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A general form of the scattering distribution function is obtained through the use of the
Schrodinger equation. The formulation is quite adequate in the study of particle-wave inter-
actions, plasma radiation, fusion reactions, and nonelastic scattering as well as elastic
scattering. The distribution function is obtained from a first Born approximation and is sep-
arated into two independent functions: a space-time-correlation function and a potential
function. The former is of great interest in simulation of the dynamics of many-body sys-
tems and in the interpretation of scattering experiments. The potential function allows the
use of different interaction potentials without the labor of repeating the calculations and with
considerable reduction in the computation time. Analytic expressions for the rate of energy
transfer from test particles to background plasmas are obtained together with the proper
thermalization time. The dynamic behavior of the plasma is taken into consideration. The
present formulation is compared with other different approaches. Results which are avail-
able in the literature lack the mathematical rigor of the treatment given here and are bound
to stringent physical limitations. Consequently, the behavior of a test particle thermalizing
in a background plasma is different from that anticipated in several studies, especially in
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the area of high-temperature plasmas.

I. INTRODUCTION

Analytic expressions have been derived for
energy-transfer rates from fast test particles to
slow background plasma particles. Classical,'”3
semiclassical,? and quantum-mechanical®-® deriva-
tions result in differences in the argument of a
logarithmic term common to all of the results ob-
tained. Although the differences do not affect the
order of magnitude of the rate of energy transfer,
nevertheless they lead to different conclusions con-
cerning other parameters, such as the slowing-
down time and the dispersion of the initial distribu-
tion. In addition, there is a disagreement between
experimental®'!® and theoretical results® which
tend to overestimate the energy-transfer rates.
This discrepancy persists even when the theo-
retical results are corrected for magnetic field
effects.®!'12 QOther extreme cases have previously
been considered such as infinite-mass test par-
ticles” and slow test particles in plasmas of very
low kinetic temperature.®

Growing interest in neutral-beam heating in
fusion devices!® and plasma processing of ores
and scrap material'® requires information about
the behavior of test particles injected into a back-
ground plasma whose electron velocity is greater
than that of the test particle. This is aside from
the fact that in studying internal heating of thermo-
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nuclear plasmas by charged fusion reaction prod-
ucts, plasma electrons are expected to be faster
than test ions while plasma ions are slower.
Understanding the behavior of test particles in
this range is also necessary for studying the time
history of fusion plasmas,!® injection of neutral
atoms in toroidal systems!® and in mirrorlike
devices,'”*® and other plasma processes.!*:!®

To study energy exchange rates in a D-T fusion
reactor, Rose! adapted a classical expression
from the stellar dynamics work of Chandrasekhar?®
for the energy transfer from fast a particles to
ions and electrons. His results are accurate within
the limitations of the model that has been used.
Other investigators have considered the effects
of plasma oscillations and quantum mechanical
corrections in an effort to obtain more accurate
results®*2%; however, close collisions were not
properly treated in the analytical formulation.
The dispersion of the initial impulse of the test
particles is not taken into account in the numerical
calculations.?® In a recent work?*'? 3 phase shift
method is used with a cutoff length equal to the
Debye radius; however, this work has also been
subject to criticism.5 Comprehensive reviews of
different approaches and limitations have been
reported by de Witt®> and more recently by Kihara
and Aono.?

In an earlier paper the slowing down of a fast
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test particle in a plasma is reported by Husseiny
and Forsen? wherein investigation is limited to
scattering by Maxwellian particles whose most
probable speed is much less than the velocity of
the test particle. In the present work these studies
are extended to include the energy transfer to
background plasmas from relatively slower test
particles. However, a more general formalism is
used here to allow for the investigation of the be-
havior of test particles of arbitrary velocity.

Starting from the two-body Schrédinger equation
the general form of the scattering distribution is
obtained in Sec. II, in a manner similar to that
used by Van Hove.?® The angular and energy dis-
tribution of scattering is evaluated for a first
Born approximation. The result is then separated
into two factors: a space-time-correlation G
function which for given energy and momentum
transfer depends only on the plasma properties,
and a U function which depends on the properties
of the scattered particles and on the interaction
potentials.

In Sec. III, elastic scattering of test particles
in fully ionized plasmas is considered. The plasma
ions are assumed to be totally stripped of their
electrons. To evaluate the energy distribution
function for elastic scattering, we adopted a meth-
od which has been suggested earlier by Husseiny
and Forsen?” for the calculation of scattering
probabilities. This involves the separation of
scattering events into two groups: events that lead
to small energy-transfer increments and events
corresponding to relatively larger energy-transfer
increments. An interaction potential screened
by Debye sphere is used to describe the former
group, while an inverse potential of the Coulomb-
type is used for the latter group. Energy distribu-
tion functions for elastic scattering are then ob-
tained in an integral form for both potentials.

The integrals are evaluated in Sec. IV assuming
fixed scattering centers; that is, in the slowing-
down energy range. Thus, a comparison is made
between the results of the present approach with
the outcome of other methods of calculation. The
thermalization range is then considered in Sec.

V, wherein the thermal motion of the plasma is
taken into account. The scattering distribution
functions are used in Sec. VI to evaluate the total
energy-transfer cross sections for elastic scat-
tering of fast test particles with a faster electron
background and with a slower ion background.
Rates of energy transfer are then obtained in Sec.
VII as first moments of the distribution functions.
The mean energy-transfer time is derived in Sec.
VIII for both the slowing down and the thermal-
ization of test particles in plasmas. Effects of the
Born approximation used in the derivation of the

present results are discussed in Sec. IX. Correc-
tions for plasma oscillations in both cases of inter-
actions of test particles with ions and electrons
are discussed in Sec. X. Finally, conclusions are
given in Sec. XI and comparison between energy-
transfer rates to ions and electrons in a Max-
wellian plasma is made. A brief discussion is
given to show the mathematical rigor of the pres-
ent formulation in comparison to other formula-
tions.

