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Nuclear quadrupolar relaxation in monatomic liquids
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A general theory is described for nuclear quadrupolar spin-lattice relaxation in monatomic
liquids. The theory is valid for either liquid rare gases or liquid metals when appropriate
forms are taken for the local electric field gradient (EFG). It is shown that the relaxation
rate may be approximated in terms of an integral over the "elastic" limit S(k, 0) of the dy-
namic liquid structure factor multiplied by a weighting factor I(k) determined by the spatial
variation of the EFG. Calculations of I(k) for Ne and Ga identify the ranges of k values re-
sponsible for quadrupolar relaxation in these liquids. For Ne, the dominerit modes fall in
the range Eo &k&2EO, where E'0 is the position of the main peak in the static liquid struc-
ture factor. For Ga, and for metals in general, 1(k) is largest near twice the Fermi wave
vector {2k+}if the EFG is determined from the asymptotic form of a screened ionic potential.
For both liquid rare gases and liquid metals, these relatively high k values indicate that col-
lective motions play an important xole in the nuclear relaxation process. As a corollary it
is shown that magnetic dipolar relaxation in monatomic liquids can be described as a special
case of the general theory with appropriate changes of the coupling constants. Numerical
calculations of the relaxation rate for Ne2~ and Gals near their respective melting points and

the temperature dependence of the Ne rate are in good agreement with experiment.

I. INTRODUCTION

Nuclear electric quadrupolar interactions pro-
vide an important mechanism for spin-lattice
relaxation in monatomic liquids. In liquid rare
gases, for example, quadrupolar relaxation has
been found to dominate the spin-lattice relaxation
of nuclei with spin greater than —,'.' ' In elemental
liquid metals the quadrupolar process competes on

roughly equal terms with magnetic dipolar relaxa-
tion via couplings to the conduction-electron spins.
Quadrupolar relaxation can be directly measured
in a few liquid metals for which measurements on

two isotopic species permit experimental separa-
tion of magnetic and quadrupolar contributions. ~ '
In a number of others, the presence of quadrupolar
relaxation has been inferred by means of theoreti-
cal estimates of the magnetic contribution. "' "

Nuclear quadrupolar relaxation results from the
interaction between the nuclear electric quadrupole
moment and the local electric field gradient (EFG)
associated with the nuclear environment. Motions
of neighboring electronic and nuclear charge dis-
tributions cRuse the EFG to VRl'y 1Q time Rnd the
resulting time-dependent interaction induces tran-
sitions between nuclear Zeeman levels, i.e., spin-
lattice relaxation. " The strength and temperature
dependence of the relaxation process are therefore
governed by the dynamics of the local charge dis-
tribution.

In liquid rare gases the local EFG results from
distortion of the closed shell atomic configuration
by neighboring atoms. The time dependence of
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the quadrupolar interaction therefore is deter-
mined by the relative thermal motions of atoms.
In liquid metals, the situation is slightly more
complex since both conduction electron and ionic
charges must be considered and these have differ-
ent motional properties. There are two types of
quadrupolar relaxation possible in metals. IQ one
process, the time-dependent EFG results from
translational motion of the charge of electrons
having p or d character at the nucleus. ""Re-
laxation results from a scattering process analo-
gous to the well-known Korringa magnetic pro-
cess." The second process results from the mo-
tion of ions whose screened charge produces EFGs
at neighboring nuclei s'9'xe xs Estimates of the
strength of the electronic scattering process have
shown it to be too weak to account for the observed
quadrupolar relaxation in liquid metals. '"'" Al-
though the EFG associated with the screened ion
is of the same order of magnitude as that of the
electronic charge, the slower ionic movements
produce a perturbation in better tune with the
nuclear frequency (~,-10' Hz). It is therefore
most likely that ionic motions are responsible for
quadrupolar relaxation in liquid metals just as
atomic motions play this role in liquid rare gases.

A number of theo11es hRve been advRneed 1Q

order to explain quadrupolar relaxation, specif-
ically in the context of liquid metals. "6 " These
theories differ in the sophistication of their ap-
proaches, but in each case it is assumed that the
EFG fluctuations result from translational single-
particle diffusion. Furthermore, it has been

t
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universally assumed that the translational motion
can be characterized by the macroscopic self-
diffusion coefficient D. This description ought to
be questioned on the grounds that the most im-
portant motions occur on the scale of the inter-
particle distance, whereas the coefficient D char-
acterizes the average motion of a particle over
macroscopic distances. On the microscopic scale,
it is necessary to consider not only simple transla-
tional motions but also the possibility of short
wavelength vibrational modes and collective or
correlated motions of several particles.

In addition to the above intuitive arguments there
is ample experimental evidence that macroscopic
diffusion does not provide an adequate description
of nuclear quadrupolar relaxation. The diffusion
model predicts that the temperature dependence of
the quadrupolar relaxation rate is described ap-
proximately by

R, ~ pD-',

where p is the density. ""Since both p and D '
decrease with temperature, Eq. (1) predicts that
R should decrease with increasing temperature.
However, this behavior has never been observed
experimentally. The observed relaxation rates
always decrease less rapidly than pD ' and, in
some liquid metals, R may become temperature
independent, ' or even increase with temperature. '
In a theory developed by Sholl, "the most detailed
diffusional theory to appear so far, there is an
additional temperature-dependent factor:

Ro ~ pD '(I, + 2spI, },
where I, and I, are integrals involving the EFG
and the (temperature-dependent) pair distribution
function g(r) Atendenc. y for I, and I, to increase
with temperature would weaken the variation of
Ro relative to Eq. (1}, but it is unlikely that this
effect is large enough to explain the experimental
discrepancies. A further difficulty with Eq. (2)
is that Iz and 2mpI, have opposite signs and com-
parable magnitudes so that I, and I, must be known
with great precision in order to accurately predict
the behavior of R+.

