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A scaled particle theory is developed for a fluid of hard spherocylindrical rods with fixed
orientations. Unlike earlier scaled particle treatments of this system, it maintains thermo-
dynamic consistency in that the Maxwell relation Sp;/g, = 8p,,/Bp;, where p, is the chemical
potential and p is the number density, is satisfied for all orientations i and j without sacrific-
ing the internal logic or consistency of the scaled particle approach. The resulting expres-
sion for the Helmholtz free energy is used to derive the equilibrium thermodynamics of hard
spherocylinders that are free to rotate among an arbitrary set of allowed orientations. Nu-
mericalresultsarepresentedfortwo special cases: (i) rods with a continuous distribution of
orientations and (ii) rods permitted to adopt only three mutually perpendicular orientations.
In both instances, the properties of the nematiclike ordered phase and of the anisotropic

isotropic phase transition are determined and compared with experimental data for nematic
liquids, as well as with the predictions of other theories of the hard-rod fluid. This theory
is shown to reduce to the Reiss, Frisch, and Lebowitz (or Percus-Yevick) theory of hard
spheres when the length-to-breadth ratio of the spherocylinders decreases to unity.

I. INTRODUCTION

Liquid-crystalline phases, or mesophases,
exhibit properties intermediate between those of
crystalline solids and isotropic liquids, that is,
they are liquidlike in their flow behavior but re-
semble uniaxial crystals optically. ' Of the three
generally recognized types of liquid crystals-
smectic, nematic, and cholester'ic —the simplest
are the nematic. Formed by elongated, rodlike
molecules, nematic mesophases differ from iso-
tropic liquids in only one respect: the average
alignment of the molecular long axes along a pre-
ferred direction (i.e., nematic long-range orien-
tational order). ' Nematogenic substances undergo
a first-order phase transition from the nematic
phase, stable at lower temperatures and higher
densities to the isotropic liquid phase, stable at
higher temperatures and lower densities.

The hard-rod fluid, as its name implies, con-
sists of rigid, rodlike particles which interact
only through the infinite repulsion which prevents
their overlapping. It is isotropic at low densities
and then undergoes a first-order transition to an
anisotropic higher -density phase with nematiclike
order. Although not a realistic model for nema-
togenic systems, hard rods are quite useful in

trying to understand the molecular "reasons"
for the existence of nematic mesophases, partic-
ularly as regards the roles of molecular geometry
and short-range repulsive interactions.

For the most part, the statistical-mechanical
treatments of the hard-rod fluid have been. of three
types'. those utilizing (i) cluster expansions, ' '
(ii) lattice models, ' "and (iii} scaled particle

theory. "" The first of these is perhaps the
most satisfying esthetically, since it utilizes an
exact density expansion for the Helmholtz free
energy. As the result of computational difficulties,
however, no coefficients in the expansion beyond
that of the linear term have been or are likely to
be evaluated for the general case of rods with a
continuous range of possible orientations. Trun-
cating the series after the linear term (the so-
called Onsager approximation') yields an approxi-
mate theory which should be satisfactory for very
long rods'4 but probably not for shorter rods. Of
the remaining (and less rigorous) statistical ap-
proaches, the third seems preferable to the second
since scaled particle theory does not restrict one
to small sets of discrete orientations for the rods
and is certainly less suspect for short rods than
is the use of lattice models. "

Simple scaled particle theory provides a means
of deriving approximate expressions for the chemi-
cal potential and pressure of a hard-particle fluid
by considering the reversible work necessary to
insert a scaled particle (i.e., a "solute" particle
which is a scaled replica of the "solvent" particles}
at some arbitrary point in the fluid. It was orig-
inally developed by Reiss, Frisch, and Lebowitz"
to treat hard spheres and has since been applied to
a number of other systems. " It is exact in one
dimension and gives equations of state for two-
and three-dimensional hard spheres that are in
good agreement with "experiment, " i.e., with
Monte Carlo and molecular-dynamics computa-
tions "

The scaled particle approach has been applied
to hard rods by Cotter and Martire" and by
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Lasher. " Lasher, in his more general treatment,
noted that the configurational partition function
for a fluid in which each hard rod moves about
with fixed orientation yields, after maximization
with respect to the orientational distribution, the
maximum term of the configurational partition
function for the fluid of hard rods that are free to
rotate (the system of most interest}. He therefore
applied the customary scaled particle procedure
to a fluid of hard spherocylinders (i.e., cylinders
capped on each end by a hemisphere) with fixed
orientations, a system that must be regarded
thermodynamically as a multicomponent mixture,
each component consisting of all spherocylinders
pointing in a particular direction. Unfortunately,
the resulting expressions for the chemical poten-
tials were not thermodynamically consistent in
that the Maxwell relation