II. GENERAL FORMULATION

Let us consider the interaction of a fast test
particle x with mass m, and a plasma particle s
with mass m, through a potential v(|F, - F,|), where
T, and T, are the position vectors of the plasma
particle and the test particle respectively. The
Schrodinger equation for this two-particle system
is

[-z¥2m) V2 - @¥2m,) v, 2+0(F, - D] ¥(F,,F,)
=(E+U)¥(F,,F,), (1)

§$Y " x

where ¥(T,,T,) is the wave function of the two-
particle system, E is the initial energy of the
incident test particle, and U is the initial energy
of the plasma particle. Expanding ¥(T,,¥,) in
terms of the complete set of eigenfunctions of the
unperturbed plasma particles gives

W(Fs’?x)=sugv(‘fx)¢v(?s)) (2)

where ¢,(T,) is the wave function of the plasma
particle that satisfies the equation

- ﬁz/zms)v32¢u(-fs)=UV¢V(FS) (3)

and &,(T,) is the wave function of the x particle
corresponding to the vth state.

Equation (1) can be transformed by means of
Egs. (2) and (3) to a set of coupled integrodiffer-
ential equations after multiplying by ¢*(¥,) and
integrating over all T, :

(V.2 +k,2) 5, (F,) - @m,/n?)

x f a7, V(F, - T ) U (F,, F,)65(F),

v=0,1,2,..., )

where k, is the wave vector corresponding to the
vth state of energy of the test particle. Thus,

K2 =2m E/h? ()
for the initial state and
k% =2m, /E3)E+U-U,) (6)

for the final state of energy £E+U -U,. The
Green’s function
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exp(ik,|T, - F[))

T )2 vl x gl
G(rxsrx 41!‘1' _rll (7)
satisfies Eq. (4) with the right-hand side replaced
by 6(¥, —T.), and thus can be used to convert this
set of equations into the set of integral equations

5,(F,) = —5otw [ [dF (Mﬁgl-_rxll>

XV(|F, - T ¥(F,, T3 (F,). 8)

This set of equations can be solved by the formal
method of iteration. ¥ ¥(T,,T,) is  replaced by the
unperturbed function ¢(¥, )exp(zkon0 T,) as a first
approximation, the scattered amphtude is then
given by

e, ,®,)=- Zﬁz fd fd’ exp[z(kono—k,,n) -]
XV(|F, = F)po(F)p3(T,), 9)

where the superscript (1) refers to the order of
approximation.

The second-order approximation is obtained by
inserting the wave function which is found by the
first-order approximation, Eq. (8); and the scat-
tered amplitude becomes

FP6,,8,)=F 6, ,)
(i) fas: o [ o
X(e'xp[ik (llf|l'§°i")]>v(lr _#)

xexp[i(kono —k,h) Fr] (7, - 7))
X po(T 3 (F)PT(T,). (10)

Additional terms need to be included as the de-
sired degree of accuracy increases considering
that the series formed by successive approxi-
mations does not diverge. The validity criterion
for using only the first term in the series is dis-
cussed in Sec. IX. In fact, this is just the first-
order Born approximation which is considered
here.

The differential cross section per unit solid
angle for the x particle to change its energy from
E to E’ owing to scattering by a system of »,
particles is given in the first Born approximation
as

)=m?2/(@ui2)* (&' / £} /20%(| %)
o

Xb(g‘g'_ﬂsb'*'“sa), (11)

where & and &' are the dimensionless energies of

o~ &, 3-8’

the x particle before and after scattering respec-
tively. These are taken below as the ratios of E
and E’ to the kinetic temperature T, of the s par-
ticles in energy units. The ratios pg, and p,, are
those of the s-particle energies corresponding to
the final state b and the initial state a to the mean
plasma kinetic temperature, 0(|%|) is the Fourier
transform of the interaction potential V(T - F,),
and the momentum ¥ transferred from the test
particle is given by

%=k -k’ (12)

’

where k’ is the final wave vector of the test par-
ticle. The initial and final states include the ini-
tial and final spin states of the x-particle and s-
particle systems. The Boltzmann factor p,, ac-
counts for the thermal motion of the plasma and
thus it statistically weighs the initial states. It
also includes the distribution of initial spin states
of the s particles. The summation over y is taken
over the position vectors of the number of s par-
ticles per unit volume %, and the 6 function ac-
counts for energy conservation. To account for
different species of plasma particles Eq. (11) may
be summed over s.

A result that is similar in form has been found
using the Fermi pseudopotential for thermal neu-
tron scattering.?®'?® In fact, this result is quite
general and we notice that the matrix elements are
independent of the potential which can therefore
take any form. The advantage of this property in
the present formulation has been discussed in
detail elsewhere in connection with slow neutron
scattering?®?° and elastic scattering of x rays by
the electrons of an atom.3°:3!

This formulation can be applied to elastic scat-
tering, inelastic scattering, excitation, ioniza-
tion, and can be extended to include the plasma
oscillations. However, in this work we will limit
ourselves to the problem of elastic scattering.

