the lower two atomic states, p, —p, . Since in Eq.
(42) all other terms have G(0, +1) acting on IMp, )),
the states lab'&) or lba')) will be selected, and
from Eq. (54) it can be seen that these terms will
all be proportional to p, —p„ the unperturbed
population difference in the upper two atomic
states. Thus, the complete susceptibility can be
written,

X = b'(&ll'-) [R:(p. p~}+R~-(pa P.» &-(56)
I

« I I9(1,0)IMp. » = lu, .l'«bc'I9(1, 0)lbc')) (P, —P ),

(55)

where

Using these relations, the resonant conditions of
Eq. (52d), and the Dyson Eq. (36) we obtain,

(&bc'I% (1, +1)lbc'&) =[P 'G, ,'(1, +1)

—«b"19(1.~)lb"»)-',
(58)

where

2
Wan &2

21

is the strong-field interaction parameter. In the
above equation we have retained only the lbc'))
matrix element of 9(1,a2}, anticipating the near-
resonance condition, Eq. (52a), and the Dyson
equation for 9(1, a2}.

Continuing this procedure for all terms in the
series of Dyson equations we obtain terms which
alternately select the vectors lac')) and lbc')). The
final result corresponding to Eq. (38) is

Rca =

G„'(1,0)—
G;,'(1, 1)—

G;,'(1, 2)—
G, 1(1,-1)—

G-„'(1, -2)—

(59)

This contribution to the susceptibility, R,~, comes
only from the upper network in Fig. 1.

The rest of the terms in Eq. (42) which include
interference from the lower network in Fig. 1 are
proportional to p~ —p„ the unperturbed population
difference of the upper two states. They, thus,

I

represent the interference effect of saturation of
the (a, b) transition on the spectra probed by &u, in
the vicinity of the (a, c}and (b, c}transitions.

Because of the near-resonance conditions implied
in Eqs. (52a)-(52e), only the following interference
terms need be considered,
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(( p i 9 (1, 0) ['()(» (1, 1)9(0, 1)+ VP(1, -1)9(0, -1)](m(0, 0) [9(0, 1)+ 9(0, -1)]+ 1 j
+ 9 (I » 0) 'N(0» 0) [9(0,1)+ 9(0, -1)]

i Mp, )) (60)

Using the same procedure as that used previously for the calculation of Eq. (59), this matrix element
yields,

G„(1,0)
R0, = -(62R,

C

G;,'(1, 1)—
G-„'(1,2)—

+(G'+G, —G;)[G, (0, 1)+G,(0, -1)1}

1 —(6 GG0+Gt G,0(0, 1)+G0, (0, -1) ' (61)

where

G( =Gl(;4((0»0} Gi(:ff(»0}.
It can be seen here that, due to the near-reso-

nance conditions, the interference terms R„affect
the two-photon resonance at , + „but not that
at g 2 This is because the matrix elements
of m(1, -1)9(0, -1) vanish since 9(0, -1) is diagonal
in ba')) and the G(1, -1) in vP(1, -1) is diagonal
in ac')); but M does not transfer

~
ba')) to ~ac'))

as can be seen from the list in Eq. (56).
The interference term R„has often been either

omitted, Refs. 4, 6, and 7, in the usual perturba-
tion treatment of multiphoton processes or ne-
glected, "by assuming that their saturative effect
is small when the level separation &„is small.
It can be seen from Eq. (56) that whenever

s inh ((d.,/2k T)
sinh(~„/2kt}

the interference term can effectively be neg?ected
and Rcb is the predominant effect of the strong
perturbing field on the spectrum. To understand
more clearly the physical significance of neglecting
the saturative effects one can compare R„of Eq.
(61) with Eq. (80) of I which represents the two-
level saturation effect. The last factor in Eq.
(61) is identical with the correction factor in

(I.SO) for the levels a, b . This term. is then cou-
pled by the terms in the first bracket of Eq. (61)
to the multiphoton processes contained in R„.

Finally, it can be seen that when (d, 0/kT is not
negligible with respect to (d„/kT, the interference
terms can play an important role. This has been
pointed out previously by Hansch and Toscher'
in their treatment of a three-level gas laser.
Their result is equivalent to ours if only G„(0,1)
and G„(1,1}are included as the near-resonance
terms in Eq. (56) and all other terms neglected
This approximation is valid when , = „and
~2 = ~ab ~

A physical insight into the various effects con-
tained in R„can be obtained by taking the imagi-

nary part of 1 (proportional to the spectral power
absorbed), neglecting the interference terms
(R„)and all but the two-photons terms.