This paper will describe a new and more general
theory of nuclear quadrupolar relaxation in mon-
atomic liquids. With the help of certain simpli-
fying assumptions the relaxation rate will be ex-
pressed in a form such that the important micro-
scopic motions may be identified more clearly
than previously possible. Specifically, the rate
R+ will be expressed in terms of the low frequency
limit of the dynamic structure factor S(k, ~). This
function contains the basic information about
single-particle and two-particle correlated motions
and has been extensively studied both theoretically,

II. THEORY

A. Electric quadrupolar relaxation rate

The nuclear electric quadrupolar interaction
may be conveniently expressed in terms of nuclear
functions Q and EFG components V (t) which
transform as second-order spherical harmonics
of index mz2:

x,(t)=g q v "(t)- (3)

The nuclear functions Q depend on the nuclear
quadrupole moment Q and components of the nucle-
ar spin operator I:

@0= A[3I ,'—I(I +1)],

Q
' = v —' A (Igl ~ + I ~I,),

q» -~3AI 2

(4a)

(4b)

(4c)

where I, =I, + t'I, and A =eQ/2I(2I —1). The EFG
components depend on the second derivatives of
the total time-dependent potential at the nucleus
v(t):

v'(t) = ,' [v„(t) ', v' v(t)-],-- (5a}
V"(t) = (1/v6) [V„(t)+tv„(t}], (5b)

V "(t)=(1/2&6)[V,„(t)—V„(t)~2tV„(t)]. (5c)

In Eqs. (4) and (5) components of the spin-opera-
tors and EFG are taken in the laboratory coordi-
nate system and the magnetic field has been as-
sumed to lie along the z direction.

In liquids, fluctuations of the EFG components
V (t) contain frequency components much higher
than the nuclear Larmor frequency ('do. In this
so-called "extreme narrowing" limit, it can be
shown from first-order time-dependent perturba-

and experimentally by scattering light and thermal
neutrons. The formulation to be described, while
approximate, permits the incorporation of knowl-
edge of the liquid dynamics obtained by other tech-
niques and, hopefully, may extend the usefulness
of quadrupolar relaxation as a probe of dynamic
liquid structure.

The organization of this paper is as follows. In
Sec. II the general theory is described and a simple
integral relation between S(k, 0) and Ro is pre-
sented. Sections III and IV describe, respectively,
specific forms for the EFG and S(k, 0}for both
liquid rare gases and liquid metals. In Sec. V
numerical results are presented for two illustrative
cases —liquid Ne and Ga—and compared with the
diffusion model and with experiment. Finally, in
Sec. VI, the work is summarized and the main
conclusions are presented.
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tion theory that the nuclear magnetization relaxes
to thermal equilibrium according to a single ex-
ponential behavior with time constant Tj.

r =It, -= '.j (I-)(eq/g)'Z(0), (6)

where f(I) =(2I+2)/I'(2I —1)." The spectral func-
tions Z(0) = Z, (ro, ) = Z, (2&uo) are given by

Z, (2~,) = Jt e " o'(V'(I) V '(0)},„dt, (7b)

and the ( ),„denote ensemble averages. Since all
factors in Eq. (6) are known except J'(0), the prob-
lem reduces to calculation of the time-dependent
correlation functions (V (I)V (0)),„.

We suppose that the potential V at some nucleus
of interest can be represented as a sum of con-
tributions v, which depend on the relative displace-
ment r, of the ith neighboring atom. If there are
N atoms in the system, me have for each EFG
component

(6)

xP(r„0; r„t),
mhere I' is the joint I robability that when t =0 an
atom is located at r, relative to the atom of interest
and at time t there is an atom at relative position
r, . Since the atom at r, may or may not be the
same as the one initially located at r„ the joint
probability function I' involves both tmo- and three-
particle correlations in the liquid.

Then, with the help of Eq. (8), the ensemble aver
ages in Eqs. (7a) and (71) may be expressed in
terms of an integral over a probability function
P(r„0; r„t),

(V (f)V (0)},„= tdr, dr, u"(r, )o "(r,)

one) wiU be found at a later time I at pomt r rela, -
tive to the initial fixed origin. It is evident that
any expression of P(r„0; r, t) in terms of G(r, I)
must be approximate since the former includes
three-body correlations while G(r, t) is, by defi-
nition, a tmo-body correlation function.

To form the joint probability function consider
the initial and final configurations of atoms il-
lustrated in Fig. 1. The probability of the initial
configuration is simply pg(r, ). Now let us assume
that the correlation of the atom (i) at relative posi-
tion r, and the atom (j) at relative position r, is
independent of the motion of the atom of interest,
except that the final positions of the atom of inter-
est and atom (j) must be correlated by the average
pair distribution g(T~). Then since the correlation
of atoms (I) and (j) is described by G(r+r, —r„t)
and the motion of the atom of interest is described
by the "self" part of the van Hove function G,(r, t),
the joint probability mith a given displacement r
of the atom of interest is pg(ro)G(r +r, —ro, t)
x G,(r, I)g(x, ). The total joint probability is then
obtained by integrating over all values of r:

P(r., o; r„I) =pg(~.)g(~, )

xl drG, (r, t)G(r+r, —ro, t).
(10)

It should be emphasized that Eq. (10) is not exact
but has been constructed by means of simple physi-
cal assumptions. The validity of this form mBl be
considered shortly by examination of its limiting

~+ ~, -~o

S. Joint probability function

It is clear from Eq. (9) that the essence of the
theory of quadrupolar relaxation in liquids resides
in the joint probability function P(r„O; r„f)
through which the dynamic liquid structure in-
fluences the relaxation -rate. The present theory
is based on a simple expression of P(r„O; r„I)
in terms of the van Hove time-dependent pair
distribution function G(r, t),20 and the static pair
distribution function g(r). Recall that g(r) is the
average probability that an atom mill be located a
distance r from the atom of interest. G(r, t) is
the probability that if an atom is located initially
at the origin, an atom (not necessarily the same