Expressing the 6 function in its Fourier integral
form, summing over the final states and averaging
over the distribution of initial states, Eq. (11)
becomes

-

o= &', Q=)= (m, /20w 22 (&' /EN 20%(| &)

X fw dt §(x,t)expl -i(& - £) T, ¢/,
(13)

where the function 8(k, t) is given by
8(k, t) =expl -3 (k/m )T, t2 - int)] . (14)
The function $(«, t) is the Fourier transform of

the space-time pair-correlation function G(7, t),
which is given by
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Glr,t)={m/[2n(T, 22 - int)]}3/2
X expl —3m 7%/ (T, t2 - init)] . (15)

This is a complex quantity and has a Gaussian form
as a function of 7, which is independent of the
properties of the test particles. In the classical
limit, that is as #—-0, Eq. (15) reduces to

/2
- _m,_>3 ﬁ.ﬁ)
Calr,1) (211Tst2 *P\2r )

where G (7, t) is the classical space-time pair-
correlation function. The G function is simply
interpreted as the average density distribution
at a time ¢’ +¢ as seen from a point where a par-
ticle passes at time ¢’. Equation (15) is valid
for all times, since we are dealing with Brownian
particles.®

The general properties of the space-time G
function have been extensively discussed in the
literature.28:28:3%:3¢ Thig function is useful in the
interpretation of plasma scattering experiments®
and in simulation of the dynamics of many-body
systems, %33 and can be adapted to various appli-
cations in the field of plasma simulation.

(16)

III. SCATTERING DISTRIBUTIONS

Integrating Eq. (13) over the time domain we
obtain

. Bn? \1/2 r\1/2
ote- ¢, 8- - () S () v

Xe [_ [As
*P | ~\2e_@m, 1) 7

__e_ﬂ(meTs)l/z(E - 5'))2:]
4nk ’

1)

where €, = (m,/m,)/?. For plasmas of thermo-
nuclear interest €;;,~1 for ions and €., ~10"2 for
electrons. This equation gives the angular and
energy distribution for interactions via an arbi-
trary potential. Thus, elastic scattering distribu-
tion functions of test particles in a plasma back-
ground can be readily obtained from Eq. (17) by
specifying the proper interaction potentials.
Customarily, an inverse Coulomb potential is
used to describe elastic scattering between charged
particles. The divergent nature of the inverse
potential appears for zero momentum transfer and
for zero energy transfer. Thus, the conditions
that k>0 and (E — E’)>0 have to be imposed. An
ad hoc cutoff must be assumed in order to calcu-
late the elastic scattering distribution function.
This cutoff is tantamount to excluding scattering
events that result in very small increments of
energy transfer. Other cutoff methods tend to

overlook contributions from other scattering
events. Consequently, in this work we use a tech-
nique that has been suggested by Husseiny and
Forsen?” to include all possible scattering angles.
The approach involves the use of a screened po-
tential for interactions leading to small scattering
angles and an inverse potential for large-angle
scattering events. Describing the interactions by
these potentials involves nontrivial assumptions.®
In addition, these potentials are restricted to
interactions involving electrons and ions fully
stripped of their electrons.?®'3” The merits of
the technique employed here vis--vis the use of
a single potential with some ad koc cutoff are dis-
cussed in Ref. 27. The accuracy of the energy-
transfer rates obtained by each technique is con-
sidered in Sec. XI.

The Fourier transform of a potential screened
by a Debye radius A, can be shown to yield the
form

V(&) =47Er3 /(| 7]222 +1), (18)

where ¢/, is the strength of the potential. For
plasmas of thermonuclear interest, the potential
strength has a value of the order of 0.1 meV. In
the limit of A, -, that is for no screening, we

have the inverse potential, namely,

V(&) =4ng/x2. 19)

The screened potential also reduces to the inverse
potential for encounters taking place at distances
|T, - F,|<1,, whatever the value of A, is. At
distances of the order A,, the potential is a Cou-
lomb potential reduced by 1/e. For close en-
counters, the momentum transfer corresponds

to |%|> (1/x,), and consequently Eq. (18) reduces
to Eq. (19). Thus the inverse potential may be
used for energy transfers corresponding to

\/g - ‘/‘E_, >A’ (20)
where
A =1/@m, T, 202, (21)

For plasmas of thermonuclear interest A ~1078.
Even if the inequality in Eq. (20) is replaced by an
equality, the results of utilizing the inverse po-
tential in Eq. (17) will not be in great error pro-
viding that the first Born approximation is still
valid. The use of Eq. (19) in the first Born ap-
proximation together with a cutoff of the inter-
action range to a distance equal to the de Broglie
wavelength X, is equivalent to Fokker-Planck-type
calculations. The use of Eq. (18) in the same ap-
proximation with a short-range cutoff is equivalent
to the Lenard-Balescu-type calculations provided
that the dynamical behavior of the plasma is taken
into account. Close encounters are treated cor-
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rectly for all plasma temperatures and incident
energies if Eq. (18) is used to calculate the scat-
tering cross section quantum mechanically without
approximations. If, in addition, the excitation of
plasma oscillations are neglected we are lead to
the Boltzmann-type calculations.

With the screened potential of Eq. (18) used in
Eq. (17), one may integrate over the angular de-
pendence to obtain the cross section for changing
the energy of the x particle from § to £’. Thus,
we have -

0(= £) =V €, (& /TPA (8 /e1/2 | lldcoso
x[£+& —2(£&') 2 cos6] ™!
X[E+& —2(E&') /2 cos6 +A2%] 2
xexp(-[(1 - €2)E+(1+€2)8 - 26812
Xcos0]?/{4e2 [£+ &' - 2(£&' /2 cosb]}),
(22)

where 6 is the deflection angle in the laboratory

frame of reference. The integral in Eq. (22) can
be put in a more convenient form by changing the
variable of integration from cosé to w=«x,; thus

J

o(tE~t")=

0,E \ 24T,

© 2B+3 2B+3-a
x[(a+§a“osi-ai)-(l—4em_+2m§)2 >, i:

ot~ ¢)=vVn

ilar)
23, £ \AT,

eri*du(eXP[-((f;,ﬂ:ﬁ—)za/‘ll)z]) . (@3)

where 9., =A/(2¢,,), U, and U_ correspond to cosd
=-1 and cosf=+1 respectively; that is

U, =|VE £VE|/a, (24)
G=(£-¢t)/(40,,). (25)

For an interaction via an inverse potential the
result is

o(E—~ &)=V (20,,£)} (¢/ATY?

