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The Debye temperatures for two- and three-dimensional systems are compared using an
isotropic elastic model that includes the effect of finite initial stress and assumes the Cauchy
conditions. It is shown -that the effect of initial pressure on sound speeds, Debye tempera-
tures, and selected elastic properties is determined in both dimensions by the dimensionless
product of pressure and compressibility. The model is applied to the observed similarity in
Debye temperatures for monolayer and hep bulk He!. Using 0 °’K compressibility and pres-
sure data, there is essential agreement between the elastic model and the experimental bulk
Debye temperatures. The agreement results from the effect of initial pressure, which soft-
ens the bulk Debye temperatures by as much as 20% relative to the zero-pressure values for
the same compressibility. A large softening also occurs in the two-dimensional extension
when applied to the He!-graphite adsorption system but, in contrast to the bulk, the two-
dimensional spreading pressures are insufficient to produce comparable quantitative agree-
ment with the experimental film Debye temperatures. The idealized model is extended to
include a specific substrate effect by separating the total film elastic constants into two
parts: An intrinsic (Cauchy) contribution associated with the two-dimensional adsorbate lat-
tice and a secondary contribution identified with the substrate, which lifts the Cauchy con-
ditions on the total elastic constants for the film. The required fractional substrate contri-
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bution to the bulk and shear moduli yielding agreement with the experimental film Debye

temperatures is examined.

I. INTRODUCTION

Thermal systems formed by adsorbing helium
on expanded graphite are known to exhibit a large
variety of phase equilibrium properties depending
upon conditions of temperature and areal density.!’?
Whereas some of these properties appear to be
uniquely characteristic of matter constrained upon
a structured substrate, other features are notable
in their similarity with ordinary bulk helium.

For example, Bretz, Huff, and Dash'*® have ob-
served that in the solid phases the Debye temper-~
atures of the film (6,) and bulk (6,) are nearly
coincident over a substantial range of equivalent
mean interatomic separations as determined from
the atomic areas and volumes by a'/ 2 and v'/3.
Although the simplest isotropic-continuum models
suggest some correspondence in these tempera-
tures, a similarity as close as that observed (2%)
is surprising and intriguing. The Debye tempera-
tures for two- and three-dimensional solids both
scale as the ratio of some average sound speed

to the average interatomic separation, but only
for very special ratios of two- and three-dimen-
sional sound speeds would they be coincident as
well. .

Previous* experimental studies of the helium
film on nongraphite substrates have exhibited
“solidlike” behavior in the heat-capacity signa-
tures. However, these experiments have never
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shown such explicit correlations with the proper-
ties of the bulk. Further, these earlier studies
have not been interpretable via substrate-indepen-
dent models over the total coverage range where
T2 signals are observed. On graphite, however,
overt requirements for film heterogeneity,5’¢
commensurateness,” or other substrate mecha-
nisms?® to describe the behavior of the Debye tem-
perature with coverage and temperature appear
to be absent. From this observation, it is tempt-
ing to pursue the apparent similarity in film and
bulk by inquiring if similar model assumptions
are adequate to describe the similar behavior of
©, and ©,. Does mechanical consistency alone in
two and three dimensions lead to the observed
thermal similarity for these helium systems?
Such a dual approach requires (a) a model of the
bulk solid yielding ©, as a function of interatomic
separation, and (b) the extension or reformula-
tion of the same assumptions in the context of
two dimensions.

Debye temperatures in two and three dimensions
are given by

27k (3 \ V3
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with mean velocities C, and C, determined by the
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long-wavelength continuum averages

3C;%= (4m)™ f Z cre de, | @3)

9C;2 = (2m) f o 3 citdg, . (4)
0 ]

If the required elastic moduli that determine the
propagation velocities in Eqs. (3) and (4) are
known, then the Debye temperatures® may be de-
termined. For the bulk, such detailed elastic in-
formation!®-!* exists for a limited range at the
largest molar volumes (19-21 cm3). In the case
of the film, the situation is more primitive: Ex-
perimental knowledge of the elastic properties is
limited to the compressibility at all areal densi-
ties. As a consequence of the limited data, a
mechanically consistent model for the Debye
temperatures in both systems must be based
upon the compressibility alone. Such a model
is isotropic and hence unrealistic in detail for
the bulk solid, at least at low densities where the
direct measurements indicate anisotropic sound
speeds. However, it remains an approximation
which uses available experimental data and may
be compared with measured ©’s over the full
range in interatomic separation for film and bulk.
For isotropic solids Eqs. (3) and (4) simplify to
the familar

3C;3=2C3+C;38 (5)

2C;2=C2+C2 ‘ (6)

where in the general case two elastic variables
are required to determine the longitudinal and
transverse sound speeds ¢; and ¢,. These may

be chosen from a variety of possibilities which
include Young’s modulus, the compressibility,
Poisson’s ratio, or the conventional Lamé con-
stants A and p (shear modulus). Although the
volume compressibility for the bulk is known and
the areal compressibility for the film may be de-
termined from appropriate vapor pressure mea-
surements!® or from thermodynamic functions ob-
tained from combined heat-capacity and vapor-
pressure experiments,?:18'17 the second variable
remains unknown over the total experimental
range of atomic separations for both systems.
Given the Debye temperature and compressibility,
even the isotropic model has too many degrees of

freedom to be checked directly against experiment:

It could only be assumed, for example, and then
used to estimate a second variable like Poisson’s
ratio.

