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The determination of shielded diatomic orbitals (SDO) is investigated from the exact resolution, in
prolate-spheroidal coordinates, of the two-center problem with an effective parametric potential. This
potential, which is cylindrically symmetric in order to preserve the separability of the Schrodinger
equation, is obtained either by classical electrostatic considerations or by a variational procedure.
Calculations are carried out for two-electron diatomic systems, i.e., H,, He?*, and HeH" in their
ground state. From the results and also from theoretical considerations, these SDO appear to be close
to self-consistent-field orbitals. Extension to the N -electron problem is considered.

I. INTRODUCTION

Recently, Teller and Sahlin® have sketched out
a method for treating many-electron diatomic
systems, within the diatomic-spheroidal-orbital
scheme, without adding further difficulties to the
treatment of one-electron diatomics. In order to
partially take into account the interelectronic dy-
namic correlation, they introduce an effective po-
tential that still preserves the separability of the
one-electron two-center Schrddinger equation.
Within the molecular-orbital scheme, this method
is equivalent to building up the diatomic wave func-
tion from shielded diatomic orbitals (SDO) and
can be considered, in some respects, as a pre-
Hartree-Fock calculation. Up to now, to our
knowledge, except for the H, molecule,'~* such
SDO orbitals have not been determined.

In the present paper, the determination of SDO
orbitals is investigated as exact solutions of a
two-center problem with an effective parametric
potential. The values of the parameters are found
either by classical electrostatic considerations,
or by a variational method. The basic procedure
of determination of the SDO orbitals has been de-
tailed in a previous paper* (noted hereafter as I).

Calculations are carried out. for two-electron
diatomic systems, i.e., H,, He,>*, and HeH" in
their ground state. Extension to N-electron sys-
tems and the determination of the corresponding
successive SDO orbitals will be given in a forth-
coming paper.

II. DETERMINATION OF AN EFFECTIVE POTENTIAL

The Schrodinger equation for the N-electron
two-center problem with the charge Z,, Z at dis-
tance R (as foci) is
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In order to keep the usual orbital picture of the
many-electron problem and to reduce the solution
of Eq. (1) to the simpler problem of solving one-
particle equations, one has to introduce in an
average way the interelectronic repulsion terms
as a sum of one-particle effective potentials V;.

A. Separated equations

When introducing prolate-spheroidal coordinates

A=@ +7rg)/R, 1<A<w
=@, -rg)/R, -lspus+
O0s¢p <27,

the equation for the one-electron two-center prob-
lem after multiplying both sides by $R2(\% = u?) be-
comes
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where p?=—3ER?. As pointed out before (see
paper I), when introducing a cylindrically sym-
metrical potential !'>-7 of the general form

V(1) =[4/R?(0* = )] [f () + g(1)], @)

the wave function (A, 1, ¢) remains capable of
being factorized, i.e., the solution of Eq. (2) can
be written
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where A(A) and M (1, ¢) are solutions of the following pair of differential equations:

[a_if ((1 2)5TL> 1’:‘2#2 +p2U2 =R (Z, - Z5)u—-A —g(u)]M(u, ®)=0, @)
) 9 m?
[ <(A2 - 1)5) ] PN R (Zy 2+ A= )] AR) =0, (5)
The separation constant A is the eigenvalue of the invariant operator? )
G=-L? -RTZ (A—:;) ~R(Z,cosb , —ZBcosea)+ <(l — 2)f(;‘2_ff2_1)g(“)) -p*. (6)

T is the orbital angular momentum of the electron.
At the limit R =0, @ still reduces to —L? and
hereafter the united-atom labeling (n, 1) is used.

In the present paper, we limit ourselves to con-
sider a truncated expansion of f(A) and g(u) up to
the quadratic terms

FA)=R(a,+a,x +a)?),
g()=R(by+b 1 +b,u?),

where a,, a,, a,, b,, b,, and b, are parameters
to be determined.

™

B. Determination of the parameters

In fact, without loss of generality, one can as-
sume b,=0 (or a,=0) since, in the V (A, u) poten-
tial, the constant term is R (a, +b,). In the follow-
ing sections we assume b,=0. The determination
of the remaining parameters a,, a,, a,, b,, and
b, could be performed either by considering limit-
ing electrostatic cases of spatial configurations,
or by a direct variational procedure. The screen-
ing method leads to values of the parameters
which can be advantageously used as starting val-
ues for the variational procedure.