><J“qu du w*exp[ -3, u-a/uy].
- (26)

Equation (26) is also an approximation for Eq.
(23) in the case of close encounters, that is, for
U= U_>1, which is equivalent to the conditions
given by Eq. (20).

The integral in Eq. (23) is evaluated in the Ap-
pendix, and the scattering distribution in a
screened potential is given by

T ( 4 )2{65-5'[““8”%+a/cu+)_erf(a”w_l+a/lu_l)]

(=1)2Bra-ate <23+3>
(2p+3)112%°72%%8 | o

B=0 a=0 =0

~ <23 +3- a> gzﬁ +3= 0= Lgltaig-zﬂ'S} - [erf(as,,‘u+ -@/a,) - erf(a,,l‘ll-l - (i/l*u_ l)]

L

X [(a -20,83% +®3)+(1 -49,®, +282) Z E
B=0 a=0

© 2B+3 2B+3-a (_1),_

@p+3)I 12727

t=0

» <ZB+3> <23+3 - a> gzgﬂ-a-zguaig-zﬂ-a}+ @/ )(20,8_ -®2)

a L

5 ( w,expl -0 U, -G/ )] |u_|expl-( |u_|-G/lu_|7]

1+92

NP

0 a=o =0

1+|u_|? )

28+3 2B8+3-a 2B+3-a

28+3\ /2B+3 -«
Z (_1)(c¢+1)/2+1,526*3-%2”1( Bc: ) ( B ” )

x g2 ra-o-tgrexplal, +3(¢ - &)

x [Iu_lexp[—(&/l‘u_ ?] <exp[—(1 +u_|?)&?] +

-, exp[-(@/%, )?] <exp[—(1 +u2)®?] 4 >(‘1-l)/z

>(u-1)/z R=w

1
1+|u_|?

®R=9q,

1
1+u2

T
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where ®, =5, +@ and the other parameters are used in the same sense as in the Appendix.
Equation (26), on the other hand, can be solved in closed form and the result is

o (£~ ¢&)= %T—gg’gjg)—g{[l +3(& = £)]lerf(o,u, —G@U,) —erf(d,|u_|-a/|u_])]

-t [1 - 3(5 - £)llerf(e,,u, +@/U,) —erf(d,,[u_|+@/|u_)]

+(@/V1 ) @ut expl - (0,4, - @/, ] - (4/V7 ) @|u_| "  expl - (3, |u_|-@/|u_]?]},

(28)

where the subscript I is used in the left-hand side to assign the cross section to energy transfer via an
inverse potential. The parameter 7 cancels out in the derivation of Eq. (28) and consequently the results

are valid in the classical limit as expected.

In the present model Eq. (28) is used in the range |VE — VE'|> A and Eq. (27) is used for the range
0= |VE -VE| 2A. The solution of Eq. (27) for a screened potential can be expressed as the summation
of the solution given by Eq. (28) for the inverse potential and additional terms which originate from the

screening effect; that is,

, N 272 (9 +@)2
o5k~ &) =0, (6~ & “%W

X

f ) d&{e” - erf(@u, +@/a,) - erf@®|u_|+@/|u_))]
)

x ([1-3(& - £P]R - 2GR? + 2@%R%) — = ®+@?

x[lerf@u, -@/u,) -erf@®|u_|-a@/|u_))]

x ([1+5(& - £)2]® +26R? + 2G°R%) - (4/V7 ) GUI'R

xexp(-[(1 +u2)®2 - (1 +u3?)@?%))

+@/NVr)elu ' Rexp (-[(1 +|u [ ®R? - (1 +|u_|"2)@%])}, (29)

where the subscript S is used to refer to scattering probabilities calculated by means of the potential given

in Eq. (18).

IV. SLOWING-DOWN APPROXIMATION

In the slowing-down range, the plasma ions and
the very cold electrons can be regarded as fixed
scattering centers, that is €2 £>1. For plasmas
of thermonuclear interest, only a small fraction
of the electron population have velocities less than
those of the fusion reaction charged products and
yet most of the plasma ions can be treated as
fixed scattering centers until the reaction products
degrade in energy to the limit at which such as-
sumptions become invalid. For energetic injec-
tion into relatively cold plasmas, this approxima-
tion will be valid in some situations for most of the
plasma particles until the injected particles start
to thermalize with the background plasma. In
this limit Eqgs. (23) and (26) can be solved for the
screened potential to give

ntY/ [€2, ET2(£ - &' +402,)%],
[(egx -1)/(e3, +1)]?E<E’'<E
0, otherwise (30)

o(E—~E')~

and for the inverse potential

ngz/[ezx E(E - E’)2] )
[(e2, -1)/(% +1)]2E< E'<E
0, otherwise. (31)

o(E-E')~

The result of Eq. (30) agrees with a result ob-
tained semiclassically using a binary cross sec-
tion of the shielded type which is calculated in the
limit €2, £>>1 by the first Born approximation.*
As expected, Eq. (30) reduces to Eq. (31) when
(¢-&')>40% . For electrons the limits may be
better written as 0<E — E’ <4€% E, where the
upper limit corresponds to a head-on collision.
In Eq. (31) the upper limit is not specified since
the orbital model upon which Eq. (19) is based
ceases to be valid as k approaches zero and the
scattering starts to be a diffraction process. One
may also expect that Eq. (31) can be derived
classically since the first Born approximation
yields the classical result as the screening length
becomes infinite. In fact, Eq. (31) can be re-
covered in the limit of A, -« from screened po-
tential scattering distributions corresponding to
any order of Born approximation. It is believed
that if we include all finite terms of all orders in
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the complete Born series in the calculation of the
screened potential scattering amplitude, the in-
verse potential scattering amplitude can still be
obtained exactly in the limit of infinite screening
radius.®® This statement has been a major point
of dispute between several investigators.38-43