An assumption which eliminates the above dif-
ficulties and which has been used in the bulk!® to

approximate compressibilities knowing only longi-
tudinal sound speeds is that the Cauchy condi-
tions'®'?° are valid. This further simplification
may arise when the atoms of the solid are subject
to central force interactions and are located at
centers of inversion symmetry. With the Cauchy
conditions, Poisson’s ratio is prescribed by elas-
ticity theory and the sound speeds (Debye temper-
atures) depend upon a single elastic variable. Al-
though such an assumption eliminates one elastic
degree of freedom in the general isotropic solid,
the model retains maximum complexity for the
comparison of thermal and mechanical properties
when all the elastic information is contained in
the compressibility. For this reason it is consid-
ered in detail for two and three dimensions. In
addition, the role of finite initial stress in deter-
mining the thermal properties for solids with
large values of the pressure-compressibility pro-
duct is examined. This effect is substantial for
helium in both film and bulk and has been omitted
in previous isotropic Cauchy approximations con-
cerned with the bulk solid.

II. THREE DIMENSIONS AND APPLICATION TO
SOLID He*

In a three-dimensional isotropic system, the
sound speeds are given by

Cl3=3(Kp3)™ (1 = 0,)(1 +0,) " = (A, +21,)p,™"
(M
C=3(K,p,) (1 = 20)(1+0,) =p p,™t ,  (8)

where 0, is Poisson’s ratio and K, is the compres-
sibility. The Debye temperature from Egs. (1),
(5), (7), and (8) is

02 () KB, ®
Fy(0,) = f‘(l 1% )[1+4\/— (1 2 )m] e

(10)

For prescribed 0,,0, is a function of the compres-
sibility alone and the Debye temperature is deter-
mined. Equivalently, known Debye temperatures
and compressibilities should give the Cauchy o,
if the model predictions are consistent with experi-
ment. The same reasoning could be applied to a
two-dimensional isotropic system with the Cauchy
conditions. Before comparing ©, and 6, for such
assumptions, however, we reexamine the ability
of an isotropic model to describe the bulk data.
Cauchy values of 0, =0.25 have been used to
estimate the bulk compressibility of solid helium!8:2!
from experimental values of ¢; in combination with
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Eq. (7), from which we get
Cfs=-§-(p3K3)'1 . (11)

Equation (11) has also been used to approximate
sound speeds for monolayer films.?? However,
0.25 is the Cauchy value of Poisson’s ratio obtained
from elastic treatments in three dimensions,
which assumes that the solid is under zero initial
stress. With regard to this assumption, solid
helium remains unique by requiring a finite pres-
sure for stable equilibrium at any temperature
including 0°K. In addition, from experimental
compressibilities and Debye temperatures,!® the
required values of 0, range from 0.29 to 0.33 as
the molar volume varies from 13.7 to 20.7 cm?.
This combination of factors suggests that if a
comparison is to be made between Cauchy elastic
theory and the thermal experiments, Eq. (11)
should be examined for possible modification re-
sulting from the presence of initial stress. It is
known that such a stress does have a significant
consequence in the basic elastic relations for a
solid: The stress-strain coefficients (elastic
moduli) which determine the sound speeds are no
longer identical with the second-order elastic
constants.!® It is the elastic constants, however,
which remain subject to the Cauchy conditions.
As a result of this distinction, it may be shown
that the Cauchy value of Poisson’s ratio is not
fixed at 0.25, but becomes a function of pressure
and compressibility. Similarly, sound speeds
for a system obeying the Cauchy conditions be-
come a function of pressure in addition to the
density and compressibility dependence of Eq.
(11). These modified results in the presence of
an initial stress arising from hydrostatic pres-
sure are obtained below and then applied to solid
helium.

For an isotropic solid subject to initial hydro-
static stress /,= - pd,; the stress-strain relations
may be cast in the conventional Lamé form (sum-
mation convention)

Ty =hgemdy; +ugey; +e5) (12)

where T;; is the excess stress measured with re-
spect to the initial value ¢, and A;, u; are the ef-
fective three-dimensional Lamé constants in the
presence of initial pressure. The e;; are small
strains from the initial state and have their con-
ventional meanings as elements of the symmetric
part of the displacement gradient matrix. The
distinction between the effective Lamé constants

_ and the elastic constants C;; is explicit in the re-
lations!9+23

A(D)=CR(p) +p=2y(D) +P (13)

pUP)=C (D) -p=p4(D) - , (14)

where for vanishing initial stress A{=A,=C'? and
pi=py=CL . The superscripts on the elastic con-
stants indicate that they are quantities for a three-
dimensional system and have dimensions of bulk
pressure. From standard elastic manipulations
on Eq. (12), and using Eqgs. (13) and (14), the com-
pressibility and Poisson’s ratio are

Ky(p)= [25(p) +3uy(D) + 3], (15)

0,(p) =3[0 (P) +PI A (D) + 1 4( )] 1 . (16)

With the simplification of the Cauchy conditions,?+2°
A(P)=1(p) and both K and o depend upon one elas-
tic constant and the initial pressure. Hence they
are related to each other via

oy(pKy) =11 +4pKJ[1 - 52K ] 7, amn

where the pressure dependence increases the value
of Poisson’s ratio beyond the zero-stress limiting

value of 0,=0.25. The corresponding relations for
the speed of sound from Eqgs. (7), (8), and (17) are