for a multicomponent system was not satisfied,
where p., is the chemical potential and p~ the num-
ber density of component k. The inconsistency
was eliminated in a rather arbitrary manner by
dropping from the expression for the chemical
potential of each component the term responsible
for E(l. (I}not being satisfied. This truncation
is undesirable, however, in several respects.
(i} The terms dropped, which are proportional to
(I -v, p) ', where v, is the volume of a sphero-
cylinder, are negligible numerically only at very
low densities. (ii) The arbitrariness of the trunca-
tion is disturbing and its physical meaning is- un-
clear. (iii} The resulting expressions for the
thermodynamic variables do not reduce to the cor-

responding (impressively accurate) scaled particle
expressions for hard spheres" when the length-to-
breadth ratio of the spherocylinders is decreased
to unity; as a consequence, the predictions of the
truncated theory are somewhat suspect for short
rods. It would certainly be desirable, therefore,
to have a scaled particle theory of the hard-rod
mixture in which thermodynamic consistency
would be obtained without arbitrary truncation.
Such a theory is presented in this paper. It is
entirely within the spirit and logical framework
of the original scaled particle theories and re-
duces, in the appropriate limits, to previously
derived results for hard spheres" and perfectly
ordered hard spherocylinders. " The hard-rod
fluid is considered in greater detail in Sec. II,
while the scaled particle theory is developed in
Sec. III and used in Sec. IV to derive the equilib-
rium thermodynamics of hard spherocylinders
that are free to rotate. Numerical results for two
specific systems are presented in Sec. IV and
their significance is discussed in Sec. V.

II. HARD-ROD FLUID

Consider a fluid of N identical cylindrically
symmetric hard rods contained in a volume V.
The orientation of the vth rod can be specified
by (8„,p„}, where 8„ is the polar and (j&„ the
azimuthal angle of the long axis of v with respect
to a space-fixed coordinate system. (In other
words, 8 and P are the Euler angles P and a,
respectively. ) If there are no a Pnori restrictions
on the possible orientations of a rod, the canonical
ensemble partition function for the system is

Q(N V T) Z(N&V& T)
NtA~

N

=[NtA" (4s)"] ' exp[-PU„(r„Q„.. . , r„,Q„)]Q dr„dQ„,
~v ~v P=l

where Z is the configurational partition function,
A ' is the kinetic energy (translational plus rota-
tional} contribution to the single-particle parti-
tion function, U„ is the N-particle potential energy
of interaction, r„and Q„are the position and
orientation of rod (&, p= (kT) ', and dQ„

=sin8'„d8„dg. (For hard rods, of course, U can
have only two values, 0 and ~.) If, on the other
hand, each rod is allowed to point in only n dis-
crete directions, 1,2, . . . , n, the partition function
is given by

N tl N

Q(N V, Tl=(N!X e ( ' p p I ex&[ (&N (r &„..-. , r, j„)]ll Nr„,
=l j =1 |1 N F V=I

where j„denotes the orientation of the vth hard
rod. Following Zwanzig, ~ let us introduce the
quantity 4„, defined by

yes-8e& ... g-8ggdr '''cfr N'
V F

As has been noted, "'C„(j„.. . , j„}is just the
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excess (Helmholtz) free energy of a hard-rod
fluid with fixed orientations j„.. . , j„, relative
to an ideal, multicomponent hard-rod mixture.
Actually, P4„depends only on the orientational
distribution N„N„N„~ . . , where N, is the number
of rods with orientation i, and the sum over con-
figurations (j„.. . , j„}in (4) can be converted to
a sum over the set (N„. . . , N„). Replacing the
resulting multiple sum by its maxjmum term,
taking natural logarithms, and rearranging then
gives

n

N ' lnQ =1 —ln(nAp) —ps& lns,
i=1

N'-PC „(p,s„.. . , s„)

right circular cylinder capped at each end by a
hemisphere. " More precisely, we shall deter-
mine 4„for a fluid of N hard sphercylinders of
radius a and cylindrical length l contained in a
volume V, with each spherocylinder moving through
the fluid so as to maintain a constant orientation
with respect to some space-fixed coordinate sys-
tem. Let us again denote by s, the fraction of
rods in the ith orientation, where i =1,2, . . . , n

and the fluid must be regarded thermodynamically
as an n-component system. (The limiting case of
a continuous distribution of orientations will be
considered later. } The chemical potential of a
sphercylinder in orientation i is given by the exact
relation"

where

=—t(s„.. . , s„), (6) Pp, =Pp. ,(P)+in(&, p, )+P[W, (a, X,p)j, „,(ll)

=Pu, (P)+»(~.p )

s( Nq/N, ——
-[»p~(n "p}~ =x. ~=& (12)

si =1, (8)

N '1nQ =1 —ln(pA) — f(Q)ln[4wf(Q)]dQ

-N-'PC„(f(Q), p)