The former procedure has been first applied by
Teller and Sahlin’® for the H, molecule. We have.
extended it to the general homonuclear and hetero-
nuclear two-center two-electrons problem. In .
both homonuclear and heteronuclear cases, the
parameters are obtained by using symmetry prop-
erties and by considering two extreme situations:
on one hand, the united-atom scheme with one
electron at a great distance from the two nuclei;
on the other hand, the separated-atom configura-
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tion with one electron bound to one of the two
atoms.

1. Homonuclear molecules (Z,=Zg=Z)

When assuming the particular form of the effec-
tive potential V (A, 1) [Eqs. (3) and (7)], one gets
the following expression of the total electrostatic
potential V,(Z) of Eq. (2) in terms of the inter-
particles distances (r,,7,R):
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Since we are dealing with a homonuclear molecule,
we must require the total potential to be sym-
metric with respect to reflection in a plane that is
perpendicular to the molecular axis at its mid-
point; hence we must select b, to be zero.

Let us consider the successive limiting cases.
First, within the united-atom scheme, we assume
that the electron “1” under consideration is far away
from the nuclei ¢ ,~7 5> R) and also from the
otherelectron“2”. When replacing 7 4 by the follow-
ing expression (see Fig. 1),

271/2
rA=rB[1 +3——§coses+(r—12)] , )

and, after expanding the total electrostatic poten-
tial in ascending powers of (R/75), (R<<7 ) and
retaining only the first two terms, it is easy to
show that it must classically be

(10)

From Eq. (8), one gets the following corresponding limit of V,(Z):
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tron “2” is at a great distance (r,~ R) and near

the other nucleus A, the potential of the electron

10
classically becomes (see Fig. 2)

On the other hand, within the separated-atom

scheme when the electron “1” under consideration

is bound to nucleus B (¥ < R) while the other elec-
—

(12)

[VC(Z)],ep=—%Z: —1% [Z(Z -1)-(%) 2(z _1)(;0393.,....] ,

where the expansion of

27,- r 271/2
74=R [1 + —k-ﬂ cosfy +<_I?> ]
is used to obtain [ V,(Z)]., expanded in power of ¢ z/R). Correspondingly, from Eq. (8) one gets

1
[Vp(Z)]sep =7’_a (-2Z +a, +a, +b, +a0)-}—: [[ZZ —-a, +2b, - 2a, - (a, +b, —a,)cosd ]
+£I€- (E%L (a,-2Z)cosfy+ Mz—ﬂcosz%) Y ] .
(13)

well as the expressions (12) and (13), we must
first satisfy the equality of the predominant terms

We must now satisfy pairwise the equality of the
and we obtain the following conditions to be satis-

potential V,(Z) and V,(Z) for each limiting cases.
First, for the united-atom limit R <7 ,~7p), in
order to satisfy the equality of potentials (10) and fied:
(11) one must require foremost _
-0 (14) ot 5)
@2=Y- a,+a,+b, +a,=0.
When comparing the expressions (10) and (11) as Let us consider once more the effective separated-
2 atom potential (13). Taking into account the condi-
tions (14) and (15), it becomes

2
[Ve(2)lep =~ 22

_§[2(Z ~1)+2a,+a,) (cosfg=1) +°+-]
(16)

and consequently the second term of (16) will be
equal, for any value of 6, to the term 2(Z -1)/R
of the classical separated-atom limit [see Eq.

7
n_A ,' l’ )LB
]
"’ ] (12)] when assuming
’ !
/ ! 2a,+a, =0. 1)
’ 1
/ H Finally, from Eqs. (14), (15), and (17), one gets
/ ! for the homonuclear case, the following empirical
/) values of the parameters
e
.2 i "o
.2 -7 R,
A @B : - 9:
Z _— 9
° R/-lb % 7 EN Ao ’°__ T a/-Z ZB
FIG. 2. Separated-atom scheme.