Ch=$(psK) M (1 - $2K;) 18)
C3,=3p K,)" (1 - 2pK,) , 19)

where (18) reduces to the zero-stress Cauchy re-
sult of Eq. (11) for vanishing pressure. It should
be noted that if the Lamé representation in Egs.
(7) and (8) is used to obtain the sound speeds, A
and y must be replaced by the explicitly pressure-
dependent A’ and p’, whereas the sound speeds in
terms of 0, K remain unchanged by the initial
stress. The latter preservation of form occurs
from Eq. (12) since the compressibility and Pois-
son’s ratio as a function of A’, p’ have the same
functional form as K(A, ) and o(A, ) without ini-
tial stress. The Cauchy Debye temperature is
given by Egs. (9) and (10) with F,(0,) =f,(PK,),
where from Eq. (17) we have

/:
fg(pK3)=§%5_— (l—nga)l ’

/ -
x[1+6\/’§!<i:€2-_511{{3>3 2] 1/3 . (20)
3

For no initial stress, Eq. (20) reduces to Eq. (10)
with 0,=0.25.

From Eqgs. (17)-(20) the dimensionless product
PK,=-d(InV)/d(Inp) determines the corrections
to the zero-pressure values of Poisson’s ratio,
sound speeds, and the Debye temperature. Since
DK, is the magnitude of the ratio of fractional
volume change to accompanying fractional pres-
sure change, it is physically a measure of “squeez-
ability” for the system. The analogous squeez-
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ability parameter appears in the two-dimensional
extension of the present model in Sec. II. For
the bulk, the dependence of selected elastically
determined properties on the pressure-compres-
sibility product is shown in Fig. 1 (upper curves),
where the solid sound speeds are relative to a
liquid of compressibility K but no shear modulus,
and the Debye temperatures are relative to those
values 6, that would be obtained without initial
pressure. We note that the transverse modes
disappear when pK,=0.5. This is expected from
Eq. (17) because when pK,=0.5 Poisson’s ratio
also has its maximum value of 0.5 corresponding
to conservation of volume and fluidlike behavior
for the longitudinal extension with free lateral
surfaces that defines o,.

Debye temperature predictions for bulk hcp He*
using the stress-dependent Cauchy model [Egs.
(9) and (20)] are compared with experiment in
Fig. 2 for the full range of available data. This
range extends from 13 to 21 cm? in molar volume
and corresponds to a 0°K pressure range of ap-
proximately 700 atm. Pressure and compressibil-
ity data are used from two different sources: For
13<v,,< 16 cm?® the data of Dugdale and Franck?*
have been used, and for molar volumes
17<v,,<20.5 cm? the data of Edwards and
Pandorf? are used. The combination of large
compressibilities and required initial pressure

0.6

Ksp or Ky¢

FIG. 1. Dependence of the two- (dashed lines) or three-
(solid lines) dimensional Cauchy sound speeds and Debye
temperatures on the pressure-compressibility product.
The longitudinal and transverse sound speeds C; and
C, are relative to a liquid with pC% = K, and the Debye
temperatures are relative to the value @ , obtained with
no-initial pressure.

for helium causes the parameter pK, to be large
and range from approximately 0.1 at 20.5 cm3/mole
to approximately 0.2 at 13 cm®/mole. Calculated
values of the Debye temperature are shown as
solid circles and triangles, and the opencirclesare
experimental Debye temperatures of Ahlers.?® The
theoretical and experimental values agree within
the rated precision of the compressibility data, ex-
ceptfor molarvolumesnear 17 cm3. This latter
deviation reflects the failure of the two sets of com-
pressibility data to extrapolate smoothly in the re-
gionat the extreme high and low volumes for the re-
spective measurements. Comparison with Debye
temperatures calculated by neglecting initial stress
(dashed line) indicates that the explicit pressure
dependence softens the Debye temperature relative
to the zero-pressure value by as much as 20% at the
smallest molar volumes. It is this stress soften-
ing that makes the elastic “Cauchy” Debye tem-
peratures nearly coincident with the “thermal”
experimental values.