=-t(f(Q)),

Q dQ=1, (10)

where f (Q) is the normalized orientational dis-
tribution function and the bar again indicates that
distribution which maximizes in@. Finally, it is
clear that in@ can be obtained by first obtaining
4„for an arbitrary distribution of orientations
and then determining the most probable distribu-
tion by maximizing the quantity t. All the equilib-
rium thermodynamic properties of the hard-rod
fluid can then be derived from in'(N, V, T).

and the bars indicate that distribution
[s„s„.. . , s„)which maximizes lnQ (and hence
Q). The corresponding expression for 1nQ when
the range of possible orientations is continuous
can be obtained from (6) by dividing the unit sphere
into very small equal parts of solid angle AQ.
Then s, = f(Q, )AQ, n =4m/AQ, and in the limit
AQ-0 (6) and (8) become

where v, is the volume of the spherocylinder,
Pp, ,+ln(v, p, }is the chemical potential of compo-
nent f in an ideal mixture, W, (o.', A) is the revers-
ible work necessary to add a hard scaled sphero-
cylinder of radius na, cylindrical length ~l, and
orientation i at some arbitrary fixed point in the
fluid, and p, is the probability that such a scaled
particle could be so added without overlapping any
of the N "solvent" spherocylinders. Clearly, P',
and W, are related by

po ~- 8%i

Our principal task is to derive expressions for
lnpo(o. , A., p) (i =1, 2, . . . , s) which can be evaluated
at &=1,X=1 in order to obtain the chemical poten-
tials Pp,, from (12).

When o. and A. are sufficiently small so that
three "solvent" spherocylinders cannot simul-
taneously be in contact with the scaled sphero-
cylinder, p, is given by'

p)(n~ X p) —1 —pQ s~ '0(~
k=1

ntk

ZZ
tnl fn ntn k= 1 mk ~

HI. CONSISTENT SCALED PARTICLE THEORY (14)

Before the scaled particle approach can be
utilized to evaluate the excess free energy 4„,
the precise shape of the hard rods must be speci-
fied. Following Onsager, ' Cotter and Martire, "'"
and Lasher, '4 we shall consider spherocylindrical
rods, where a spherocylinder is defined to be a

k=1

where the mk are non-negative integers and~,m~ =2 for each term in the sum over
(m„. . . , I„). ~„ is the volume excluded to a
"solvent" sphe'rocylinder with orientation k by the
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presence of the scaled particle (with orientation
i}at some fixed point, g'2' is the two-particle
correlation function, and the integration with re-
spect to r„(v =1 or 2}is over all positions ex-
cluded to "solvent" spherocylinder v (with orienta-
tion j„)by the presence of the scaled particle.
(The positions r, and r, are measured relative to
the center of the scaled particle. ) Onsager' has
shown that

&,&,
= wa'l(1 + a)'(1 + A,) +—, wa'(1 + a)'

+ 2al '(1+ a}A( siny„) (18)

for spherocylinders, where y„ is the angle be-
tween directions i and k. For a point particle,
moreover, it can be shown that2 ' '

(]) BE, ' BE,' B Em"'

B Q BA, BABA.

B2E(&) B3E(&)
=o (~=0, A=o).

BcP BQ BA,
(17)

Therefore lupi, Blnpo/Bn, Blnpo/BA, B'lnpo/
BaBA, B'1n. p,'/Ba', and B'lnp', /Ba'BA can be eval-
uated for all i at &=0, ~=0. When & and ~ are
both very large, W, (o.', A., p) must approach the
reversible PV work necessary to produce a mac-
roscopic spherocylindrical cavity of radius aa
and cylindrical length ~l in the fluid, from which
all parts of all "solvent" spherocylinders are ex-
cluded. Hence,

lim ln po& = -P lim W&

1nPO)(a, A) =Aq+B(n+CqA+D(aA+E(&'

—(wa'l pp)n'A —(—', wa'pp) &w' (19}

might be a good approximation for all u&0, X&0."
This was the functional form used by Cotter and
Martire in Ref. 12(c}. Lasher, on the other hand,
used only one scaling parameter and approximated
lnp, by

ln po = A, +B,'s + C f
s'- (wa'l + —, wa') p ps' (s ~ 0),

(20)

= -g [w(aa)' Al + —,w(aa)'],

where P is, of course, the pressure. These con-
siderations suggest that

where the scaled spherocylinder was taken to have
radius sa and cylindrical length sl." When
either (19) or (20) is used, the coefficients
A, , B, , C, ,D, , E, or A, , B,', C,' ' determined from
(15)-(17), and the pressure then obtained from
(12) together with the Gibbs-Duhem equation in
the form

or

BPP BPV
I''"' n'

BPP ' BPW (22}

the resulting expressions for the chemical poten-
tials are not thermodynamically consistent in that
Eq. (1}is not satisfied. To eliminate this incon-
sistency in a nonarbitrary manner, a functional
form somewhat more flexible than (19}or (20)
must be adopted. Stillinger and Cotter" have
demonstrated that an asymptotic expansion of
lnp' for hard spheres in descending powers of the
variable g =-,'(1+ o.') exists and has the form

lnp'(g} = g C $'-"
f1=0

(23}

Their work suggests that if the right-hand side of
(19}represents the leading terms of a similar
(large scaled particle) asymptotic expansion, then
the next term should be proportional to (1 + &) '.
Accordingly, let us assume that lnpo, can be rep-
resented adequately by

1np', (o., A., p) =
1

' — +A, (p, s)+B,(p, s)nQ(p, s)

+C((p& s}A+D&(p& s) A+nE)(p s)&&.