TIME 0 TIME t

FIG. 1. Derivation of the joint probability function

&{r(),0; r~, t). The probability of the initial configura-
tion pg{ro) is multiplied by the conditional probability
G,{r,&)&{r+rq —ro, t)g{~q) that an atom will be located
at r~ relative to the atom of interest {shaded) given the
initial configuration. The atom {j) at relative position
x'& at time t is not necessarily the same as the atom {i)
initially at ro. It is assumed that the self-motion of the
atom of interest over the distance r is independent of
the correlation of atoms {~) and {j). The total probabil-
ity function of Eq. {10)is obtained by integrating over
all possible displacements r of the atom of interest.
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behavior.
The integral in Eq. (10) may be approximated

using an additional assumption. It is convenient
to first introduce the dynamic structure factors
S,(k, (d} and S(k, &d) which are related to G,(r, f}
and G(r, f) by Fourier transforms:

O, (r, r)=(l/Se)'J f dsd» e '"' "'S,(s, te),

(11a)

O(r, r) =e ~ ((/Se)'f f d((dtee """"'S(e»»)

Substitution of Eqs. (11a) and (11b) into the inte-
gral in Eq. (10) and integration over r yields

J
dr 6, (r, t) G(r+r, -ro, t)

p+(1/2v}s Jt
dke-&e &

x d~ d' ~«~'~'~t g y {d g y v I2

Let us now assume (to be justified shortly) that
S(k, &o) and S,(k, &o) are Lorentzian functions of
&d having the same widths. Then since S,(k, &d) is
normalized to unity,

d(d'S, (k, (d') =1,

it is easy to show that

Jl Jl
dledlee" ""S(e,te)s, (S, »r) J dire»"'S(S te)

Then substituting the approximation given by Eq.
(14) into Eq. (12) and comparing with Eq. (11b)
me find

)t dr G,(r, f) G(r + r, —r„t) -G(r, —r„2t),

and, finally, from Eq. (10),

H(r, 0; r„ t) =pg(r )g(r, }G(r,—r, 2t).

Before proceeding further let us review the
assumptions invoked in the derivation of Eq. (16).
The first of these is the assumption of independent
motion of.the atom of interest used to formulate
Eq. (10). This expression of three-particle corre-
lations in terms of tmo-particle correlation func-
tions is a kind of dynamic analogue of the Kirkmood
superposition approximation for the static three-
particle distribution function. ' Indeed in the limit
t 0, G(r, t)--5(r)+pg(r), and from Eq. (16),

P(ro, 0; r„Q)

=pg(~, )g(r, )6(r, r,—)+p'g(r, )g(r, )g('r, —r, ~).

(17a)
This may be compared with the exact limit

Is(ro, 0; r„0)=pg(xo)6(r, —ro)+p'g'(r„r, ), (17b)

where g (r„r,) is the three-particle distribution
function. The second term on the right-hand side
of Eq. (17a) is just the Kirkwood approximation
for g'(r„r, ). The first terms of Eqs. (17a) and
(17b) differ by a factor g(~, ). This discrepancy
couldbe eliminatedif, in the construction of Eq.
(10), the factor [g(r, )/g(ro)] '~' had been used to
correlate the final positions of the particles, rather
than g(r, ). However, this would destroy the corre-
spondence with the Kirkmood approximation. It
can be estimated from Eq. (9) that use of Eq. (17a)
leads to less than 10%) error in the magnitude of
the correlation functions at t =0. At very long
times G(r, —ro, 2t) -p and

I'(r„o; r„)=p'g(~, )g(r, ),

which simply states that the initial and final con-
figurations become uncorrelated as t-~. Thus,
Eq. (16}represents a reasonably accurate approxi
mation at short times and becomes rigorously
correct at long times.

The assumption that S,(k, &s)) and S (k, &d) are Lo-
rentzians of equal widths, has some experimental
basis. Skoid et a/. recently compared careful mea-
surements of S(k, &o} and S,(k, &s)) for liquid Ar.2'

They found that both mere closely Lorentzian ex-
cept in the high frequency wings. VFe know a Priori
that widths of the tmo functions cannot be greatly
different since both must have the same second
moment,

JI
d&o&o'S, (k, &d) = t d&o(d'S(k, &d) =(ksT/M)k',

J
(19)

where T is the absolute temperature and M is the
atomic mass. In fact, the widths at half-maximum
were found to differ by roughly (20-30)% in the
range of k values near the maximum in the struc-
ture factor which (as we shall show) is most im-
portant for quadrupolar relaxation. It is easy to
include such a correction to Eq. (14}and subse-
quent development. However, it turns out that a
width difference of 30%%uo between S(k, &o) and S,(k, &o)

alters the final result for Bo by only about 2% .
Since this is smaller than other uncertainties that
come into actual calculations, the approximation
of Eq. (14) will be assumed in the interest of sim-
plicity. A more precise formulation is outlined
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in Appendix A, where the condition of equal widths
is relaxed.