V. THERMAL-RANGE APPROXIMATION

When the speeds of the interacting particles
are comparable, test particles tend to gain and
lose energy from the plasma particles until they
come into thermal equilibrium. To study scat-

few terms, that is,

(3 §

U(&" g')N 2A3£T

-{al1+3(-¢)] -

tering in this range of energy we need to consider
two separate groups of events: first, small de-
flection angle events and second, relatively large
energy transfer increments per encounter which
correspond to events that result in rather large
deflections.

The quantity 8, is small and in most practical
cases we are not interested in very low energy
test particles. Consequently, we limit our dis-
cussion to energies in excess of the quantity
Td,,

For energy-transfer increments smaller than
43, , the series in Eq. (27) can be truncated to

sz (et ¥ {all - 3(e - £)] + 303, Herf(o ,u, +@/U,) —erf(3  |u_|+@/|u_])]

a3 Herf(s,, 4, —@/,) —erf(s,,|u_|-a/|u_])]

-[1+6u%(@%-22)]2 exp[-(as,;u+ -G/, %] /3Vr ad +2lu_|[1+6(1 +|u_|?)(@2 - 282)]
xexpl-(0,lu_|-G@/|u_)?] /3vr (1 +|u_|?)?), |&-¢'|<4a,,. (32)

Equation (27) converges very slowly unless the energy transfer per encounter is negligibly small. Thus,
for encounters resulting in large increments of energy transfer, the solution of Eq. (23) is better ex-
pressed in terms of the series

mg? 2 2)2 ... 4[3+6(5‘§')+(§—§')2]
eixng(g §1)3(1+1/u [([1 +2(E E )][1 +2/(1 +U )+3/(l +‘uo) + ]— (E—&')(l +ﬂl§)

X[1+3/(1 +u2) +-+ o]> [erf(e,,u, —G/u,) —erf(d, |u_|-a@/|u_))]

o(t~ )=

et §'<[§(g —&)=1][1+2/Q +u2)+3/(1 +U2)2 4+ ]
4[3-6(t-&)+(E-¢) 2.,
+ G- ) [1+3/ +Uu2) + ])
x[erf(d,a, +@/U,) —erf@ |u_|+@/|u_)]+@/V7)
x@{uz! expl - (8,4, - @/, )] - |u_| "  expl - (3, |u_|-@/|u_|?]}

2[1-6/(£-¢)] 3[1 -12/(¢- ¢ )]
. (1 M 1+u2 (1 +udy? >

- (32/Vr )@l +u2) (£ - &) 1+3/(1 +u2) =+ -]

x fu?expl -0, - @/ 7] = | expl (o ol |- @/ )T}

(33)

where UZ=(£ - £')/(26,,) is the value of U? at the
peak of the exponential in the integral of Eq. (23).
The series in Eq. (33)'is obtained by expanding the
denominator of the integrand by a Taylor series
about U2 and integrating term by term. The solu-
tion given by this equation actually reduces to Eq.
(28) for uZ>1, and therefore it can be used for
energy transfer increments larger than 4a,, to
account for large deflections.

VI. ENERGY -TRANSFER CROSS SECTION

The total cross section for elastic scattering
of an incident charged particle by plasma species
is the normalization factor of the scattering dis-
tribution function o(£ - £’) that describes such
interaction. This was obtained semiclassically
in Ref. 27 for all possible values of the ratio be-
tween the velocities of the interacting particles and
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plasma particles. In this reference it was sug-
gested to use the first Born cross section for
distant collisions up to some small angle X, below
which classical calculations are invalid. For
larger angles, the Rutherford cross section is
used. The same technique will be used here to
obtain the total cross section for elastic scat-
tering in the energy range €% < £<e;Z, which
applies primarily to fast electrons In this range
one may use the approximate scattering distribu-
tion given in Eq. (32) for small energy transfer
with the u values given by

U =(E -VE)/a (34)
which corresponds to no deflection, and
w, =[(VE -VE P+ BVEE] YA =, (35)

for an angle of deflection 6,~€, <1 in the labora-
tory coordinate system.

For larger scattering angles, and consequently
larger energy transfer, Eq. (33) is used with the
U values

U_ =1, , (36)
and
U, = (VE +VE)/A, @37)

which corresponds to head-on collision. The re-
sulting cross section is found to be

o(E)~2Vr g2, /(3AT2VE ). (38)

This result agrees, within a small numerical
factor, with results obtained semiclassically.?”
Equation (38) is also valid for interaction with
plasma ions providing the energies are such that
the condition €2 £<1 is still applicable.

For €2 t£>1, the total cross section is found to
be

o(E) =m¢?/ATEE, (39)

a result that can be derived directly from Egs.
(30) and (31) for the slowing-down approximation.
In both limits the values of the cross section are
dominated by the contribution from low energy-
transfer terms, that is, (£ - £’)<49,,. This is
due to the nature of elastic scattering of charged
particles via screened potentials. In such cases,
the small deflections contribute the most to the
scattering probabilities.