FIG. 1. United-atom scheme.
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ao=-%’ a,=1, a,=0; (18)

It should be noted that these values of the param-
eters enable one to exactly equate only the first
two terms (in 1/7 54 and 1/R) of the classical limit
potential V., with those of the effective limit poten-
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tial V,.
ered is

vV, 1)=[4/R*(\* = u?)](=3R +RX =3R1?). (19)

Thus the effective potential to be consid-

2. Heteronuclear molecules (Z,+Zy)

One gets the following expression of the total
electrostatic potential:

R

a+u+z)+b<__i)+’la<f-4+h-z). 20)
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First, within the united-atom scheme ¢ ,~7 ;> R), in the same way as for the homonuclear case, one
obtains the following expression of the classical electrostatic potential for the electron “1” under con-

sideration®:

(Ve(Zas Zg)uue

=r—18[—Z(ZA+ZB-1)+(£>2(ZA—1)cosea+---] . @21)

From (20), one gets the following corresponding limit of V,(Z,, Zy):

4

[VT(ZA9ZB)]mm=_az +— 1 [ 2(Z,+Z5 —-a )+< )[Z(ZA—I)cosE,3
)

R

+ay+ (@, +b,)cos%0, — (@, —b, —2)cosfg] ++* ] . (22)

Within the separated-atom limit we now consider the following spatial configuration, where the electron “1”
under consideration is bound to one nucleus, for instance B, while the other electron “2” is at a great dis-

tance and near the other nucleus (" ;<R ~7,). The potential that feels the electron is classically

2Zg
r

B

[ VC(ZA: ZB)]sep ==

—I_Z[Z(Z‘-l) < >2(ZA—1)COSGB+""] . ' @3)

From (20), one gets the corresponding limit of V,(Z,, Zg):

1 1
[Ve(Zy, Zg)lsep :71-9(—223 +ay,+a, +a,+b, +b2)—§ [Z(ZA— 1) +2b, =2a, +b, — a, +2 = (@, +b, —a,)cosd

We must now satisfy pairwise the equality of the
potential V.(Z,,Zg) and V,(Z,, Zg) for each limit-
ing case. First, from the united-atom limit, one
must require foremost

a,=0. @5)

When comparing the expressions (21) and (22), as
well as the expressions (23) and (24), we must
first satisfy the equality of the predominant terms,

[Ve(Za, 255~ 222 -

Consequently, when assuming that

2a,+a, +b, =0,

a,-3(@,+b
+ _B.>(J___(_a+_zl (a -5, —ZZA)COSGB
a, +b,-3a 2
+—z-——L——SL2 cos®g ) e 24)

-

and we obtain the following conditions to be satis-
fied:
=1
al ’ (26)
a,+a, +a, +b, +b,=0.

Let us now consider once more the effective
separated-atom potential (24). Taking into ac-
count the conditions (25) and (26), it becomes

ZTZE —R[Z(ZA—I)—(2a°+al+bl)(l—cosea)+'°°] . @7
B

@8)
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the first two terms of the potentials [ V,(Z,, Zg)lep
and [V,(Z,, Zg)]ep become equal for any value of
6. One easily obtains the conditions correspond-
ing to the alternative situation where the electron
under consideration is bound to the nucleus A, by
interchanging A and B in the relations (23), (24),
and (27), i.e.,

a,+a, +a,—-b, +b,=0, ©@9)
2a,+a, -b,=0.

Finally, from Eqgs. (25), (26), (28), and (29) one
gets, for the heteronuclear case, the same em-
pirical potential [Eq. (19)] as for the homonuclear
case. This is not very surprising, owing to the
fact that we have considered only limiting cases
which are symmetrical when interchanging nucleus A
and B. Other possible situations of the separated-
atoms scheme, such as the two electrons bound
to the same nucleus, have not been taken into ac-
count. Their eventual influence on the determina-
tion of the parameters will be discussed in Sec.
Iv.

III. CALCULATIONS

For both homonuclear and heteronuclear cases,
the empirical potential V (A, 1) [Eq. (19)] is linear
in A (a,=0) and quadratic in u; this corresponds
to the additional potential we have previously con-
sidered [see Egs. (14) and (15) of paper I]. Fur-
thermore, the construction process for the
shielded diatomic (SDO) orbitals has been de-
scribed in this paper. Hereafter the same nota-

TABLE IA. DO and SDO (10) orbital of the H, mole-
cule (R, =1.4 a.u.).