—(wa'l pp}~A —(—; wa'pp)a' (24)

for all non-negative a and A." (s denotes the set
{s„.. . , s„}.) Equation (24) is the central assump-
tion of our theory.

The coefficients A, , B, , C, , D, , and E, are
determined by equating each of lnpa(0, 0}, (B lnpo/
Bn)„, , „(Blnp', /BA), , „(B'lnp', /

tively, obtained from (24) with the same quantity
obtained from (15)-(17). Equation (12) then be-
comes

s, v„p 8v, p(1+ —', rQ~„, s,~siny«[) 4v', p'(1 + —,'q}(1 ——,'q+rQ,
& s, ~siny„~) +~+a,

(25)
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where

v 0
= wQ l + 3 7TQ y

4

of the former set of variables, thermodynamic
consistency requires that

lx= +1,
20

4
—,ga' 2

v, (3x —1) ' (26)

1 II P~

BD
=v p s B PA

(27)

(28)

al' 6(x —1)'
vo w(3x —1) '

rl =v, PP,

(i.e., v, is the volume of a spherocylinder, x is its
length-to-breadth ratio, and II is the dimensionless
pressure-to-temperature ratio). We wish to eval-
uate Q and II by demanding that the symmetry
requirement (1) together with the Gibbs-Duhem
equation (22) be satisfied simultaneously for all
i and j. It is more convenient, however, to choose
p, s„s„.. . , s„(with s, =1 -Q", , s, ) rather than

p„p„.. . , p„as independent variables. In terms

= '::)„., -(::;)...,
s(ui —p')

Bp 3- p BS] p

(8(v -~,))
k=2 k P ps' ~k

(29)

for all i =2, 3, . . . , n. [Given (25), it can readily
be confirmed that condition (1) will be satisfied
for all i and j if (29) is satisfied for all i.] Sub-
stituting (25) into (2V)-(29) and simplifying yields

, ail I v„p 6v„p(l+-', rQ, Q, s, s, lsiny»l)
sp, . 1-v,p (I -v, p)'

Sv', p'(1+-,'q)(1 --,'q+rQ, Q, s, sJ siny»l) p &Q

(1 -v, p)' 2 Bp
(30)

4rv', p'(1 + ,'qv, p)—Q,",s, (l siny&&I —
I sinyi~l) v„p sQ

(31)

Sr v', p'[1+ (1 +v, p) ~q]Ra=i sa(l sinyial —
I siny»l)

~ ~

BS) s
(32)

(i =2, . . . , n). These three partial differential equations are sufficient to determme ll(p, s) and Q(p, s).
SQ/ss, can be eliminated from (31) and (32) with the result

4r v'„p'[1+ (1+q)v„p]g,",s,(lsinyial —
I siny»l)

BSI p s (I -v.p)'
P ~ Sg ~~

prom (33), together with the boundary condition

v, P[1+v,P+-', (1+q —aq')vop']
S2 —S3 —''' —S

(1 —vo p)

it can then be determined that

(33)

(34)

v, p(1+[1+2rI'(s)]v, p+ —,'[1+q ——,'q'+3r(1+q) I'(s)]v', p'}
II p, s= (35)

where spect to p at constant s and "plugging" the result
into (30) gives

(36)r(s) = g g s, s, l siny»l.

[(34) is just the scaled particle equation of state
for a perfectly ordered fluid of hard spherocylin-
ders. "'b'] Finally, differentiating (35) with re-

p sQ 4rv', p'(1+-,'q) I'(s)
sp, (I -v.p)'

whence

(37)
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4r(1+-,'q) v', p'I'(gs
Q pps)=

(1 -vop}' (38)

[Q(p =0) =0]. It is easily ascertained that (38)
yields the same expression for sQ/Bs, as do (32)
and (33}. As an additional check, it can be veri-
fied that (25) together with (35) and (38) satisfy
(1}and (22). We thus have a thermodynamically

consistent scaled particle theory of the hard-rod
fluid with fixed orientations. Furthermore, (25)
and (35) reduce to the corresponding scaled par-
ticle expressions of Reiss, Frisch, and Lebowitz
(RFL)" for hard spheres when x =1 and, therefore,
q =1,~=0.
The excess free energy 4„can now be determined
as follows:

N 'P4„=g s, P( p, —p,,
'" ') —P(p -P' ' )/p, (38)

n

=1-+s,P(p, —P,, ) II/(-voP)
i=I

1 —[5+2rI'( s)]v, p+ [8 —q +-,'q' —3rqI'(s)] v„'p'/3=1-ln1-v p—0 (1 vo p)

(40)

(41)

IV. RESULTS

A. Discrete orientations

Substituting 4 „from (41}into (6), one obtains

(spA[[",=, s,'& {1—[5 ~ qrI'(Jslv„p+[8 —q -'q' —qrqp(Js]v'„p'/qj
1-vop (I vo p)-' (42)

for the partition function of a fluid of N hard spherocylinders, each of which is free to assume any of n
discrete orientations. The Helmholtz free energy A, configurational entropy S, , and Gibbs free energy G
are, therefore,

N 'PA =-N 'lnQ, (43)

S,
Nk
—=N 'lnQ+1nA, (44)

spAQ", =, s, '» 6v, p[1+—'rl (s)] 4v p (I+—'q) [1 ——'q+ —'rl'(g]
1 va p -(1 v, p) -(I-v, p)' (45)

where II, the dimensionless pressure-to-temperature ratio, is given by (35) with s =s. An expression for
any other equilibrium thermodynamic quantity can be derived from (42)-(45). To determine the most
probable distrubution s, t(s) must be maximized with respect to s„.. . , s„under the constraint P", , s, =1.

B. Continuous orientational distribution

When the range of possible orientations for the long axis of a spherocylinder is continuous, (35) and
(42)-(45) become"

vo p (I + vo p + ~~(1 + q —~ q2) vo p2 + 2r vo p[1 + (1 +q) vo p]((siny(As 0' }}))
(1 —vo p)

(46)

N 'pA = —~ + ln A = -N ' lnQ = ln + (In[47[f (0)])
Nk 1-~0P

[1 —5v, p + (8 —q+ —,'q')-,' v',p' —2rv, p(1 +—,
'
qv, p)((siny(Q, 0')}}]

(1 —v, p)'

pA
[ -( }]

6v, p (4+q --,'q')v', p.'+4rv, p[1+(1+-,'q}-,'v, p]((siny(0, 0')))
(1 —vo p}'

(48)
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where

(In[4m f (Q)]) =
t f (Q) In[4ii f (Q)]dQ,

((siny(o, o'))) = ff s'ny(o, o')

x f (Q)f (Q')dQdQ'. (49)

To determine the most probable distribution f (Q),
we must maximize the functional t[f (Q)] with re-
spect to f (Q) under the constraint (10}or, in
other words, we must solve the variational equa-
tion

tions as well. The isotropic state is thermody-
namically stable (i.e., renders N 'InQ a maximum
or N 'PA a minimum) when A. *&8.88, while the
more ordered of the anisotropic states is stable
for y*& 8.88. For a more detailed discussion of
the properties of the function f (Q) at several val-
ues of ~*, see Lasher, particularly his Figs. 1 and
2.

In order to "locate" the first-order phase tran-
sition between the isotropic (iso) and anisotropic
(aniso) states for rods of length-to-breadth ratio
x, it is necessary to solve the simultaneous equa-
tions

6 t —a* QdQ =0, (50) and

'"'~(v, p~'~ x) =11 ~(v, p'~, x) (54)

( siny(Q, Q')f (Q')dQ' (51)

where a* is a Lagrange multiplier. After the
standard manipulations, (50) yields the nonlinear
integral equation

1

I I [4 f (Q)]
oP( 2q QP)
(1 —vop

'

P p.'"'"
(vo p '",x) =P p'" (vo p'", x), (55)

where pi and p~'~ are the densities of the coexist-
ing phases at the transition and the pressures and
chemical potentials are given by (46) and (48), re-
spectively. Instead of fixing x and solving (51),
(54), and (55) for vopan~, v, pi", and f'"'"(Q), it
is much easier to fix I(.* [and therefore f '"(Q)]
and to solve (54) and (55), together with

for f (Q}. (51) is of the same form as the corre-
sponding integral equations of Onsager' [his Eq.
(69)] and of Lasher" [his Eq. (6)], namely,

0
paniso (1 + qv paniso )