VII. RATES OF ENERGY TRANSFER

The rate of encounters between the x particles
and the plasma electrons times the first moment
of the scattering distribution yields the energy-
transfer rate, that is,

dE (2£T3>"2 JragE-goE-g)

at - I GE)

(40)

Using the same technique as in the scattering cross
section calculations (Sec. VI), one finds for the
rate of energy transfer

R
+0(€2), €, t/2<1 (41)

where
Ay =1+1/(€2,8). (42)

In the presence of a large number of x particles
in the plasma at different energies, gain and loss
of energy due to encounters between the x particles
and the plasma species will take place randomly
until the x particles come into kinetic equilibrium
around an average temperature 7, . The rate of
energy transfer at £<1.5 will be less sensitive to
changes in E and instead will depend rather strong-
ly on the electron kinetic temperature.

To complete the picture, we derive the rate of
energy transfer to plasma ions in the range
€,,£/2>1 using Eq. (28); that is,

dE 2mm, (2m \1/2
== 1 (2 2
dt =1 m‘ < E) g(xlm\zl,
€,.8/2>1  (43)
where
€2 Ez/z/A
== (44)
2s 1+€2,

The same expression has been derived semi-
classically by Husseiny and Forsen.*

The two energy-transfer rates given in Egs.
(41) and (43) can be added to give the total energy
transfer rate to the plasma for (m,T;/m,)<E
< (@m,T,/m,). For energies in the range (m,T,/m,)
<E<w_  Eq. (41) is replaced by an equation similar
to Eq. (43) with the exchange of plasma ion param-
eters with plasma electron parameters. For
E<(m,/T;/m,), the use of the scattering distribu-
tions obtained in Sec. III will yield proper results;
however, in practice such energy transfer rates
are meaningless. A more valuable quantity will
be the relaxation rate which has been studied by
many investigators.*

VIII. MEAN-ENERGY TRANSFER TIME

The mean energy-transfer time is defined here
as the time required for a charged test particle
% to change its energy from E,, to E,; via en-
counters with the background plasma. This charac-
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teristic time is customarily referred to as the
slowing -down time when the thermal speed of the
background particles is on the average slower than
the velocity of the test particle. In other situa-
tions, the time required to affect the energy change
is called the thermalization time. Generally the
mean energy-transfer time is obtained by inte-
grating the proper energy-transfer-rate equation.

In the slowing down range, that is, when €, £ /2
>1, Eq. (43) can be integrated to give the slowing
down time 7,:

ot 1.25x1014
~ ——7—3-

TS TR AT
Ea/zH(a3E3/2) Ea/zH(aaEs/z) s
X< In(a,EX?) ~  In(a, EL/?) > sec/cm?’,
(45)

where

—J

a,=1.12x10[A /(A +A,)]

x[A,T,/(Z2n,)]*/2 keV-1/2, T,>0 (46a)

and
a,=1.12x10*[ A, /(A + A,)) (A, /Z2) /2 keV~1/2,
T,~0. (46b)

A, and A, are the atomic numbers for species s
and x, respectively, and E and T are given in keV.
The function H(y) is given by the series

1 !

H(y)=l+%+%+"'. 47)
Equation (45) is an approximate version of an
expression that was derived earlier using a dif-
ferent approach.*

The thermalization time 7., on the other hand,
is obtained from Eq. (41) for encounters with fast
background electrons:

(Tt =5X10"1%(Z2/A,) T;3/2 {[m(

27 +1In(T,/A,; n,) +1nE,

3.5+In(A.T,)-InE_\7!
3.5 +In(A,T,) -InE,, ]

+ [2.375 ln<

It is observed that the thermalization time strongly
depends on the kinetic energy of the background
plasma electrons while the slowing-down time is
more sensitive to changes in the test particle
energy. Thus, in a multispecies plasma, the ener-
gy of the test particle can be transferred pre-
ferentially to one species rather than the others

by the independent adjustment of T, and E,,. For
example as T, approaches zero all the test particle
energy is transferred to electrons and the mean
energy-transfer time is essentially the slowing-
down time with the species s taken as electrons.

IX. VALIDITY OF FIRST BORN APPROXIMATION

The validity of the first Born approximation has
been discussed extensively in the literature.38:42
This approximation has been used to derive Eq.
(11) and consequently any resulting error from
the use of such approximation may propagate
through the development of the scattering distribu-
tions given by Eqgs. (23) and (26).

The use of the first Born approximation is re-
stricted by two conditions. First, the screening
radius must exceed the de Broglie wavelength
of the incident wave. This is well satisfied for
ions and electrons in all cases of interest in ther-
monuclear plasmas. Thus the relatively large
screening radius will allow the incident wave to be
scattered without significant distortion. In addi-

27+1In(T,/A,n,) +1nE,,

-1
)} }cms/sec, E < 33A,T,. (48)

—

tion, the impact parameter of the closest approach
has to be larger than the de Broglie wavelength,
that is,

v,>2.25X10%Z, m/sec, (49)
where Z, is the charge number of the x particle.
For electron kinetic temperatures T,z 10 keV,
condition (49) is well satisfied.

For neutral beam heating of low-temperature
plasmas we find that classical results are invalid
as will be shown in Sec. XI. Higher-order correc-
tions to the first Born approximation are negligible
even though condition (49) is only weakly satisfied
for this case—for example, v,z 107 cm/sec in
present day TOKAMAK devices.*

In plasma torches where the incident particles
are heated by the background plasma the first
Born approximation is found to be adequate for
nonideal plasmas where the coefficient of fugacity
is close to unity.'* This situation is of interest in
the utilization of plasma processes in materials
separation.

The scattering amplitude using the second-order
approximation of Eq. (10) has been evaluated for a
screened potential in the cm system.?® The con-
tribution of the second term in the iteration pro-
cess is calculated for forward and backward scat-
tering and we find that it is negligibly small. Thus
the first approximation is legitimate in the range
chosen for these studies.
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X. EFFECTS OF PLASMA OSCILLATIONS

The formulation given in Sec. II correctly treats
the scattering problem within the limitations of the
first Born approximations. However, the retarda-
tion effects in the dynamic screened potential are
neglected in Sec. III and the excitation of plasma
oscillations has not been considered in developing
the different expressions for the scattering param-
eters. To consider these effects on the scattering
distribution a different expression for the § func-
tion or its Fourier transform has to be obtained
using the proper Heisenberg position operator.