Rq ', f (-I)(eQ/I)'p dkS(k, 0)I(k).
dp

(26)

C. Spectral density functions

The final step in calculating the relaxation rate
is evaluation of the spectral density function J{0)
in Eq. (6}. Substituting Eq. (16) for P(r„0; r„I)
into Eq. (9), we have from Eqs. (Va) and {'Ib)

Z (mrs. )=p I ) dr. dr, u (r, )s- (r.)g(~.)(((~,)

x t dte ™~o'G(r,—r„2t). (20)

Repla~ing G(r, -r„2t) by its Fourier transform,
Eq. (lib), and integrating over t we find

& (m(vo) =(p/6v') '

dkS(k, —,'m(u, )

x drodr, v (r, )v (r )

(r )g(r ) e-&)( (ix-io) (21)

Now for a central potential v (r), the EFG func-
tions have the following important property:

u'"(R) ={ ) r (
—

) (vl) F,'"(9, , rp, )

-=E(r)(+I)"Y,'"(8„4„), (22)

where E(r) determines the radial dependence of
the EFG and Y,"(8„,(p„) is the normalized second-
order spherical harmonic of the atomic angular
coordinates. The exponential in Eq. (21) may also
be expressed in terms of spherical harmonics
using the standard expansion

e'"' =4vg Q i'j, (kr)Y) *(8,, q)~}Y((8,, 4)„),
l=p haft=-l

Z.(m~, ) = p dks(k, ,'m~, )l(k), — (24)

where

I(k) = 2k' Jt dr r'E(r) g(r)j,(kr) (25)

For typical nuclear Larmor frequencies S(k, (v,)
=S (k, 0); thus Z(0) = &,(~0) = Z, (2ma) and, using Eq.
(6) the final result for the relaxation rate becomes

where j,(kr) is a spherical Bessei function of order
l. Then Eqs. (22) and (23) may be substituted into

Eq. (21), and the angular integration carried out

explicitly using the orthogonality properties of
spherical harmonics. The calculation is str aight-
forward and leads to

An important feature of Eq. (26) is factorization
of the integrand into a term S(k, 0) which describes
the liquid dynamics and a term I(k) which depends
on the form of the EFG through E(r) in Eq. (25).
The EFG function I(k) is an integral transform of
E(r) whose structure is determined by the spatial
variation of the EFG. It acts as a weighting func-
tion determining the relevant k values of modes
responsible for quadrupolar relaxation. Some
specific examples of S(k, 0) and I(k) will be de-
scribed in Secs. III and IV.

III. EFG %WEIGHTING FUNCTION E(k)

In this section some specific forms are de-
scribed for the EFG weighting function I(k) de-
fined in Eq. (25). Given the radial EFG function
E(r) and the pair distribution function g(r) for a
specific liquid, I(k) can be obtained directly by
numerical integration with respect to r. For pur-
poses of computation the Bessel function is con-
veniently expressed in terms of ordinary trigono-
metric functions:

j,(x}=x '[(3-x') sinx —3x cosx]. (27)

In a series of illustrative examples, the simple
case of a point charge potential will be considered
first and followed by more realistic calculations
for liquid rare gases and metals.

A. Point charge potential-magnetic dipolar relaxation

For a simple point charge potential v(r) =q/r,
Eqs. (5) and (22) yield

E(r) = (4v/5)" {q/r'}. (26)

Although a potential of this form would not be ex-
pected in a monatomic liquid, it represents an
instructive example because of its simplicity.
Moreover, it is important to note that E(r) ~ r '
is encountered in the case of magnetic dipolar
relaxation since the spatial symmetry of the dipolar
interaction is identical to that of the point-charge
quadrupolar interaction. Thus the present formula-
tion may be used with relatively minor modifica-
tions to describe magnetic dipolar relaxation in
monatomic liquids. The equations for magnetic
relaxati. on rates in a system containing a single
nuclear spin species are summarized in Appendix B.

The EFG weighting function I(k) for quadrupolar
relaxation is shown in Fig. 2(a) for a point charge
potential. The integral in Eq. (25) was evaluated
using one electronic charge e for q and the experi-
mental g(r) for Ne at 25.5 K." It can be seen that
I(k) consists of a series of maxima which decrease
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First, the point charge EFG for one electronic
charge leads to I(k) roughly one order of magnitude
greater than the exchange-van der Waals form.
Second, I(k) for the exchange-van der Waals EFG
has relatively more intensity at high k values than
the point-charge case. This reflects the stronger
x dependence of the exchange-van der Waals EFQ.

As an independent check on the accuracy of the
Adrian model, the function E(r) was computed
directly using molecular wave functions con-
structed from the same atomic basis functions
used for the overlap integrals. ' The results of
these calculations are compared with Eq. (31}at
three r values in Table I. The two calculations
agree very well, within 10%, for r =3.0 A, while
the agreement is less satisfactory at the extreme
r values checked. At r =3.6 A, the b2yo methods
give results of opposite signs, reflecting the fact
that the molecular wave functions do not include
electronic correlations responsible for the nega-
tive van der Waals term in Adrian's model. Nev-
ertheless, the agreement in the region near the
main peak of g(r) which dominates the integral in

Eq. (25) gives confidence that Adrian's model is
sufficiently accurate for present purposes.

TABLE I. Hadial E FG function I (r) for Ne from ex-
change-Van der %aals model (E-V) and molecular orbi-
tal calculations (MO).

10-'2 stat C/A'
MO

2.6
3.0
3.6

52.8
3.82

-0.643

34.91
4.21
0.712

C. Liquid metals

Calculation of local electric field gradients in
metals is a complex problem and considerable
effort has been devoted to sophisticated and de-
tailed computations for metallic crystals. " In

general, the EFG contribution is determined for
various electronic eigenstates using wave func-
tions obtained with a suitable potential. The total
field gradient is then obtained by adding the elec-
tronic contributions to the ionic contribution and

performing a lattice sum. For a liquid metal,
where neither. the electronic eigenstates nor the
ionic positions are precisely known such a proce-
dure seems hopeless at this stage. A simpler ap-
proach is to attempt to determine some effective
ionic potential v(r) which includes the screening
effects of the conduction electrons and from which
the radial EFG function F(r) can be obtained by
differentiation using Eq. (22).

The simplest potential function, and the one
used in previous work, " is the asymptotic form
of the screened Coulomb potential

g (r) = C cos(2krr)/(2krr)', (32)

where k~ is the Fermi wave vector and C is a
strength parameter. For a potential of this form,
the radial function is

F(~) = C'(4v/45)" (2k, )'

x ('I(2krr) sin(2krr)

+ [15 —(2 k„r)'] cos(2k~r)/(2k~x)'), (33)

where C' contains a factor to account for the quad-
rupolar antishielding effects of the core elec-
tr ons.