(I v panisn )~
(56)

f (Q) = I/4v, (53)

but for A.*&8.88, there are two anisotropic solu-

In[4w f (Q)]+A."(p, x) siny(Q, Q') f (Q')dQ ' =C,

(52)

where C does not depend on Q . (The function
go(p, x) is, of course, not the same in the three
cases. ) Lasher has solved this equation (numeri-
cally) for a, number of values of A*. He found that
for small A.* (Iow densities}, the only solution to
(52) is the isotropic distribution

for x, v, p'"i", and v, p"'. In his Tables I and II,
Lasher has given (In4iif) and ((siny}) calculated
with the stable anisotropic distribution function
for twelve different values of A.*, enabling us to
determine the transition parameters at twelve dif-
ferent length-to-breadth ratios. " The following
iterative procedure was employed: Given A, ~,
(In4v f), and ((siny)}, we choose a trial value
of y and calculate v,p ~ from (56) and then
II (v,p '~} from (46). Equation (54) then becomes
a cubic equation which can be solved for vppi~.
Finally, we compute P p'~ (v, p'")" from (48) with

f =1/4ii and obtain a new value of y, y', from (55)
rearranged to give

panisc 6V panisor' = P p'"(vo p'~, ) —ln — '
. —(In(4m f'"'~)) -II

1 v paniso 1 v p aniso

(4+q ——'q )v' p' (1 —v, p'"")'
(1 —v p~'~)o 4vo pa~~ [1+(1 + o q)vo p~~/2]((siny))

(57)

This procedure could simply have been continued
until t(r' r( became -negligibly small. Instead,
however, the Wegstein iteration scheme" was
used to hasten convergence to the final value of y.
The results of these computations are displayed
in Table I and Fig. 1.

In Fig. l, the coexisting densities vop~ and
v, p'" are plotted versus x, the length-to-breadth

ratio of the spherocylinders. The behavior shown
is typical of that found previously for hard-rod
models "; that is, as x increases, there is a
rather sharp decrease in the mean density at the
transition, accompanied by an increase in the
relative-density discontinuity t),p/p '". Only for
very short rods ()a&2) is t)p/p~(~ of the same or-
der of magnitude as available experimental values
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TABLE I. Transition densities, density discontinuity, and degree of order at six values of
the parameter x*. Comparison of consistent scaled particle theory (CSPT) with Lasher's
truncated scaled particle theory (TSPT).

CSPT

Vop Vpp
aniso

TSPT

V p SI11$0 V piio gp /p
Sllll

9.1 0.572 1.43
9.3 0.627 2.15
9.5 0.666 2.98
9.7 0.697 4.21
9.9 0.722 6.08

10.2 0.753 12 ~ 96

0.784
0.627
0.527
0.437
0.354
0.216

0.783
0.620
0.514
0.418
0.330
0.192

0.002
0.012
0.026
0.044
0.067
0.11

1.93
3.56
5.46
8.18

12.14
25.12

0.869
0.643
0.490
0.367
0.270
0.146

0.867
0.631
0.469
0.341
0.243
0.126

0.002
0.019
0.043
0.071
0.10
0.14

for nematic substances, namely, several tenths
of one per cent."" At length-to-breadth ratios
typical of the more common nernatogenic mole-
cules (r =4-10, perhaps), the hard-rod relative-
density discontinuities are roughly an order of
magnitude too large.

The x dependence of the degree of order S in the
anisotropic phase at the transition is also dis-
played in Fig. 1. S is defined by

S = (P, (cos8)) =—,'(3 cos'8 —1),
where 8 is the angle between the long axis of a
particle (molecule, rod, etc. ) and the preferred
direction, and the angular brackets denotes aver-
aging over all particles and over time. It is an
experimentally measurable order parameter"
which vanishes in isotropic phases, is positive in
nematic mesophases, and would be unity in a per-
fectly ordered system. At temperatures just be-
low the nematic- isotropic phase transition, typi-
cal values of S lie in the range 0.3-0.5." It is
clear, therefore, that our hard spherocylinder
"mesophases" are considerably more ordered
near the transition than are real nematic meso-

phases. When x =1, the only solution to (51) is
f =I/4s. In this limit, therefore, S=O at all
densities and the transition to an ordered' phase
disappears. From the figure, however, it is
clear that the degree of order in the anisotropic
phase at the transition approaches a finite limit-
ing value as x- 1.

Table I compares the transition parameters x,
v, p~i~, and v, p' obtained from our consistent
scaled particle theory (CSPT) for six values of
A.* with the corresponding quantities obtained from
Lasher's truncated scaled particle theory
(TSPT)." The two approaches are in agreement
for very long rods (both reduce to Qnsager's the-
ory in the limit I ~, ,a-0, af2 finite) and their
qualitative predictions are very similar for short-
er rods. Clearly, however, there are appreciable
quantitative differences at typical nematic length-
to-breadth ratios. CSPT is probably more trust-
worthy for short rods since it reduces to the RFL
theory of hard spheres when x=1.

Finally, the behavior of the isothermal com-
pressibility v near the transition was also deter-
mined, where

aT„1 eV BII -'
(1 —v, p)'

vo V sp r sp vop(1+4vop+(3+2q-q )vop'+4rvop[1+2(1+Cq)vop]((siny(Q, Q')))) ' (59)

and the compressibility was chosen as a typical
representative of the "thermodynamic suscepti-
bilities, " i.e., the second derivatives of the free
energy. As is well known, these quantities ex-
hibit striking pretransition effects, similar to
those occurring near so-called second-order
phase transitions, on both sides of the nematic- isotropic transition. " No such pretransition
phenomena occur in our hard spherocylinder fluid,
however, as can be seen from Fig. 2. This is in
agreement with Alben" (see Ref. 3), who found
no precursor effects in the anisotropic phase of
the hard-rod Quid, but did observe such phe-
nomena when a van der Waal's attractive term
was added to the hard-rod potential energy.