Using the impact-approximation Green's func-
tions of Eq. (46), we obtain,

2 2
II P r., P r..I~cb=Rcb= ybc+ 0+ + - B (62)

where

ac+ 2 2 + ac 2
n-

2

+p2 C +p2 C (Ssa)

0 = (4(d„a(d~)2+yC2„ (62b)

Q co(~
——N —CO]~ (63c)

when +, is used to probe the b- c transition and

2 is not resonant with „ the most important
contribution to the spectra is contained in the first
term in Eq. (62) and can be written as,

Rll ((g (d )
bCy

cb 1 bc

~bc
(t),(()„+a)'+(y„+I')' '

where

(64)

p2 ab2(d

~ab —~2

This is a Lorentz shaped resonance line at „,
shifted and broadened by the dynamic Stark effect."
When the perturbing field ('d2 is resonant with &„,
the shift becomes large, but also other terms in
Eq. (62) become important and the spectrum is
no longer composed of a single Lorentz shaped
line.

When , is used to probe the „~u2 region of
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the spectra, the resonant part of the first term
in Eq. (62) now becomes

y-
I

(65)

This represents two Lorentzian lines centered at
These are the two-photon transition

lines or "satellite lines, " observed when P'/

(&u„ +ted, )' is large enough so that the resonance
line at (u„does not drown them. Equation (65) is
the usual strong-field perturbation theory result
for the two-photon transition. ' As the strong-
field parameter P is increased, the other terms in

R,", become important. Ordinary perturbation
theory breaks down and the spectrum can no longer
be described as a series of Lorentzian lines. In
addition, as the strong field approaches reso-
nance with the a-5 transition (~, = ~„), the Stark
shifts of the resonance line at „and the asym-, .

metry of the multiphoton transitions become pro-
nounced. These effects are illustrated in the cal-
culations in Sec. V.

-20.0 -10.0 0.0
~~bc

10.0 20.0

4)2 = 3cm -1
Yb = Y = ' cm

p' 10cm-

p'=1.0

p'=0.1

8'=0.01
30.0

V. CALCULATIONS

/

Numerical calculations of the continued frac-
tions, Eqs. (59) and (61), have been performed in

order to display the effects discussed qualitatively
in the previous sections. Since the dynamic Stark
shifts and multiphoton effects are contained in Eq.
(59), we choose a case in which this is the only

important contribution, i.e., a case for which
The case chosen corresponds roughly

to the Stark-broadened 4D-2P permitted and
4E-2P forbidden transition in He which has been
extensively studied for use in plasma diagnos-
tics.'" " More detailed calculations of this
effect, taking into account space degeneracy and

the correct Stark-effect eigenstates (which lifts
the restriction on the forbidden transition) will be
studied in a separate publication. This case is of

particular interest in that it enables a detailed
study of nonequilibrium stationary plasmas. '

In Fig. 4(a), the spectrum for the case ~, & ~„
is presented with various values of p'. The range
in P' from 0.01 to 10 cm ' corresponds for He to
roughly 0.25-8 kV of rms power in the perturbing-
field strength. For convenience y„has been taken
equal to y„. For this particular value of „ the
resonance line (along with the even numbered
satellites which appear symmetrically about it)
shifts toward lower frequencies, while the odd-
numbered satellites (symmetrically spaced about
the position of the forbidden transition) shift
toward higher frequencies. The opposite is true
when &o, & ~„. In addition, as p' is increased,
increasing numbers of satellites are seen to ap-

4)2a 9cm

0
4)2=3

-20.0 -10.0 20.0 30.0

p'=10.0cm-2 yb, = y„= 0.4cm-'

FIG. 4. Contribution of the imaginary part of Eq. (59)
to the linear response of a three-level system to a mono-
chromatic field of frequency w& in the presence of a
saturating field of frequency ~2. The horizontal axis
measures the frequency difference (in cm ~) from the
unperturbed position of the resonance transition ~&, .
The arrow indicates the frequency ~, ~ =6 cm . (a)
Case ~2 & ~, & is presented for different values of the
strong-field parameter P2 with linewidth parameters
y~c=y«. (b) Case P =10 cm is presented for various
values of the saturating-field frequency with fixed line-
width parameters, y&c =y«. The arrow indicates the
resonance line.
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pear, some of them becoming almost as important
as the resonance line. The radiation broadening
of the resonance line with increasing perturbing-
field strength can also be seen in this figure. In
Fig. 4(b} the variation of the direction of the dy-
namic Stark shift, as a function of the perturbing-
field frequency for a given field strength, is dis-
played. The lower curve is the resonance line
itself (obtained when the perturbing field is either
absent or of very high frequency). As the fre-
quency increases, the resonance line marked by
an arrow in this figure and associated even-num-
bered satellites shift to lower frequency while the
odd-numbered satellites shift to higher frequency
[as noted previously in Fig. 4(a}]until &, =&„. For
, & „ the shift is reversed until , » , I},

when the
satellites disappear and the resonance line returns
toits originalposition. The curvefor &,=6cm ',
which is , = +„,displays the phenomenon known as
the splitting of the resonance line. Here, the satellite
at &u =v„-&u, [the satellite labeled 1in Fi-g.
4(a) is almost as important as the resonance line
itself and the minimum between this satellite and
the resonance line occurs at the unperturbed posi-
tion of the resonance line.