The potential given by Eq. (32) is strictly correct
only in the limit of large r. Its use at the near-
neighbor distance where thy largest contribution
to the EFG arises is therefore questionable. One
way to partially circumvent this difficulty was
devised by Sholl, "who determined the constant
C' by comparison with the known static EFG in
the crystal. This procedure amounts to assuming
that the spatial variation of v (r) and E(r) in the
vicinity of the near neighbor distance are correctly
described by Eqs. (32) and (33}and adjusting the
strength C' to agree with experiment. The method
is, of course, limited to metals having a noncubic
crystal structure for which the EFG tensor may
be directly measured from nuclear quadrupole
splitting. In spite of these drawbacks, the nor-
malized asymptotic form remains attractive as a
first approximation to the problem because of its
relatively simple analytic form.

Once a potential u(r) is given, the radial func-
tion E(r) and the weighting function I(k) may be
computed as before using Eqs. (22} and (25) and an
appropriate pair distribution function g(~). The
form of I(k) for the asymptotic screened Coulomb
potential is illustrated in Fig. 3 for liquid Ga at
293 K. Sholl's value" C' =3.469xIO ' statC/A
was used together with an experimental g(r)
obtained from x-ray and neutron diffraction data. "
It is evident from this plot that a major contribu-
tion to R in a metal comes from k-2k~, where
the two largest peaks in I(k) occur. This has the
interesting consequence that for metals of differ-
ing valence, and hence differing values of kz,
quadrupolar relaxation samples dynamical modes
of somewhat different k values. It is worth empha-
sizing, however, that the detailed shape of I(k)
is highly sensitive to the spatial variation of o(r),
since F(r) depends on its second derivative. In
light of the uncertainty concerning the correct
choice of potential, the form of I(k) for liquid
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metals cannot be considered to be as firmly estab-
lished as for the liquid rare gases.

G, (r, f) = (4rDt) '~'e "y ' '

This has the Fourier transform

1 Dk'
s ( t } ~2 (Dk2}2

If we take the ~ = 0 limit and substitute S,(k, 0)
for S(k, 0) in Eq. (26), we find

(34}

(35)

Ro = 4 f (l)(eQ/k)'(p/vD) dk (I/k')I(k), (36)

which is closely similar to the two-particle (I,)

Alo+
O
O
Vl

Cl

I

O

2.0—

l.5—

I.O—

Ko 2kF

0
0

, U

2 3 4 5 6 7 8
R(A )

FIG. 3. EFG weighting function I(k) for asymptotic
form of the screened Coulomb potential evaluated for
liquid Ga at 293 K. The EFG is given by Eq. (33). Ver-
tical arrows indicate positions of main liquid structure
factor peak (Kp) and twice the Fermi wave vector (2k+).
Note that I(k) gives maximum weight to k values near
2k+ although a node occurs at precisely k =2k+.

IV. DYNAMIC STRUCTURE FACTOR S(k,o)

The dynamic structure factors S,(k, &o) and S(k, ~)
describe the basic liquid dynamics for single-
particle and collective motions, respectively. ~
These functions are directly measurable by means
of various scattering experiments. The cross
section for incoherent scattering of thermal neu-
trons, for example, is proportional to S,(k, (u),
whereas S(k, &u) determines the cross section for
coherent scattering of neutrons or light. The func-
tion S(k, 0) which determines the quadrupolar re-
laxation rate describes the amplitude of the so-
called "quasielastic" peak of S(k, &u) for various
values of k.

It is instructive to make some comparisons here
with the earlier work of Sholl. " In that theory,
both the two- and three-particle correlations were
described in terms of the "self" part of the time-
dependent pair-distribution function for single
particle diffusion:

term in Sholl's theory. " The present theory differs
from Sholl's mainly in that both two- and three-
particle correlations are included in a single term
governed by'S(k, (a&).

The nature of S(k, &u) for liquid rare gases and
metals has been studied by experiment, molecular
dynamics calculations, and theory. " The question
of the existence of well-defined vibrational collec-
tive modes at high frequency has, in particular,
received much attention. "" Such modes corre-
spond to peaks in S(k, ~) at finite ~ values as ex-
emplified by the well-known Brillouin doublet
observed in light scattering for k «K, . Neutron
scattering at higher k values (ksK, ) indicate the
presence of such peaks in liquid metals" " such
as Pb and Rb, whereas these are absent in liquid
Ar and Ne."'" The evidence indicates that collec-
tive modes at finite frequency are heavily over-
damped for k values around Ko where their con-
tribution to S(k, (u) merges with the central (u =0
peak. Nevertheless, they may remain important
for nuclear quadrupolar relaxation since they
modify the value of S(k, 0) in this range where the
weighting function l(k} has large amplitude.

In principle R could be calculated directly from
neutron data for S(k, 0) using Eq. (26). Unfortu-
nately, precise data are not yet available over
wide ranges of temperature and k' values for those
liquids which have been studied by nuclear quad-
rupolar relaxation. On the other hand, there
exist some simple theoretical forms which have
been found to give good agreement where the neu-
tron data do exist. In each case the function S(k, 0)
can be determined from the static structure factor
S(k). The latter is available for many more liquids
and temperatures than S(k, 0) and, in particular,
has been measured for Ne and Ga whose quadrupo-
lar relaxation rates will be considered shortIy.