Orbital 1o DO SDO

Type of Without Empirical Variational
calculation screening screening screening
A 0.44389032 0.50742073 0.465 684 35
4 1.12186624 0.853093 34 0.795 595 29

fo 0.997 898 0.997 273 0.997 692

M, 0) 1 0.064 790 0.073793 0.067 887

! f4 0.001 052 0.001 361 0.001154

Coefficients fg 0.000 008 0.000012 0.000 009

Cy 0.999 094 0.999 426 0.999 375

C; —0.042334 0.033 364 0.034 769

AN C, —0.004252 0.005 682 0.006146

C; —0.000824 0.001474 0.001 647

Coefficients C, —0.000216 0.000477 0.000 548

C; —0.000068 0.000177 0.000 210

Cg —0.000024 0.000073 0.000 088

C; —0.000009 0.000 032 0.000 039

Cg —0.000004 0.000 014 0.000 017

Cy —0.000001 0.000 005 0.000 007

\2] 0 0.527 96 0.60948
A/ryy 0.780 88 0.700 33 0.663 50

TABLE IB. DO and SDO (10) orbital of the He,* mole-
cular ion (R, =1.3 a.u.).

Orbital 1o DO SDO
Type of Without Empirical Variational
calculation screening screening screening
A 1.27433395 1.31471541 1.282 99751
4 1.81576876 1.654 64432 1.566 296 57
fo 0.984 435 0.983 531 0.984 242
M, o) S 0.175588 0.180562 0.176 659
’ fa 0.007 553 0.007 983 0.007 644
Coefficients f 0.000151 0.000164 0.000154
fs 0.000 002 0.000002 0.000 002
Cy, 0.998663 0.999 757 0.999 700
C,; -0.051608 -0.021955 —0.024 396
AQ) C, -0.002904  —0.001835 —0.002 094
Coefficients C; —0.000388 —0.000 292 —0.000 343
C, —0.000075 —0.000063 —0.000 077
Cs —0.000018 -0.000017 —0.000 021
Cg —0.000005 —0.000 005 —0.000 006
C; -0.000002 —0.000 002 —0.000 002
) 0 0.658 92 0.981 14
A/ryy 1.15363 1.12517 1.08182

tions will be used. The eigenfunction M (1, ¢) of
Eq. (4) is expanded as a linear combination of
spherical harmonics:

M(u, @)= FRY 2, @), (30)
k=m

where, for the heteronuclear case (Z,+#Z;) all
the consecutive integer values of 2 are to be con-

TABLE IC. DO and SDO (10) orbital of the HeH* mole-
cular ion (R, =1.4 a.u.).

Orbital 1o DO SDO
Type of Without Empirical Variational
calculation screening screening screening
A 1.45408554 1.53975893 1.210 205 02
P 1.64080521 1.450527 29 1.335064 78
fo 0.870 600 0.867 035 0.915782
f1 0.458 306 0.462 870 0.369 936
fa 0.174 806 0.180017 0.153 943
Mu,o)
f3 0.037419 0.039151 0.027 553
Coefficients f, 0.007 330 0.007 828 0.005755
fs 0.001 021 0.001109 0.000 693
S 0.000135 0.000150 0.000 097
fq 0.000 014 0.000 016 0.000 009
f3 0.000 001 0.000 002
Cy 0.999 370 0.999 989 0.999 999
C; -0.035378 0.004 558 0.000 569
AA) C, —0.002650 0.000 507 0.000 065
Coefficients C; —0.000406 0.000 095 0.000013
C, -0.000086 0.000 023 0.000 003
C; -0.000022 0.000 007
Cg —0.000007 0.000 002
C; —0.000002
V) 0 0.596 50 0.88615
(1/1',2) 1.23225 1.19706 1.05414
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TABLE IIA. Variation with R of the total energy Ep(in a.u.) of the H, molecule.?

1
-Ep -Er -Eg -Ep -Ep 14 <T,;>

R 1) 2) (3) 4) (5) 3) (3)
1.30 1.06921 1.12635 1.13133 1.131 36 1.13143 0.637 45 0.67723
1.32 1.07043 1.12675 1.13205 1.132 08 1.13212 0.631 67 0.674 47
1.34 1.07145 1.12697 1.13259 1.13259 1.132 60 0.62599 0.67172
1.36 1.072 27 1.12700 1.13288 1.13290 0.62039 0.66898
1.38 1.072 90 1.12685 1.13302 1.133 02 0.614 89 0.66623
1.40 1.07337 1.12655 1.13296  1.13297 1.13296 0.609 48 0.663 50
1.42 1.073 68 1.12610 1.13275  1.13276 1.13278 0.60416 0.660 77
1.44 1.07383 1.12551 1.13239 1.13244 0.598 93 0.658 04
1.46 1.07386 1.124179 1.13188  1.131189 1.13196 0.59378 0.65533
1.48 1.07381 1.12396 1.13125 1.13135 0.588 72 0.652 62
1.50 1.07374 1.12300 1.13049 1.13063 0.58373 0.649 92
R, 1.452 1.353 1.384 1.384 1.384
k, 0.3366 0.4374 0.4241 0.4283 0.4020

2(1) Without screening; (2) empirical screening; (3) variational screening; (4) variational screening with a trun-
cated basis; (5) reoptimized calculation.

sidered, whereas for the homonuclear case the
values of 2 jump by steps of two units.