The expression given in Eq. (14) for § is actually
the same if we represent the plasma by a harmonic
oscillator and take the limit as the frequency of
oscillation vanishes. To include contributions
from the collective energy loss, the logarithmic
term given by Eq. (44) for €, £/2> 1 needs to be
modified to

Ay =ede/[ait+e2)]. (50)

For €, £'/2<1 the contribution of the plasma os-
cillations to the energy transfer rate vanishes.5
Thus the results obtained here represent the col-
lective rate of energy transfer in the range speci-
fied in their derivation.

XI. CONCLUDING REMARKS

The angular and energy distribution function of
interaction via an arbitrary potential is obtained
in Eq. (17) using a first Born approximation.
Nevertheless, the formulation allows for higher-
order approximations. For elastic scattering and
at the energy ranges of interest in this work the
use of the first Born approximation is found to be
within the desired accuracy, as shown in Sec. IX.
The result of Eq. (17) is the basic relation ob-
tained in this work and is given in a form which
can be tailored to evaluate the confinement time
for fast fusion devices.?” The result can also be
used to calculate the transport coefficients for
multicomponent plasmas. These are of special
interest in separation processes wherein inter-
actions take place between ions of arbitrary state
of ionization and between neutrals and charged
particles.!* The quantum mechanical formulation
improves upon the classical results*®* and is
expected to provide close agreement with obser-
vations.?°~53 In addition, using the result of the
present formalism with a proper model of the
interaction potential in calculating the collision
terms in the Boltzmann equations would give a
rather accurate description of interactions be-
tween weakly ionized particles®” and would ade-
quately treat the Ramsauer effect’ which signifi-

cantly influences the plasma transport properties.5®
Thus, proper corrections for the neoclassical
theory®®*®? can be sought.

Limiting the analysis to elastic scattering of
test particles in fully ionized plasmas, the angular
dependence of the distribution function is removed
and the energy-dependent scattering probabilities
are obtained. These are given by Eq. (28) for
scattering via a Coulomb potential and in Eq. (29)
for a Debye screened potential. The two proba-
bility functions are used to evaluate the relaxation
parameters and the relations necessary for the
analysis of test particle behavior in plasmas under
various constraints.

In the slowing-down range the elastic scattering
probability functions given by Eqs. (30) and (31)
agree with the semiclassical results obtained in
Ref. 4.

Taking the thermal motion of plasma particles
into consideration, the elastic scattering proba-
bility function is given in a closed form by Eq.
(32) for encounters leading to small energy-trans-
fer increments. For encounters resulting in large
increments of energy transfer, the scattering
probability function is given by the series of Eq.
(33). These results are the necessary relations
which are required to evaluate any of the relaxa-
tion and energy-transfer parameters for the ther-
malization of test particles in Maxwellian plasmas.

The elastic scattering cross section is obtained
from Eqgs. (32) and (33) and is given in Eq. (38) in
the thermalization range and by Eq. (39) for fixed
scattering centers. These are'in fair agreement
with previous semiclassical results.*:?’

For plasmas of thermonuclear interest, Egs.
(41) and (43) give handy expressions for the calcu-
lations of the energy-transfer rates from test
particles to faster electrons and to slower ions,
respectively. These expressions can be directly
used to give the amount of energy transfer as well
as the energy distribution of test particles re-
leased in plasmas. The result of Eq. (41) differs
from the analytical expressions which have been
used in the literature to calculate the energy-
transfer rates in the thermalization range.!'!5
The disagreement is essentially due to the fact
that the available analytical results are obtained
in the classical limit using ad koc cutoffs. How-
ever, comparison of Eq. (43) with earlier semi-
classical results® obtained in the infinite mass
approximation shows, as we expected, a perfect
agreement.

The characteristic time of energy transfer be-
tween test particles and background plasmas is
given by Eq. (45) for the slowing-down range.

This can be regarded as the mean energy-transfer
time between fast test ions and slower plasma
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particles. As we expected, the results are similar
to the semiclassical expression which has been
derived under the same conditions.? The agree-
ment is due to the fact that the mean energy-trans-
fer time is evaluated using the relation of the
energy-transfer rate. In addition, inspection of
Eq. (45) shows a dependence on the argument of
the logarithm which appears in the corresponding
expression of the energy-transfer rate, Eq. (43).
Consequently, the mean energy-transfer time for
test particles released in faster electrons back-
ground is not expected to agree with classical
relations based on ad koc cutoff.

To provide some basis for comparison between
our results in the thermalization range and the
classical analytical results which are often used
in thermonuclear plasma calculations, we may
reconsider the scattering distribution in Eq. (28)
for scattering by an inverse potential. This is
independent of 7# and the classical results are the
same as those obtained in the first Born approxi-
mation. Choosing the values of U4, and U_ as
given by Eq. (24) and calculating the energy-trans-
fer rates by means of Eq. (28) in the energy range
€2 <t<e? , gives the result

dE 8n, (2wm\'/?
Em e (B e, 6
i e
where
A, =2€3 £/2/A, (52)
3s 88X

The divergence of Eq. (28) at ¢’ = ¢ is handled by
cutting off the integral at £’ =£+25,, . Aside from
the argument of the logarithm, Eq. (51) agrees

with the classical result®® for which the logarithmic

argument is given by
Ay=12mmn, )‘:D (53)

or nine times the number of particles in a Debye
sphere.