C. XYZ model

As a special case of the discrete orientations
problem, let us consider a fluid of hard sphero-
cylinders permitted to point in only three mutually
perpendicular directions. In the limit l ~, a- 0,
aP finite, this system is rather well understood
as a result of extensive cluster-expansion calcu-
lations. " It is also of interest because it is simi-
lar to a system of hard rods on a simple cubic
lattice and can be used to probe differences be-
tween lattice and continuum models. For the sake
of simplicity, let the three allowed directions 1,
2, and 3 correspond to the x-, y-, and g-axis di-
rections, respectively, of a Cartesian coordinate
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system and let us, therefore, "christen" this the
XYZ model.

If we single out the z direction by some device
such as the application of an infinitesimal field

amI assume that the most probable distribution
(s, , s„s,) is axially symmetric, (35) and (42)-(45)
become

vop(1 +[1 +Bus(1 —2s)]vop+ 3[1 +q -2q2+12p (1 +q) s(1 —~ s)]v20p2)

(1 —vo p)'

3pAs' 1 —2s
N 'PA =-~ +lnA =-N 'in@ =ln

(1 —[5+Sys(1 —~s)]vop+[8 —q+~q2 —12rqs(1 —&s)] ~ vmop2)

(60)

(61)

and

SpA~s~(1 —2s)~' 2'' 6vop[1++3ys(1 —2s)] 4v20p2(1+2q)[1-~q+6ys(1 —gs)]
(1 —vo p) (1 —vo p) (1 —vo p)'

(62)

where

S~ =S2=S, S3=1 -2S .

Maximizing t with respect to s yields

s 4rv, p(1+—,'qv, p)(1 —Ss)
1-2s (1 —v, p)'

(63)

At low densities, the only solution to (64) is s = —',
(the isotropic solution for this model), but for

densities greater than a "critical" value v, p, (x),
there are two anisotropic solutions as well, as is
illustrated in Fig. 3. When v, p& v, p,*=v, p„"the
isotropic solution is thermodynamically stable,
while when v, p& v, p*, the more-ordered aniso-
tropic solution (i.e., the lower anisotropic branch
in Fig. 3) minimizes the free energy. (The less-
ordered anisotropic solution can be disregarded
since it always represents a local maximum in the
free energy. ) The "critical" disorder parameter
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FIG. 1. Densities and degree of order at the anisotrop-
ic-isotropic phase transition as a function of the length-
to-breadth ratio x of spherocylindrical rods with a con-
tinuous range of allowed orientations.

FIG. 2. Dimensionless isothermal compressibility
K/Pv p at densities near the anisotropic-isotropic phase
transition for x = 2.983. The coexisting densities at the
transition are vpp =0.5271 and vp =0.5136.
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=—,
' f(1 -2s)(2)+2s(-1)) =1 —3s, (65)

and the system is considerably more ordered near
the transition than is the hard spherocylinder
Quid with a continuous range of allowed orienta-
tions. This is not surprising since most of the
orientational disorder in the latter fluid is due to
small angle deviations from the preferred direc-
tion and such deviations are not permitted in the
XYZ model.

Table II compares consistent scaled particle
theory (CSPT) with the simpler scaled particle
theory of Cotter and Martire""' (SPT). The lat-
ter is thermodynamically consistent for sphero-
cylinders free to adopt any of the three allowed
orientations, but inconsistent for the mixture of

s, is a constant approximately equal to 0.2076 and
the "critical" density can be obtained for any x
by substituting s, and x into (64) and solving the
resulting quadratic equation for v, p, (x).

The anisotropic-isotropic phase transition is
located by simultaneously solving (64) (for the
anisotropic phase), (54), and (55), with the pres-
sures and chemical potentials obtained from (60)
and (62). The solutions were determined numeri-
cally and the results are displayed in Fig. 4 and
Table II. The behavior of the transition param-
eters is qualitatively similar to that shown in Fig.
1 for spherocylinders allowed to adopt all possible
orientations, but quite different from the behavior
of hard rods on a simple cubic lattice in that the
lattice system undergoes no transition to an
anisotropic state when x is less than approxi-
mately 3.65." For the XYZ model,

S =-,' (3 cos'8 -1)

spherocylinders with fixed orientations in that

(66)

where I denotes the preferred direction, & denotes
the two equivalent perpendicular directions, and

p~~
= p, =(1 -») p,

pi =pi +p2 = 2sp.
(6V)

As can be seen from Table II, this underlying in-
consistency, although very disturbing esthetically,
is of rather little consequence numerically. The
transition densities computed from CSPT are
roughly (2-V)% larger than those computed from
SPT, but the qualitative predictions of the two
theories are the same.