A comparison which separates the single assump-
tion of isotropy and the dual assumptions of iso-
tropy plus Cauchy conditions follows from the
relative behavior of the thermal Poisson’s ratio
[obtained from experimental’s K,, ©,, and Eq. (9)]
and the Cauchy elastic Poisson’s ratio calculated
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FIG. 2. @: theoretical bulk helium Cauchy Debye
temperatures including initial pressure in Egs. (9) and
(20); A: same but using K, of Ref. 21; O: experimental
Debye temperatures of Ref. 25; ---: Cauchy elastic
Debye temperatures neglecting initial pressure.
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from Eq. (17). This comparison is made in Fig.
3, where it may be seen that with the required in-
clusion of initial stress the model describes the
two characteristic features of the thermal data:
the (20-25)% enhancement of Poisson’s ratio from
the zero-stress Cauchy value of 0.25 and the 10%
variation of 0, with pressure (molar volume). It
may be noted that, although initial pressure de-
creases the Debye temperature for a given com-
pressibility, it increases Poisson’s ratio. We
conclude that if the bulk is approximated as an
isotropic system, then the resultant values for
the elastic constants are consistent with the simul-
taneous assumption of the Cauchy conditions.
Since both longitudinal and transverse sound
speeds are contained in the calculated Debye tem-
peratures, the effect of initial pressure on these
modes is examined separately in Fig. 4. Although
these results are calculated from the elastic mod-
el equations (18) and (19), the agreement of the
thermal and elastic Poisson’s ratio in Fig. 3 indi-
cates that the same speeds would be obtained using
the experimental Debye temperature and Eqgs.
(7)-(9). From Fig. 4, for a given compressibility,
the pressure depresses both sound speeds but with
a larger relative and absolute effect on the trans-
verse modes. The dominance of these slow modes
in determining the Debye temperature indicates
that © is a more sensitive indicator of initial
stress than are the longitudinal sound speeds.
Indeed, Edwards and Pandorf*! and Vignos and
Fairbank?® obtained “fair agreement” with experi-
ment for the compressibility using experimental
longitudinal speeds in Eq. (11), where the effect
of initial stress is neglected. It is interesting to
note, however, that when pressure effects are
included the compressibilities determined from
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FIG. 3. @: theoretical Cauchy Poisson’s ratio in-
cluding initial pressure in Eq. (17) with K; of Ref. 24;
A: same but using K; of Ref. 21; O: thermal Poisson’s
ratio from Eqgs. (9) and (10), the Debye temperatures of
Ref. 17, and K, of Refs. 21 and 24; ---: Cauchy Pois-
son’s ratio neglecting initial pressure.
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Eq. (11) would be decreased by the factor

(1 - 8pK,/9) from Eq. (18). This correction of
(10-12)% in the region of interest would bring
into closer relative agreement the values of com-
pressibility determined in Ref. 21 by experiment,
from the Debye temperature in combination with
the longitudinal speed of sound, and from elastic
theory assuming the Cauchy conditions.

III. TWO DIMENSIONS: APPLICATION TO
MONOLAYER He*

We return now to the comparison between bulk
solid and the solid phase of monolayer helium ad-
sorbed on graphite. Since the Cauchy model de-
scribes the bulk 6, provided initial stress is in-
cluded, we apply the same assumptions in a two-
dimensional extension and examine the dependence
of ©, on film compressibility K, and spreading
pressure ¢. As with the bulk, this dependence
arises from calculation of Sound speeds using
the appropriate stress-strain relations. Assum-
ing an idealized planar solid, Eq. (12) may be
carried directly into two dimensions with implicit
simplifications resulting from summation over
one less coordinate:

14.0
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[}
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A
1 1 l l L ] ] |
14.0 16.0 18.0 20.0
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FIG. 4. Theoretical bulk longitudinal (upper pair) and
transverse (lower pair) Cauchy sound speeds using K3
of Ref. 24 (O) and Ref. 21 (A). The upper dashed curves
in each pair are the sound speeds neglecting initial pres-
sure.
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Tij=2y €m0 +1g(ey; +€5y) . (21)

T,; is the excess surface stress measured with
respect to the initial value /,=— ¢5;; and

M()=C2(P)+ =2 (P)+¢ , (22)
LD =CP () = p=py(d)— ¢ . (23)

The same subscripts that would appear for the
corresponding quantities in the bulk are used on
the elastic constants, but the superscripts indi-
cate that they are two-dimensional quantities with
physical dimensions of spreading pressure or sur-
face tension (force per unit length). The sound
speeds may be obtained from the equations of mo-
tion involving the stress equation (21) by requiring
plane-wave propagation:

Ch=(Ag+2u5)p5" (24)

Cl=n30;" . (25)

Equations (24) and (25) have the same dependence
on A; and ., as the corresponding bulk expressions
as a function of /\; and u;. However, as indicated
below, the speed of sound when expressed in
terms of the compressibility and Poisson’s ratio
has a different form than in the bulk.

For a two-dimensional system subject to an ini-
tial hydrostatic compression ¢, the compressibil-
ity may be defined as the ratio of fractional change
in area to excess applied spreading pressure rela-
tive to the initial state ¢. For this uniform de-
formation the excess stress is given by 7,,=T,,
=-8¢, e, =e,, from Eq. (17) and hence we get

Ky(9) == A7 55 == 08 = [n(6) +uy(e)] ™
= D0y (9) + (9] (26)

Comparison of Eqs. (26) and (15) indicates that,
although there is an explicit dependence of the
bulk compressibility on initial pressure, there

is no such dependence in two dimensions. In ad-

_ dition, the functional dependence of the compres-
sibility on A, u also depends upon dimensionality.
Similar distinctions exist for Poisson’s ratio when
an initial stress is present. Applying an excess
longitudinal stress while maintaining free lateral
perimeters, Poisson’s ratio is the resulting quo-
tient of fractional transverse displacement and
fractional longitudinal displacement. From Eq.
(21) this strain ratio is

0(9) = =22 =25(9)[Ay(9) + 23($)]

=[0,(0) + 0] [0,(®) +2u,(d) - 9]+ . (27)

The two-dimensional Poisson’s ratio of Eq. (27)

may be compared with the corresponding bulk ex-
pression of Eq. (16), where it is again apparent
that the dependence both on the Lamé constants
and initial stress is a function of dimensionality.