To investigate the a heating in a D-T reactor,
Rose! used the results of Ref. 58 for energy trans-
fer to electrons. For energy transfer to ions he
used an equation that differs from Eq. (43) in the
argument of the logarithmic term, which is taken
as A,; . Neglecting quantum mechanical effects
as well as collective effects, his results showed
that the energy transfer to ions and electrons will
be equal at £=44.2 or at T, =80 keV. Ions are ex-
pected to be dominantly heated by @ at T,>33 keV
if the equations for the rate of energy transfer are

used in the energy balance while taking into account

the finite plasma confinement time.! These values
exceed those obtained in this work by more than a
factor of 2.3. Therefore one expects that for
electron kinetic temperatures significantly below
33 keV, the ions get most of the « heating, in

agreement with previous investigations.%'%°

The disagreement between the results of the
present work and those currently used in thermo-
nuclear plasma calculations are credited to the
use of the quantum mechanical formulation and the
fact that all scattering events are included in
evaluating the scattering probability. The merits
of these features can be examined by considering
the condition for the validity of the classical re-
sults, that is

v,<2.25x10%Z,, (54)

where v, is the relative velocity of the interacting
particles. For « heating in thermonuclear plasmas
of T,>10 keV such a condition is not applicable as
shown in Sec. IX. For neutral heating of present
generation TOKAMAK devices one expects that

v,2 107 for the interaction of energetic beam
protons with electrons. For interactions with
plasma protons v, = 10 and therefore the classical
results do not apply in any of the above situations.

In addition, cutoff techniques vis-a-vis the tech-
nique used in this work are susceptible to errors
that have been discussed elsewhere.?”*8! To assess
the uncertainties associated with these errors in
the values of cross sections, energy-transfer
rates and mean energy-transfer times, we may
consider the mathematical development of some
of the cutoff methods.

The cutoff parameters are often chosen to be
dependent on variables such as the reduced mass
or the energy of the test particles. The integra-
tions involved in the derivation of the energy-
transfer rates cover intervals that vary with the
mass of the plasma species and with the test-
particle energy. Consequently, final expressions
are so inconsistent that it is meaningless to at-
tempt to draw comparisons between the amount of
energy which can be transferred to plasma elec-
trons and that transferred to plasma ions or be-
tween thermalization rates at the initial energy
and at some later time. These difficulties are
encountered in the use of the Lenard-Balescu
equation and also in the use of the Landau or RMJ
form of the Fokker-Planck equations. For ex-
ample, if an ad hoc short range cutoff is chosen
as i/uv,, where v, is the relative velocity of the
test ion with respect to the velocity of the plasma
particle, the integral over the inverse impact
parameter covers a volume of integration given
by a sphere of radius pv,/#Z. For a given inte-
grand and a given relative velocity, the radius of
the sphere in the case of test particle encounters
with electrons is about four orders of magnitude
smaller than the radius of integration in the case
.of encounters with plasma ions. The results of
the integral in both cases is very sensitive to the
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difference between the intervals of the two inte-
gration processes and hence the results are largely
affected.

Nevertheless, the choice of the cutoff in the work
of Rose and Clark®® which has been preceded by
that of Spitzer** and Chandrasekhar?® in a different
context has merit over other ad koc cutoffs chosen
by other investigators.”?3:?* Namely, the cutoff
chosen in Refs. 44 and 58 depends only on the
plasma electrons parameters.®? Thus, for given
electron parameters their results may be used to
determine the energy-transfer rates from test
particles to different plasma species, to follow
the energy degradation of fast test particles, or
to determine energy balance and heating rates.
However, this is a special case and the results
obtained here are applicable to a wide range of
practical situations.

Another error which fréquently appears in the
literature is the inconsistency in the choice of
the limits of the double integrals occurring in
energy-transfer rate calculations. That is, the
integral over the final energy or momentum and
the integration over scattering angles or over the
momentum transfer. In some of the investigations
reviewed in the introduction,”?? the integration
over the final momentum is broken into two inter-
vals while that over the scattering angle includes
angles from zero to 7 in each interval. The fact
that the double integral is bounded and the inte-

J

gration area includes discontinuities makes it
necessary to adjust the limits of both integrals
consistently whenever one of them is broken to
intervals.

In contrast, the mathematical rigor is not com-
promised in the approximations used in this work
and the limits of the integrals are consistent as
shown in Eqs. (34) through (37).
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APPENDIX

To evaluate the integral in the derivation of the
scattering distributions via screened potential,
Eq. (23), we may use the auxiliary integral

(1 +u?)™2 =2+ W% f TR ®° -0, R)e” 3G
x .
asx
Thus the integral becomes
U w©
f " auexp{-[(¢- E’)/(4as;u)]2}f R R -2, &)
Ua o
) X g~ L+UHR?,

Reversing the order of integration and integrating
over 4, we get

iwﬁ?e‘as’r*a’zf dR ®2 - 02 ){e” D [erf@®u, +&/U,) —erf@®u_|+G/|u_))
asx

+ e-(@+a)2[erf((ﬂ‘]1+ -@/u,)-erf@lu_|-a/|u_)l}.

The integration over ® is then carried out term by term using the recurrence relations

7= f IR R F@) e~ erf@u, +@/4,)
®.

n+

and

deX“e“'xz=-12-(-1)‘°"”/2[e'”2+1/V] /2

n+1 (n+1)

n+1 2 « R @) . 215 2
= ®s 1 e-(B% erf(asxcu-* :l:(i/‘lli) - ‘/; ‘\lie- {2(1+1/'112*) J dR —_“—( a) e” (1+'U.2t)d{2 + .
9
sx

@=1,3,5,17,...

where the superscript (@ —1)/2 refers to the [(a —1)/2]th derivative with respect to V.
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