For the A (A) eigenfunction of Eq. (5), we have
chosen an Hylleraas-like expansion®

AQ)=e=?X-D[2p(n = 1))/

X 2 Compa &8 a[20(00 = 1)], (31)

n=m/2

where the quantity » — (m/2) is an integer and
£{(x) is the normalized associated Laguerre poly-
nomial. The values of the unshielded parameters
A and p are used to initialize the Newton-Raphson
procedure.

In order to calculate the electronic energy, we
have computed the Coulombic repulsion integral
(/7 ;) by a seminumerical technique (see Ap-
pendix D of paper I) very similar to the technique
of Wahl et al.'® The one-electron energy is calcu-
lated by difference, i.e.,

wia +2(Z8 +Ze) ) < — Vo, wivy . 62)

¥ is assumed to be normalized. The normalization
integral as well as the (V) integral in Eq. (32) are
calculated analytically (see Appendix D of paper
I).

Three types of calculation (noted hereafter i, ii,

TABLE IIB. Variation with R of the total energy Ej (in a.u.) of the He,?* molecular ion.?

1
-Ep -Ep -Egp -Eq -E 1% <7E>

R (6] 2) 3) 4 (5) 3) 3
1.20  3.56826  3.59403  3.60814  3.60815  3.60814  1.03946  1.12492
1.22  3.57036  3.59550  3.60966  3.60967  3.60966  1.02720  1.11597
1.24  3.57183  3.59637  3.61057  3.61058  3.61057  1.01524  1.11072
1.26  3.57274  3.59669  3.61092  3.61093  3.61092  1.00359  1.09857
1.28  3.57313  3.59651  3.61076  3.61077  3.61076  0.99223  1.09012
1.30  3.57304  3.59586  3.61013  3.61014  3.61013  0.98114  1.08182
1.32  3.57252  3.59480  3.60907  3.60909  3.60909  0.97033  1.07368
1.34  3.57159  3.59336  3.60763  3.60765  3.60765  0.95977  1.06569
1.36  3.57031  3.59147  3.60584  3.60585  3.60586  0.94947  1.05785
1.38  3.56869  3.58945  3.60372  3.60373  3.60376  0.93941  1.05015
1.40  3.56677  3.58706  3.60131  3.60132  3.60137  0.92958  1.04260
R, 1.286 1.262 1.263 1.263 1.263
k, 1.1380 1.2424 1.2592 1.2580 1.2564

2(1) Wwithout screening; (2) empirical écreem‘ng; (3) variational screening; (4) variational
screening with a truncated basis; (5) reoptimized calculation.
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TABLE IIC. Variation with R of the total energy E , (in a.u.) of the HeH* molecular ion.?

()

-Ep ~Ep -Ep —Eq -E, 14

R 1) ) (3) 4) (5) (3) (3)
122 2.82908  2.86346

124  2.83070  2.86426

1.26  2.83199  2.86473

1.28  2.83296  2.86492

1.30  2.83364  2.86485  2.92318  2.92317  2.92330  0.91742  1.06240
1.32  2.83406  2.86453  2.92443  2.92442  2.92450  0.91080  1.06046
1.34  2.83424  2.86400  2.92544  2.92542  2.92546  0.90438  1.05867
1.36  2.83420  2.86327  2.92621  2.92619  2.92621  0.89813  1.05702
1.38  2.83396  2.86237  2.92677  2.92675  2.92677  0.89206  1.05551
1.40  2.83354  2.86131  2.92713  2.92712 292713  0.88615  1.05414
1.42  2.83297  2.86011  2.92732  2.92730  2.92735  0.88041  1.05291
1.44  2.83224  2.85878  2.92734  2.92732  2.92742  0.87482  1.05180
1.46  2.83138  2.85734  2.92721  2.92719  2.92733  0.86938  1.05083
1.48  2.83041  2.85550  2.92694  2.92691 292718  0.86408  1.04997
1.50  2.82933  2.85418  2.92654  2.92651  2.92684  0.85893  1.04924
R,  1.346 1.284 1.433 1.432 1.440

k, 0.5302 0.6464 0.3916 0.3938 0.3361

2(1) Without screening; (2) empirical screening; (3) variational screening; (4) variation-
al screening with a truncated basis; (5) reoptimized calculation.