The convergence of the continued fraction, Eq.
(59) is shown in Fig. 5. Here the spectrum is
displayed for calculations involving N terms in
the continued fraction. The positions and shapes
of the spectral resonances become stable after
taking only 12 terms in the continued fraction for

3

this case. This is in accord with the approximate
rule of stability, P'/N&22&1, obtained from an
analysis of Pads approximants. '4 Thus, the small-
er the perturbing frequency, or the stronger its
field strength, the more terms must be taken
to calculate correctly the spectrum. Finally, in
Fig. 6, the effect of changing the ratio of the width
of the forbidden transition to that of the permitted
line is shown. The lower curve corresponds to a
resonance line ten times broader than the forbid-
den line. The upper curve shows the reverse sit-
uation. Thus, in the lower curve, the satellites
+2 (about the permitted transition} are drowned

by the resonance line, but those about the forbid-
den line (governed by its linewidth parameters)
are distinctly visible. The upper curve shows the
appearance of the drowned H satellites and the
smearing out of the formerly sharp +1 satellites.
This demonstrates the dangers involved in at-
tempting to use satellites for a diagnosis of the
field in a plasma if the linewidth parameters are
not known. Conversely in situations in which the
fields used are of known strength and frequency,
Fig. 6 shows clearly the possibility of using this
effect to obtain the line-shape parameters.

VI. VELOCITY EFFECTS

If the motion of the molecules in the absorbing
system is taken into account, the resonance fre-
quency becomes a function of the molecular veloc-
ity through the Doppler effect. Thus, the Liou-
villian of the unperturbed molecule, i.e., that part
projected out of the Green's function in Eq. (24a),
now contains a translational term. " In addition,

N ~12

a Cl

0)0

20.0
I

10.0
I

0.0 10.0 20.0

N~6

N 3
30.0

yac -1A)Cm-'

yb -o-&

y -0.1
ybc-&.0

h4lbc

~,=3cm-', p'-10.0cm-', yb, y„0.1 cm-'
I

-20.0 -10,0
I v I

0.0 %0
~Wc

I

20.0 30.0

FIG. 5. Effect of including N terms in the imaginary
part of Eq. (59) for fixed values of the strong-field pa-
rameter and frequency. Curves for N & 12 are not pre-
sented since they are identical to the curve N =12 for
these values of P2 and co2.

P =1.0cm- w 3cm ~

FIG. 6. Effect of changing the linewidth parameters
on the spectra described by the imaginary part of Eq.
(59).
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velocity effects may enter through the dependence
on velocity of the tetradic self-energy Z, ((u).""

Treating the various velocity states as vectors
(in Liouville space), Z, (&o} is a matrix defined on
this space. We shall discuss here only the case
where Z, (~} is completely degenerate in velocity
space. The Doppler shift is introduced when p,

is replaced by ge-~& ~ as in Eq. (1). In the classi-
cal-path approximation, the molecular translation
term simply adds v k to the Liouvillian where v

is the molecular velocity. Thus, the linear-re-
sponse Green's functions appearing in the previous
sections are replaced by

G(n, m) =[n&u, +m&u, —L, - Z, (nrem, +mrna, )

+nk, v+ mk, v] (66)

and the susceptibility corresponding to Eq. (37) be-
comes

x DQDMe" "i' ~S,'p,
~ 0„0,))), (67)

where 9 is now defined in terms of the 6 of Eq.
(66). In Eq. (67), the single-molecule Liouville
subspace now includes the translational momentum
states of the absorbing molecule in addition to the
internal states included previously. The density
matrix p, contains the momentum distribution func-
tion of the molecules and the trace operation in-
cludes a trace over these momentum states. If
the tetradic self-energy is independent of the
velocity a Voigt profile is obtained instead of the
Lorentz profile in the linear response and impact
approximations. For the nonlinear response,
complicated momentum integrals are obtained,
which have been evaluated approximately in third-
order perturbation theory by Hansch and Toschek. '
Various effects such as directional anisotropy of
the spectral line shape' and line-narrowing effects
in coupled Doppler-broadened transitions" can be
studied using the velocity-dependent formalism.

The dependence of Eq. (67) on the momenta needs
some further comment. In a homogeneous (trans-
lationally invariant) gas sample, the averaging
process required that the sum of all k-dependent
exponents vanish. Here this is automatically ob-
served since in Eq; (67) each e&k ~ is canceled
by a corresponding e-~&'& in each diagram. How-

ever, the various linear-response functions, G(Q)
(treated as diagonal operators in HNR), are gen-
erally momentum dependent and should rather be
written as G(K, 0) where, corresponding to the
harmonics-number combination Q =Q, n, (u, , we

have K =Q, n, %, with k, the wave vector of the
mode with angular frequency +,.