A. Liquid rare gases

These liquids, particularly liquid Ar, have been
the most extensively studied from the point of view
of their liquid dynamics and many theories of
S(k, ~} have been developed. Pathak and Singwi"
described a mean field approximation for the
density response function having the virtue that
their S(k, 0) satisfies certain conditions on the fre-
quency moments out to the fourth moment. The
theory yields results in good agreement with ex-
periments for liquid Ar." Their expression for
S(k, 0) takes a relatively simple form:

I M '~2 [S(k)]~
2v'" k TB k

pP, (k)-'"
S (k) keT
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where B. Liquid metals

(1 —cosk,r) s'4(v)
88 (38)

and 4(r} is the interatomic potential. Lovesey'4
presented an extension of the low-q hydrodynamic
theory which also satisfies the moment conditions.
His expression for S(k, 0} is identical with Eq. (3'7)
obtained by Pathak and Singwi. "

The Pathak-Singwi-Lovesey result was obtained
in the high-temperature classical approximation
which is valid for liquid Ar. For the case of Ne,
Kerr and Singwi showed that the quantum correc-
tions are not negligible. 4' However, for k values
out to about 2KO, these corrections are less than
about 20%, and, in the important region around
K„quantum effects are substantially smaller.
For the present discussion we shall use the sim-
pler, classical version of the theory which is
sufficiently accurate for our purpose.

The specific form of S(k, 0} is illustrated in I'ig.
4 for Ne at 25.5 K. In evaluating Eq. (37), the
x-ray data of Stirpe and Tompson were used for
S(k) and g(r).47 The potential 4(r) used to evaluate
P, (k) was a Lennard-Jones potential with o =2.75 A

and e =49.2&10 "erg for Ne." It is evident that
the form of S(k, 0} is dominated by a strong peak
at Ko with smaller, broader peaks occurring at
higher k values. A comparison of Fig. 4 with Fig.
2(b) shows that the main contribution to Ro comes
from modes in the range 2& k& 4 A ', where both
S(k, 0) and I(k) have large amplitudes. Note that
the large peak in I(k) at 1.4 A ' has little effect
owing to the small value of S(k, 0) in this range.

2.0—

g i.s-
CL

o l.0-

Q
0 I

I I T

2 3 4 5 6 7 8

R(A )

FIG. 4. Elastic (cu = 0) limit of dynamic liquid struc-
ture factor S(k,~) vs k for liquid Ne at 25.5 K. S(k, 0)
was evaluated from Eqs. (37) and (38) using experimental
data for the static structure factor S(k) given in Ref. 23.
Vertical arrow indicates position of main liquid structure
factor peak (Kp). Horizontal arrow indicates range over
which relaxation rate integral in Eq. (26) increases from
10% to 90% of its final value.

In principle the Pathak-Singwi-Lovesey form
could be used for S(k, 0) in liquid metals as well
as rare gases. However, evaluation of the fourth-
moment term P, (k) is complicated by lack of ac-
curate knowledge of the interparticle potential
4(r) S.ince second derivative s'4(r)/sz' enters
in Eq. (38), the result may be expected to depend
sensitively on the detailed r dependence of the
potential. It therefore seems advisable to take
a more empirical approach and use a parameter-
ized model which can be adjusted to fit the neutron
data where they exist.

There is evidence for qualitative differences
between S(k, &o) in liquid rare gases and metals. "'"
Neutron experiments suggest the presence of
underdamped modes at finite frequency for Pb and
Rb when k & k„whereas no such evidence has been
found for liquid Ar and Ne. Because of the longer
range of the potential in metals it is not surprising
that cooperative effects are stronger in this case.
In the particular case of Pb, Cocking and Egel-
staff" assumed a general parameterized form for
S(k, &u) which they adjusted to fit their time-of-
flight neutron spectra. In the =0 limit, their
model reduces to

N„M '~' [S(k)j '~'
v kzT k

(39)

where N» is determined by fitting to the neutron
data (N» =N, /N, in the notation of Ref. 37). In the
case of Pb, N„=3.

Since the magnitudes of S(k, 0) and S(k) near the
melting point (T }cannot differ greatly between
different simple liquids, it is reasonable to esti-
mate N» for Ga by assuming (N»/K, )(M/T }' ' to
be constant. Then, if N»(Pb) =3, this method gives
N»(Ga) =4.6. Alternatively, Eq. (39) can be fitted
to experimental data for S(k, 0) in the range of k
values where they are available (near K,) and Eq.
(39) can be regarded as a means of extrapolating
the data beyond the range of the measurements.
This procedure is illustrated in Fig. 5, where
Eq. (39) is plotted together with the experimental
values of S(k, 0) measured by Chen, Lefevre,
and Yip." The value N» =4.9 chosen to give a
reasonably good fit to the data agrees well with
the estimate based on the Pb results. Note how-
ever that Eq. (39) tends to deemphasize somewhat
the pronounced "shoulder" on the high-k side of
the main diffraction peak. While potentially im-
portant for precise calculations, this deficiency
of Cocking and Egelstaff's model will be neglected
for the present purposes.

Recalling that I(k} is largest near k = 2k+ for the
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asymptotic screened Coulomb potential (3%k%4 A '),
note that Rz is dominated by modes having k values
somewhat higher then K,. Vibrational modes, if
present in this range, are overdamped. Neverthe-
less, as has already been pointed out, these modes
may yet affect the value of S(k, 0). Finally, it
should now seem no surprise that the temperature
dependence of R+ does not agree well with predic-
tions based on Eq. (35) since this low-k form can-
not provide an adequate description of the liquid
dynamics for k -2k~."

V. NUMERICAL RESULTS FOR RELAXATION RATE
IN LIQUID Ne AND Ga

As a test of the theory the relaxation rate was
calculated for a liquid rare gas (Ne) and a liquid
metal (Ga} for which quadrupolar relaxation data
were available. Although quadrupolar relaxation
rates have been measured for three liquid rare
gases' ' (Ne, Kr, and Xe), Ne was chosen because
there exist tabulated data for S(k) and g(r) over a
wide temperature range. 4' For Ga there exist
good NMR data and precise x-ray and neutron
diffraction measurements of S(k) near T and in
the supercooled state. "'"'" Although S(k) has,
in fact, been measured to high temperatures by
Lashko and Poltavtsev, these data were not avail-
able in a form suitable for accurate numerical
computation. "

A. Liquid Ne

The relaxation rate for liquid Ne" at 25.5 K was
evaluated numerically from Eq. (26}using the
values I = —,', Q =0.093 A', and p =0.0354 A '. The

structure factor S(k, 0) was calculated as for Fig. 4
using the Pathak-Singwi-Lovesey expression, Eq.
(37), and the EFG weighting function f(k) was cal-
culated with Eq. (31}for E(r) as discussed in Sec.
III B. The result is

R~o' =0.0310 sec ' (theory},

which can be compared with the value measured by
Henry and Norberg' at 25.3 K:

R~z' =0.040 sec ' (experiment).