With the simplification of the Cauchy conditions,
A, =i, and we have

K,(¢)=[20,(9)] ", (28)
0,()=3[1+0/2,(p)][1 - ¢/30,(¢)] . (29)

The relation between the compressibility and Pois-
son’s ratio, analogous to Eq. (17), is

02(¢K2) = %(1 +2¢K2)(1 - %¢K2)-l . (30)

Whereas the Cauchy limiting value of Poisson’s

ratio with no initial stress in three dimensions

is 0.25, from Eq. (16), the loss of one lateral di-

mension increases this limiting value to 0.33 for

a two-dimensional system from Eq. (30). Although

the zero-stress value of Poisson’s ratio differs in

two and three dimensions, the qualitative effect of

initial stress is the same: Poisson’s ratioincreases.
From Eqs. (24)-(27) the two-dimensional sound

speeds are given by

Ci,=2(0,K,) (1 +0,)7", (31)
Cio=(0,K;) (1 +0,)' (1 —0,). (32)

Combining Eqs. (2), (31), and (32), the Debye tem-
perature is

o, %,

(,,271) 1/2(4021{2)1/213 (©,), (33)

where
F,(0,)=V2[(1 -0,)1+0,)" 13 -0,)"']"/2. (34)

Comparison of Eqs. (31)-(34) with the correspond-
ing bulk expressions indicates that both the sound
speeds and the Debye temperature have different
dependences on o and K in two and three dimen-
sions. When the Cauchy conditions are assumed
F,(0,)=f,(¢K,), where

f@K,) =1V6[(1 -20K,)(1 - 20K,)(1 - ¢K,)"']*/2,

The Cauchy sound speeds are given by

C?z =-§(p2K2)"(1 "§¢Kz), (36)
Ci=2 (0,K,)"'(1 - 2¢K,). 317)

As with the bulk system, the Cauchy Debye tem-
peratures and sound speeds depend upon the initial
stress through the dimensionless pressure-com-
pressibility product. Although the effect is a mono-
tonically decreasing function of this product in both
cases, the magnitude is a function of dimensionali-
ty. This may be seen in Fig. 1 where Eqs. (33)-
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(37) are shown in graphic form for comparison
with the corresponding three-dimensional results.
For any value of the pressure-compressibility
product, the enhancement of the longitudinal sound
speed relative to a liquid and arising from the
presence of a shear modulus is less in two dimen-
sions than in three. Also, since the transverse
modes are more strongly influenced by the initial
stress and because they are fully weighted in a
two-dimensional calculation of the Debye temper-
ature, the stress softening of © for a given value
of the pressure-compressibility product is greater
in two dimensions. However, the transverse modes
disappear in both two and three dimensions when
the product has the same maximum value of 3. We
note that the dimensionless character of the prod-
uct K,¢ or K,p makes this squeezability param-
eter a natural variable for comparing the elastic
properties in film and bulk. In two dimensions, as
in three, the maximum corresponds to fluidlike
behavior, but with a (maximum) Poisson’s ratio of
1.0 which yields conservation of area when the sys-
tem is stretched longitudinally with free lateral
perimeters. For the more general isotropic case
without the Cauchy conditions, the maximum
Poisson’s ratio and zero transverse sound velocity
occur when the effective shear moduli 1’ of Egs.
(14) and (23) vanish. This may be seen from Egs.
(8) and (16) or Eqs. (27) and (32), which also yield
the expected fluidlike behavior for vanishing shear
modulus when there is no initial pressure.

The 0 °K spreading pressures of Elgin and Good-
stein®!%!7 may be used to generate compressibil-
ities for comparison of Eqs. (33) and (35) with the
Debye temperatures of Bretz, Huff, and Dash.?
For atomic areas 8.9 A2<a< 11.5 A? the spreading
pressure is given by

¢ =5.5(10/a)¢+0.81 dyn/cm, (38)

which is estimated to be accurate to 2%. In this
range of atomic areas, the squeezability param-
eter K,¢ varies from 0.18 to 0.21, increasing with
decreasing density in contrast with the correspond-
ing quantity K, p in the bulk. - The comparison be-
tween the model and the experimental Debye tem-
peratures is shown in Fig. 5, where the estimated
uncertainties are largest at the extreme ranges of
validity for Eq. (38). As in the bulk, there is a
large depression in the Debye temperature relative
to the zero-pressure values, suggesting that initial
stress may strongly influence ©,. However, this
softening is insufficient to produce comparable
agreement between the thermal results and the
model predictions where the same general assump-
tions have been applied in two dimensions. The
discrepancy with the experimental observations is
about 10% at a =10 A%, the point of maximum ac-

curacy using Eq. (38), and is larger for other at-
omic areas. In contrast, over the range of bulk
molar volumes corresponding to the film densities
where Eq. (38) is valid, the bulk agreement with
the three-dimensional model is within 2%.

Because of the dual assumptions, it is not possi-
ble to consider separately isotropy and the Cauchy
conditions as sources of the discrepancy with ex-
periment. If it were assumed that the film is close
packed, then the rotational symmetry would make
planar propagation isotropic and the inconsistency
must arise from the Cauchy conditions. However,
only at much lower coverages where subsidiary
evidence''® suggests registry with the hexagonal
substrate, is there any information on film struc-
ture. With regard to failure of the Cauchy condi-
tions, either the absence of central forces or the
failure of the adsorbate atoms to be located at
centers of symmetry would be sufficient for invali-
dation. We note that any active role for the sub-
strate in contributing to the failure of the Cauchy
conditions has been omitted in this section, where
strict mechanical similarity with the bulk model of
Sec. II has been retained.