VII. CONCLUSION

The theory developed above presents a treatment
of various nonlinear radiation processes using as
a basis the methods of linear-response theory
which have been extensively used in spectroscopic
line-shape problems. This, combined with tech-
niques of quantum-field theory for the summation
to all powers of the applied field (treated classi-
cally) permits a simple and unified presentation
of phenomena usually studied separately. In addi-
tion, line-broadening phenomena are introduced
in a clear and uncomplicated manner so that the
spectroscopic problems treated can yield the
atomic parameters unambiguously.

The application of the theory to the problem of
a three-level molecular system interacting with

a weak-probe field and a strong perturbing field
gives results in agreement with previous work,
within the range of validity. For example, the
nonlinear response yields a classical counterpart
of the quantum-mechanical dressed-atom propaga-
tor. The nonlinear interference terms obtained
by including stimulated emission processes, cor-
respond to those introduced in previous work. '
Also, dynamic Stark shifts and multiphoton "satel-
lites" have been derived to all orders.

Special emphasis has been put on the various line
broadening mechanisms contributing to the spectral
shape. Thus, cross-relaxation effects, inelastic
collisions, and velocity effects can be included in
the formalism. In addition, it has been pointed out
how information on the atomic parameters of for-
bidden lines may be obtained.

The above formulation of nonlinear relaxation
processes in terms of linear-response functions
permits a clearer understanding of the physical
processes involved. In this manner, it has been
shown that the detailed calculation of the optical
spectra of systems in strong-radiation fields can
be performed with rigor comparable to that used
in the usual weak-field spectroscopy.

In fact, in addition to the work of Autler and

Townes, ' cited previously, rigorous solutions of
the Liouville equation have been recently used
with success"'" in the domain of rf spectroscopy
combined with optical pumping. " The perturbative
solutions of the Cohen-Tannoudji group referred
to above have been obtained as approximations
to continued-fraction solutions similar to those
which occur in this article. This, again, is evi-
dence of the fact that the nonlinear terms corre-
spond classically to the "dressing" of the atom.
The relationship between these continued-fraction
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solutions and the present work follows from the
fact that in both cases one calculates the response
of the system by computing matrix elements of the
density operator. In the rf case, however, since
the pumping field is monitored, it is possible to
reduce the calculation to the two-level, one strong-
field problem which was discussed in I, Sec. VIII,
in the resonant approximation. If the nonresonant
terms neglected in I are included so that Fig. 2
of I contains terms G(2), G(3), etc. , then the re-
normalization techniques described in this article
can be used. This results in the replacement of
G„(+1)by 9„(sl) [where 9„(al) is the solution of
a Dyson equation corresponding to the one written
here in Eq. (55)]. This result is then the same
(with appropriate changes in the meaning of the
various parameters) as that presented, for ex-
ample, in Ref. 27 for the case of longitudinal
pumping, where multiphoton transitions are also
observed. The case of transverse pumping in
which resonances due to virtual transitions are
observed~' is particular to experiments invol-
ving level crossing. However, the problem is
formally the same, yielding again continued-frac-
tion solutions"'" and can also be treated by the
methods described here.

The present work suggests several subjects
which will be considered in a future publication.
The problem of including velocity effects is of
great current interest. Using tunable-laser spec-
troscopy it is now possible to study the velocity
dependence of the tetradic self-energy. " In-
cluding these effects in the manner described in
Sec. VI will result in information on the inter-
ference of velocity and collisional line-broadening
effects which have a direct bearing on the output
power of lasers as a function of frequency. ~ This
problem is closely related to the Dicke narrowing

effect which has been extensively studied in theo-
retical weak-field spectroscopy. "

It is intended to recalculate the example pre-
sented in Sec. V using nonparity eigenfunctions.
This will enable a better comparison with the ex-
periments performed on partially ionized He which
have displayed anomalous "satellites" not ex-
plained by the usual parity-eigenstate theory. "
Nonparity eigenstates occur since in problems
involving charged-particle broadening the atom is
subject to a quasistatic electric field owing to the
plasma ions and one should use the Stark-effect
atomic wave functions which are linear combina-
tions of parity eigenfunctions.

The interference terms R„should be studied
with a view toward understanding their importance
in situations where the level spacing is such that
they may play a role. In this respect it is to be
noted, that even when the levels involved are com-
pletely saturated by the strong field, these terms
are not zero.

Finally, the expression obtained for the sus-
ceptibility in terms of a continued fraction may be
related to the Mori heirarchy, "to which it bears
a formal resemblance. It would be interesting
to study this idea in the context of a more general
form of nonlinear-response theory.
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