The success of the theory in giving the magnitude
of the relaxation rate within 25~/p is encouraging.
The discrepancy, explainable by only a 12@ error
in the EFG, is quite reasonable given the residual
uncertainty in the EFG and the various approxi-
mations of the general theory.

The temperature dependence of Rz provides a
more stringent test of the basic theory since it is
directly dependent on the liquid dynamics. In order
to compare with experiment, R~ was calculated at
two additional temperatures for which S(k) data
are available and the results normalized to the

R~ data at the lowest temperature. The resulting
temperature variation is shown in Fig. 6 together
with the experimental data. Also shown is the
variation of p/D which is the predominant tem-
perature dependent factor when the liquid dynamics
are described in terms of macroscopic single-
particle diffusion. It is clear that the present
theory is in quite satisfactory agreement over the
range of the data although the theoretical curve
does not lie fully within the experimental error.
There is no question that the present model rep-
resents a substantially improved approximation
over earlier theories.

u 1.5-
0)

1.0—
O

V)
0.5-

Kp 2kF
I

0.04—
CV

Cl~ 0.03-
UJ
I—

0.02-

0
0

I I I

4 5 6 7
k(A )

FIG. 5. Elastic ( =0) limit of dynamic liquid struc-
ture factor S(k, ~) vs k for liquid Ga at 293 K. S(k, 0)
was evaluated from Eq. (39) using N~2 =4.9 and data for
S(k) given in Ref. 33. Closed circles denote experimental
values of S(k, 0) obtained with neutron scattering by
Chen, Lefevre, and Yip (Ref. 49). Vertical arrow
marks the main liquid structure factor peak at K(}. Hori-
zontal arrow indicates range over which relaxation rate
integral in Eq. (26) increases from 10% to 90% of its
final value.
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FIG. 6. Quadrupolar relaxation rate R & vs tempera-
ture for Ne in liquid Ne. Open circles denote data of
Henry and Norberg (Ref. 2). Solid curve denotes tem-
perature variation predicted by present theory from
calculations at 25.5, 33.1, and 39.4 K. Dashed curve
denotes characteristic temperature dependence for
single-particle diffusion described by Eq. (1). Both
theoretical curves were normalized to data at 25.5 K.
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B. Liquid Ga6~

The relaxation rate for Ga" was evaluated at a,

single temperature (293 K) using I =-,', Q =0.180 A',
and p =0.05272 A ~. The function I(k) was com-
puted using the asymptotic screened Coulomb
potential and Sholl's strength parameter C' as dis-
cussed in Sec. IOC. The Cocking and Egelstaff
model for S(k, 0}was used with N» =4.9 as de-
scribed in Sec. IVB. The result is

Reoe =331 sec ' (theory).

The most precise experimental value available is"
R~o'=350+11 sec ' (experiment}.

Just as for Ne the agreement in magnitude is very
good, although it must be remembered that the
potential was normalized to the known EFG in the
crystal to obtain the parameter C'. Nevertheless,
the agreement is much better than obtained by
Sholl, "who found values of 149 or 500 see ', de-
pending on whether or not he included the three-
particle (I,) term in Eq. (2). Since both calcula-
tions use the same potential it would appear that
the present theory incorporates a better approxi-
mation of the liquid dynamics.

VI. SUMMARY AND CONCLUSIONS

A new theory of nuclear electric quadrupolar
relaxation in monatomic liquids has been described.
The theory is based on an approximation expressing
the joint probability function P(r0, 0; r„f) in terms
of the full van Hove time-dependent pair distribu-
tion function. This approximation leads directly
to a simple expression for the relaxation rate in
terms of an integral over S(k, 0) multiplied by a
weighting function I (k). This formulation therefore
achieves factorization of the liquid dynamics, con-
tained in S(k, 0}, and the EFG whose radial varia-
tion determines f(k). Comparison of E(k) and S(k,0)
for realistic cases shows that the major contribu-
tion to quadrupolar relaxation comes from low fre-
quency modes having k ~ K,. For liquid metals, in

particular, an important contribution arises from
k -2k~. For these relatively high q values collec-
tive motions of the ions are important and it is not
correct to attribute quadrupolar relaxation to sin-
gle-particle diffusion as has been done previously.

Numerical calculations for Ne and Ga near their
melting points are very encouraging and agree with
the observed relaxation rates within about 25% for
Ne and 6% for Ga. Uncertainty in the exact form
of I(k) for Ga suggests, however, that we should
be cautious of fortuitous agreement for that case.
Nevertheless the Ga results are substantially
better than achieved previously using the diffusion
model and the same EFG function. The theory also

gives good agreement for the temperature depen-
dence of the relaxation in liquid Ne. Success of the
theory for such diverse liquids as Ne and Ga lends
confidence that it provides an accurate description
of the coupling of nuclei to microscopic liquid
dynamics.