In Fig. 6 are shown for bulk comparison purposes
the thermal sound speeds resulting from the as-
sumption of isotropy using Eqs. (31)-(34), and also
the elastic sound speeds calculated from Eqs. (36)
and (37) assuming both isotropy and the Cauchy
conditions. It is interesting to note that the pre-
dicted stress depression of the sound speeds is

T T T
80 — 1
60 - n
g — —
o~
@ 40 .
20 — .
o | | L
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2
Atomic Area (A%)

FIG. 5. ---: theoretical film Cauchy Debye tempera-
tures neglecting initial spreading pressure ¢ with K,
from Eq. (38); —: same but including initial spread-
ing pressure ¢; O: film Debye temperatures from Refs.
(1) and (3).
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larger than that observed for the bulk although, as
expected from above, insufficient to produce
agreement with the thermal results. There are
presently no experimental sound speed measure-
ments for adsorbed helium which could be com-
pared with either of the above estimates. Such in-
formation would be useful in drawing further con-
clusions beyond the previous contrasting observa-
tions on the relative properties of film and bulk

in the idealized Cauchy model.

IV. TWO-DIMENSIONAL SOLID WITH
SUBSTRATE

In Sec. III the film was treated as an idealized
Cauchy solid without substrate effects. It is pos-
sible, however, to estimate the required effect of
a substrate for a specific model which retains the
solid properties assumed in Sec. III. This is most
simply done for the case where the deviations
from the idealized model are ascribed to the sub-
strate and where it is required that the intrinsic
adsorbent contribution to the elastic constants re-
mains Cauchy. In this extension the film contribu-
tion to the elastic properties would be that of a
Cauchy solid, but the substrate presence lifts the
Cauchy conditions on the total elastic constants.
The modification is reminiscent of the electron gas
contribution to the bulk modulus in metals,?” which

102 T T T

I2.0T‘ N
[_

8.0 -

(m /sec)
T

6.0 -

40

] 1 1
9.0 10.0 1.0

2
Atomic Area (R°)

FIG. 6. Longitudinal (upper pair) and transverse
(lower pair) two-dimensional sound speeds. ---: ne-
glecting initial pressure with X, from Eq. (38); —: in-
cluding initial spreading pressure; O: thermal speeds
from Eqgs. (31) and (32) with 0, from Egs. (33) and (34).

also lifts the Cauchy conditions, but in the surface
application the substrate is allowed to influence
both the shear and bulk moduli. Formally, the
substrate is included by dividing the elastic con-
stants of the film into two parts: the intrinsic
Cauchy contribution from a two-dimensional lattice
and a substrate contribution not subject to the
Cauchy conditions. The required magnitude for
such a substrate contribution may be determined
by requiring agreement between the model and the
observed Debye temperatures. It should be noted,
however, that this extension, consistent with the
approach of Sec. III, is not a general characteriza-
tion of possible substrate influences. It is a par-
ticular modification permitting a magnitude esti-
mate for the required non-Cauchy contribution in
a specific case where this contribution is inter-
pretable as a substrate effect.

Allowing the substrate to influence both elastic
constants for the film, we include in Eqs. (22) and
(23) additional contributions to A} and uj:

Ap=X + A, +P =N, + ), (39)
Ho=H, +hg—P =, -0, (40)

where the subscripts / and s denote the intrinsic
film and substrate contributions to the total elastic
constants A, and 4,. Requiring that the film lattice
contributions to the elastic properties behave as a
Cauchy solid, A, =u,. The Cauchy conditions for
the total elastic constants are now lifted by the sub-
strate and assume the modified form

A=l =A =B =A. (41)

The discrepancy in the Cauchy conditions, A, is
the difference in the two substrate contributions to
the total bulk modulus B, =K;' =, + 4,. ‘The elastic
relations for the substrate-dependent sound speeds
and Debye temperatures may be obtained as in Sec.
III. Formally, Eqgs. (30)-(37) still apply if ¢ is
replaced by ¢’ =¢ +5A. Hence the substrate-in-
duced change in Debye temperature relative to that
obtained without substrate is

9,-9 _ fa[K2(¢+%A)]
8, 1T k) “2)

where f, is given by Eq. (35). For any experiment-
al K,¢, a value of K,A may be determined by re-
quiring ©, to coincide with experiment. K,A is

the difference in fractional substrate contributions
to the total bulk modulus of the film:

A — B
K,A =_§_/J'£=B.;1L_Ju_ 43)

B2 BZ BZ
It may be noted that since the sum A, + 1, contrib-
utes to the total bulk modulus, whereas the dif-
ference in these quantities is determined from
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Eqs. (42) and (43), the substrate need not contrib-
ute to both the shear and bulk moduli. For exam-
ple, for positive K,A, if A, =|u,|, then there will
be no contribution to the total bulk modulus. Sim-
ilarly, if u =0, then only the bulk modulus or
compressibility is influenced by the substrate. In
addition, for a substrate effect to exist, the stabil-
ity conditions on the film must be satisfied. This
requires that Poisson’s ratio be less than unity or,
equivalently, that the effective shear modulus in
the presence of initial stress u, — ¢ be positive.
From Eq. (30), stability requires