.oop -,

p.800

V. DISCUSSION AND CONCLUSIONS

The principle aim of this work was to vindicate
the scaled particle theory of anisotropic fluids,
i.e., to show that a straightforward application
of the scaled particle approach need not lead to
an inconsistent thermodynamics for the mixture
of hard rods with fixed orientations. This goal
has been attained: thermodynamic consistency has
been achieved wholly within the procedures, frame-
work, and spirit of simple scaled particle theory.
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FIG. 3. Solutions s to Eq. (64) as a function of density
for x =5.

FIG. 4. Densities and degree of order at the anisotrop-
ic-isotropic phase transition as a function of the length-
to-breadth ratio x of the spherocylindrical rods for the
XYZ model.
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TABLE II. Transition densities and degree of order
for the XFZ model. Comparison of consistent scaled-
particle theory (CSPT) with the scaled particle theory
of Cotter and Martire (SPT).

2 0.589
3 0.682
4 0.745
5 0.769
6 0.790
7 0.804
8 0.817
9 0.827

10 0.834

CSPT
RAISO

0.473
0.332
0.260
0.216
0.185
0.163
0.145
0.132
0.120

VpP

0.465
0.316
0.240
0.193
0.162
0.140
0.122
0.109
0.098

0.589
0.658
0.706
0.739
0.763
0.781
0.796
0.808
0.814

SPT
aniS0

VpP

0.505
0.351
0.273
0.224
0.191
0.167
0.149
0.135
0.123

V ~180

0.499
0.338
0.255
0.204
0.170
0.146
0.127
0.113
0.102

Hopefully, the scaled particle approach, which
has proven quite useful for considering simple
isotropic fluids, "may be of some help in investi-
gating anisotropic fluids as well.

The numerical predictions of consistent scaled
particle theory (CSPT) are qualitatively similar
to those of several other approximate theories
of the hard-rod fluid. "" This is not too sur-
prising since these approaches are all of the
molecular-field variety in that short-range order
in molecular positions and orientations is not con-
sidered. As was pointed out by Alben, " this ne-
glect of short-range order may lead to serious
underestimates of the configurational entropy,
particularly when the rods are long and the system
orientationally disordered, and this could mean
that the theoretical predictions are at least par-
tially artifacts of the mean-field approximation.
To determine whether this is the case, computer-
generated "experimental results" for the hard-rod
fluid are needed but, unfortunately, are not avail-
able. Despite this difficulty, mean-field treat-
ments seem at present to be the only mathemati-
cally tractable statistical-mechanical approaches
to continuum (as opposed to lattice) models of
rodlike molecules. Whatever the distortions pro-
duced by the neglect of fluctuations, such com-
putations should still be useful for comparing sys-
tems with various sorts of intermolecular poten-
tials. Among the various molecular-field ap-
proaches suggested to date, CSPT seems par-
ticularly promising because (i) when x is very
large, it reduces (like its competitors) to the
Onsager theory, 4 which should be satisfactory for
very long rods"; (ii) at the opposite extreme of
length-to-breadth ratios (x- 1), it reduces to the

This means that the coefficient C,' in Eq. (20) has
been taken to be equal to -3v, pI"(s)/(1 -v, p),
which implies that the quantity (O'E""/8&')&-, .
[see, (14) and (15) for the definition of E,"'] is given
by

2ER l ) 9v2 p2[F (sI)] 2

~ ~

(1 -v.p)

and the discontinuity in s'lnp', /sg' by

(
s' 1np',. s' lnp', 9v', p'[I"(s)]'

(70)

(71)

Although it is known that O'E'"'/Sl' does not van-
ish at ( =0, there is no particular reason to believe
it is of the form (70). From the standpoint of the
internal consistency of scaled particle theory, it
might perhaps have been better to set C,' equal to
zero, thus eliminating any term proportional to ('
from the expansion of lnp„and yielding a truncated
theory both thermodynamically and internally con-
sistent, although having less exact information
"built in" than does CSPT.
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rather successful RFL scaled particle theory of
hard spheres. " In a subsequent publication, CSPT
will be used to study rodlike molecules with hard
cores and superimposed attractive interactions,
in an effort to understand the roles of intermolec-
ular attractions and repulsions in determining
nematic stabilities.

Finally, the derivation of Sec. III makes the
meaning. of Lasher's truncation somewhat clearer.
His truncated expression for the quantity lnp', . is,
in our notation,

lnp'. =ln(1-v p) — ' f(I+)) -v ppL
3v, pI" (s)
(1 vo-p) 0

(6s)
where f is Lasher's scaling parameter (previously
called s) and

I"(s) =1+—', r g s, (siny, &~. (69)
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