The sharply peaked character of I(k) means that
the relaxation rate is fairly sensitive to the form
of S(k, 0). In the case of rare gases, where further
refinements of the precision of I(k) appear pos-
sible, quadrupolar relaxation data may be useful
as a means of test'ing model forms of S(k, 0) in

situations for which neutron data are absent. For
metals, there is an obvious need for better knowl-
edge of the EFG functions E(r} and I(k) before such
a procedure can be trusted. Conversely, if S(k, 0)
is known, quadrupolar relaxation provides a means
of testing various forms of the potential and EFG.
For the determination of S(k, 0) or S(k, ~) it is
clearly preferable to use a spectroscopic tech-
nique such as neutron scattering when such experi-
ments are practical since they provide more de-
tailed information than an integral method such as
quadrupolar relaxation. However, the relative
simplicity, low cost and versatility of NMR ex-
periments suggest a useful role for quadrupolar
relaxation data as an alternative means of ex-
ploring liquid dynamics in monatomic liquids.
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APPENDIX A: 3USTIFICATION OF THE

"EQUAL WIDTH" APPROXIMATION

This appendix describes the correction to the
approximation of Eq. (14) when S,(k, ~) and S(k, s&)

do not have the same Lorentzian widths and sum-
marizes the effect of this correction on the calcula-
tion of the relaxation rate A.

Consider a double integral of the following form
which appears in Eqs. (12) and (14):

(Al)
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where

(A2}

(AS)
(81)

interactions of a system of nuclei with spin I and
gyromagnetic ratio y„may be written in a form
analogous to Eqs. (S)-(5):

2

Se, (t) = g g D...E-„-(t),.

Note that, in analogy with S,(k, (e) and S(k, (d), g((d')
and f(&u) are normalized, respectively, to unity and
to a constant e. Substitution of Eqs. (A2) and (AS)
into (A1) and integrating over ((( and (((' leads to

(26+») )(j e» ) () l d~ e(Rhltf ((e) (A4)

where e =-A —5. When e =0, Eq. (A4} reduces to
Eq. (14).

When Eq. (A4) is employed in Eq. (12), we find

&[G(r, 2t) p] (A5-)

and hence, from Eq. (10)

P(r„o; r„t}=pg(r,)g(r, )e ' '

&[G(r, 2t)+ p(e'~ (~ —1)].
The joint probability function of Eq. (A6) may now
be used to calculate the spectral density functions
as described in Sec. IIC. It follows directly that
Eq. (24}becomes

where the sum is taken over all pairs (i,j ) of
interacting nuclei. The spin functions D&,. and
"lattice functions" E,&

are

(82a)

(82b)

(82c)

(8S)

2I 'g {I]'»P g ePjggt (0) C(((t
j Nt

(84)

where

«((( ) d e (F(( ( t) E(( (0))»&
m oo

Do(, B(-—T' ' 1 —SI» I»},

D". =&81(I'
E,'; =(4((/5)'"(+1) (1/&(;)y'2 (e(( v;()

and 8 =

+I�

'. Notice that E('("(r) is proportional
to ((' (r) given by Eqs. (22) and (28) for the point
charge quadrupolar interaction.

In the limit of "extreme narrowing" the density
matrix method of Abragam" gives the following
expression for the relaxation rate:

Z (m(d, )=p Jt dkI(t)( C(((t —{[D((([D((t I ](]]»'( (85)

x d(d S(u, (u) ", , (AV}
6 2+ ((« —zm(((0

Thus the 5 function 5((e ——,'m(do}, which leads to the
factor S(k, —,'m(e, ) when e =0, has been replaced by
a Lorentzian distribution of width -c. It is easily
verified that for typical valuesm' «/5 =Q.S, the 5

function approximation is accurate to about 2%%uo

for the value of J (m&eo).

APPENDIX 8: MAGNETIC DIPOLAR RELAXATION
FOR A SINGLE SPIN SPECIES

In Sec. III A it is pointed out that the form of
E(r}, and hence I(t(}, are identical for the point
charge quadrupolar interaction and the magnetic
dipole -dipole interaction. In this appendix the
expression for the dipolar relaxation rate will be
derived in the notation of the quadrupolar relaxa-
tion theory in order to demonstrate the corre-
spondence between these two kinds of relaxation
process. For simplicity, the system will be as-
sumed to contain only one magnetic nuclear species
with fractional abundance f„.

The Hamiltonian describing the mutual dipolar

and the curly brackets {j indicate that an expecta-
tion value is to be taken over the density matrix
of the system.

The form of Eq. (84) demonstrates an important
distinction between quadrupolar and dipolar 'relaxa-
tion. . The operators D, z involve the spins of both
the "nucleus of interest, " say (i), and the neighbor
(j) in contrast to the operators Q which depend
only on the spin of the nucleus of interest. This
leads to the dependence of C,~&

on j and j'. Now
because C„~wC„~ when j Wj', it is not possible
to combine the two- and three-particle contribu-
tions to 1/T, as could be done for the quadrupolar
case. In fact, as Titman'6 has recently pointed
out C,&z. «C, zz so that the two particle terms
dominate the dipolar relaxation rate. Then letting

Cygne�&

—C ]gy&yg& the commutators and expectation
values may be evaluated as outlined by Abragam"
to yield

Re = —= 5y»K'I(I +1)J'(0),1

1

where

z(0) = g J'„(0}=gd„(o),
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p co

P J&&((d) = ( dte ' ' dr, drP, (r„0;r„t) J(0(=f p f dkS, (k, D(t (k), (B10)

XF (r, )F (ro). (B9} where

The subscript s on P,(r„0; r„ t) emphasizes that
the atom at relative position r, at time t is the
same as initially at ro.

Evaluation of J(0) proceeds in exactly the same
manner as described in Sec. IIB and IIC, except
that G,(r, —r„2t) appears in the analogue of E(I.
(16) in place at G(r —r~, 2t). The spectral density
function is

oo -2
In (k) = (4(T/5) k' t dr (I/r) g(r)j, (kr) . (B11)

0

RD =5y„h'f(I+1)f„p tdkS, (k, 0)I~(k). (B12)

Finally, on substitution of E(I. (B10) in E(I. (Bp),
the expression for the relaxation rate is obtained:
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