2K,(¢ +z4)<1. (44)

Figure 7 shows the solution of Eq. (42) for K,A
=0.19, corresponding to atomic areas of 10 AZ.
There are two branches, one dominated by the sub-
strate (upper) and one dominated by the film lattice
(lower). The existence of the upper branch for
©,=0, suggests that there is a solution for the
Debye temperature ©, that is coincident with ©,,.
This would mean an allowed Debye temperature
which is dominated by the substrate contribution to
the elastic constants even when the experiemental
Debye temperature agreed with that calculated by
the substrate-free model of Sec. III. However, the
upper branch does not satisfy the stability condi-
tion of Eq. (44) and will not support transverse
modes. Eliminating the upper branch on physical
grounds, only the lower branch remains for de-
termining the Debye temperature. The possibility
of purely longitudinal waves is ruled out since
Poisson’s ratio is less than unity!® for the known
experimental compressibilities and Debye temper-
atures; i.e., there is a shear modulus.

The remaining lower branch of Fig. 7 is appro-
priate for estimating the substrate contribution K,
for atomic areas of 10 A2. From Fig. 5 the frac-
tional change ©,-9©,)/0, required to produce
agreement with experiment is 0.12 and yields K,A
=0.14 for the substrate influence from Fig. 7.
Since K,A is the difference in fractional substrate
contributions to the total bulk modulus, it is not
possible to determine uniquely the two substrate
contributions. However, estimates may be made
for the cases where (a) the substrate contributes
only to the total compressibility or bulk modulus
through the shear modulus (A, =0), (b) the substrate
contributes only to the total compressibility or bulk
modulus without contributing to the shear modulus
(s =0), and (c) the substrate influences the total
shear modulus but not the compressibility or bulk
modulus (\;=|u,|). Case (@) corresponds to a neg-
ative contribution to the shear modulus of
Ly==0.14B, and a ratio of substrate to intrinsic
film contributions of ~p,/u, =0.24. Although the
substrate contribution to the shear modulus is neg-
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ative, the stability condition Eq. (44) is satisfied
since the effective total shear modulus y, — ¢ re-
mains positive along the lower branch. For case
(b) the substrate contribution to A, is A, =0.14B,
with a substrate to lattice ratio of A,/x, =0.32.
Although neither elastic constant is dominated by
the substrate in these extreme limits, the required
fractional contribution to either constant alone to
produce agreement in the experimental and calcu-
lated Debye temperatures is substantial. In both
the above cases the percentage substrate contribu-
tion to the bulk modulus is 14%, the contribution
being negative when the substrate affects only the
shear modulus in @). For (c) the substrate con-
tribution to A, and A, is £+0.07B,, respectively, with
fractional contributions A/, and pu /i, of +0.14,
respectively.

We conclude this section by noting that the in-
clusion of the substrate emphasizes the distinc-
tion between a system exhibiting two-dimensional
thermal behavior (as manifested by T2 heat capac-
ities) and a system possessing a negligible sub-
strate effect. Low-temperature T2 heat capacities
are indicative of an excitation spectrum starting at
zero frequency and wave number. However, the
tendency of substrate potentials to localize adsor-
bate atoms normal to the surface via binding for-
ces and laterally due to the absence of a perfectly
smooth substrate does not eliminate this possibil-
ity. Novaco®® has shown how binding forces normal
to the surface may lead to a branch in the planar
vibrational spectrum which starts at a finite fre-
quency for surface normal vibrations. A film lat-

3.0 T T T T T
2.0 —
<
~
x
Lo —
0 1 | I 1 1
0 02 04 06 08 1.0
(©,-984) /78,

FIG. 7. Required difference in fractional substrate
contributions to the total bulk modulus that yields a
specified fractional decrease in the ideal (no substrate)
Cauchy Debye temperature @,. Only the lower curve
corresponds to stable film behavior.
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tice also supporting modes polarized in the plane
of the film, however, may experience decreased
average restoring forces?® from the substrate.
Ying” has shown that this is generally the case and
that when a film is incommensurate with the sub-
strate the lateral averaging may be complete at
zero wave number to yield a substrate-dependent
vibrational spectrum starting at zero frequency.
In the presence of both lateral averaging for the
planar polarizations and a finite excitation energy
hw, for long-wavelength normal polarizations, the
low-temperature heat capacities ¢T <7w,) would
be dominated by the low-lying modes which are
polarized in the plane of the surface. The present
extension of Sec. III yields an estimate of a pos-
sible substrate contribution to the elastic constants
which provides the restoring forces for those pla-
nar polarizations. Although the modification is-
specific in form, it does suggest that a substrate-
induced contribution to the total elastic properties
could further depress the Debye temperatures be-
yond the already substantial decrease arising from
initial stress.

V. CONCLUSIONS

The results of a Cauchy isotropic approximation
for the solid phase of bulk and monolayer He* may
be summarized as follows.

(i) Comparison of the elastic and thermal prop-
erties for solid helium using a two- or three-di-
mensional isotropic Cauchy approximation necessi-
tates the inclusion of initial stress effects. Since
corrections to the zero-pressure elastic treatment
are a monotonically increasing function of the
pressure-compressibility product in both dimen-
sions, the large compressibilities of helium make
these modifications significant for all pressures in
the solid phase.

(ii) The experimental thermal Debye tempera-
tures of hcp He* for molar volumes from 13 to 21
cm? are in essential agreement with the elastic

isotropic Cauchy Debye temperatures when finite
initial stress is included. The agreement results
over the full range of Debye temperature despite
known anisotropies.

(iii) For bulk helium initial pressure produces a
substantial decrease in the isotropic Cauchy sound
speeds and Debye temperatures relative to those
values when the pressure is neglected. This de-
crease is most pronounced for the transverse
sound speeds and makes these modes or the Debye
temperature a more significant indicator of stress

_ effects than the longitudinal sound speed.

(iv) The previous softening effects also occur
for submonolayer He* adsorbed on expanded graph-
ite when treated by the corresponding two-dimen-
sional elastic model, but agreement with the ther-
mal experiments is not comparable with the bulk
comparison. Mechanical consistency alone in a
two- and three-dimensional isotropic Cauchy elas-
tic model does not appear to yield the observed ex-
perimental similarity in the thermal Debye tem-
peratures for film and bulk.

(v) The extension of the idealized two-dimension-
al model to include a substrate where only the in-
trinsic film lattice contribution to the elastic con-
stants remains that of a Cauchy solid will yield the
observed Debye temperatures. A 14% substrate
contribution to the bulk modulus or either of the
Lamé elastic constants at atomic areas of 10 A2,
for example, will yield the experimental Debye
temperatures.

ACKNOWLEDGMENTS

The author is specifically indebted to Professor
D. L. Goodstein and Professor G. B. Huff and Dr.
R. L. Elgin and Jeffrey Greif for many fruitful
comments and criticisms. The cooperation of Dr.
Elgin in forwarding his spreading-pressure data
in analytic form suitable for the generation of 0 K
film compressibilities was an extremely helpful
material contribution.

*Work supported in part by the National Science Founda-
tion.

IM. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean,
and O. E. Vilches, Phys. Rev. A 8, 1589 (1973).

’R. L. Elgin and D. L. Goodstein, Phys. Rev. A (to be
published).

SM. Bretz, G. B. Huff, and J. G. Dash, Phys. Rev.

Lett. 28, 729 (1972).

See D. W. Princehouse, J. Low Temp. Phys. 8, 287
(1972), and references therein for a summary of re-
cent nongraphite helium studies.

5G. A. Stewart and J. G. Dash, Phys. Rev. A 2, 918
(1970).

SNarendra N. Roy and G. D. Halsey, J. Low Temp.

Phys. 4 231 (1971).

'S. C. Ying, Phys. Rev. B 3, 4160 (1971).

8M. Schick and C. E. Campbell, Phys. Rev. A 2, 1591
(1970).

9. deLaunay, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1956), Vol. 2,
p. 220.

103, P. Franck and R. Wanner, Phys. Rev. Lett. 25,
345 (1970).

R, H. Crepeau, O. Heybey, D. M. Lee, and Stanley
A. Strauss, Phys. Rev. A 3, 1162 (1971).

2D, S. Greywall, Phys. Rev. A 3, 2106 (1971).

13R. H. Crepeau and D. M. Lee, Phys. Rev. A 6, 516
(1972).



10 THERMAL SIMILARITY IN TWO AND THREE DIMENSIONS:...

145, B. Trickey, W. P. Kirk, and E. D. Adams, Revs.
Mod. Phys. 44, 668 (1972).

15G. A. Stewart, S. Siegel, and D. L. Goodstein, in Pro-
ceedings of the Thirteenth International Conference on
Low Temperature Physics, edited by R. H. Kropschot
and K. D. Timmerhaus (University of Colorado Press,
Boulder, Colo., 1973).

16R. L. Elgin and D. L. Goodstein, in Ref. 8.

1"R. L. Elgin, Ph.D. thesis (Calif. Institute of Tech-
nology, 1973) (unpublished) and private communication.

183. H. Vignos and Henry A. Fairbank, Phys. Rev. 147,
186 (1966) (see also Ref. 26).

13puane C. Wallace, Thermodynamics of Crystals
(Wiley, New York, 1972).

O{. B. Huntington, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic, New York, 1958),
Vol. 7, p. 213.

2p. 0. Edwards and R. C. Pandorf, Phys. Rev. 140,
A816 (1965).

681

22C. E. Campbell, F. J. Milford, A. D. Novaco, and
M. Schick, Phys. Rev. A 6, 1648 (1972).

23J. R. Drabble, in The Mechanical Behavior of Materials
Under Pressuvre, edited by H. Ll. D. Pugh (Elsevier,
London, 1970).

243, S. Dugdale and J. P. Franck, Phil. Trans. R. Soc.
A257, 1 (1964).

3G, Ahlers, Phys. Rev.A 2, 1505 (1970).

%83, H. Vignos and H. A. Fairbank, in Proceedings of the
Eighth International Conference on Low Temperature
Physics, edited by R. O. Davies (Butterworths, London,
1963), p. 31. (see also Ref. 18).

2TK. Fuchs, Proc. R. Soc. A157, 444 (1936).

2Anthony D. Novaco, in Monolayer and Submonolayer
Films, edited by John G. Daunt and E. Lerner (Plenum,
New York, 1973), p. 75.

2G. A. Stewart and J. G. Dash, J. Low Temp. Phys. 5, 1
(1971).