and iii) of the ground-state energy and wave func-
tion for the (10)? configuration at various inter-
nuclear distances have been carried out for H,,
He,**, and HeH' molecule and molecular ions:

(i) without introducing the screening potential

V (A, u); (ii) taking into account the screening po-
tential [Eq. (19)] corresponding to the empirical

67

to be rapidly decreasing, we repeated the calcu-
lation when neglecting the coefficients less than

1073,

These last results [noted (4)] are seen to be
very close to the more elaborate ones (3).

Although the screening potential is R dependent
[Eq. (7)], the values of its parameters a; and b,,
which are independent of R within the empirical

values of the parameters; and (iii) taking into ac-
count a screening potential, linear in A and quad-
ratic in u, the parameters of which are deter-
mined by variation, using a steepest-descent pro-
cedure.

For each case, the equilibrium distance R, and
the force constant k2, have been obtained by a
least-squares polynomial fit of the energy (12-
points and degree 4).

IV. RESULTS AND DISCUSSION

For each molecule or molecular ion (H,, He,?,
and HeH'), the results concerning the 10 diatomic
orbital are comparatively displayed for the three
types of calculation. The values of A and p (in
a.u.), the expansion coefficients f; and C, [see
Eq. 30) and (31)], as well as the values of the
electronic integrals, near the presumed value of
the internuclear distance R,, are given in Table
IA-IC.

For each type of calculation already described,
we have computed the total energy E , (in a.u.) for
several internuclear distances round the minimum
(Table II). Since the expansion coefficients appear

scheme, are found to be still quasi-independent of
R when determined variationally. This allows the
transferability, for all internuclear distances R,
of the potential parameters a; and b;, which, con-
sequently are to be calculated only once. Never-
theless, this transferability property has been
fairly checked by reoptimizing the total energy

E , at each internuclear distance R [results noted
(5) in Table II] .

TABLE IIIA. Potential parameters of the H, molecule.

Empirical R a, ay b,
values -0.500 1.000 —0.500
Variational 1.30 —0.454 1.059 —0.492
values 1.32 —0.453 1.061 —0.493
1.34 —0.447 1.066 -0.491
1.36 —0.447 1.066 —0.491
1.38 —0.447 1.066 —-0.491
1.40 —0.447 1.066 -0.491
1.42 —-0.444 1.071 —-0.491
1.44 ~ —0.442 1.073 -0.490
1.46 -0.439 1.076 —0.490
1.48 —0.437 1.078 —-0.489
1.50 —0.435 1.078 —0.487
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TABLE IIIB. Potential parameters of the Hez2+ mole-
cular ion.

R a, a, b,
Empirical
values -0.500 1.000 -0.500
1.20 -0.295 1.134 —-0.664
1.22 —0.295 1.134 -0.664
Variational 1.24 —0.295 1.134 —0.664
values 1.26 -0.295 1.134 —0.664
1.28 -0.295 1.134 -0.664
1.30 -0.295 1.134 —0.664
1.32 -0.294 1.136 —0.666
1.34 -0.293 1.137 —0.666
1.36 —0.292 1.137 —0.666
1.38 -0.291 1.139 —0.668
1.40 -0.289 1.140 -0.671

TABLE IIIC. Potential parameters of the HeH* mole-
cular ion.

R a, a, b, b;
Empirical
values —-0.500 1.000 -0.500 0.000

Variational 1.30 —-0.424 1.096 -0.557 0.282
values 1.32 -0.423 1.097 —0.556 0.284
1.34 -0.422 1.098 -0.556 0.286

1.36 -0.419 1.100 -0.551 0.293

1.38 -0.419 1.100 -0.551 0.296

1.40 -0.419 1.100 —-0.551 0.296

1.42 —-0.420 1.102 —0.554 0.296

1.44 -0.418 1.103 -0.552 0.300

1.46 -0.417 1.105 -0.551 0.304

1.48 -0.421 1.104 -0.557 0.307

1.50 -0.420 1.103 -0.557 0.310

Although the optimized values of the parameters
a,, a,, and b, remain close to their empirical
values, and vary very slowly with R (Table III),
the energy E ; is very sensitive to their variation,
as can be seen from comparison of the results (2)
and (3) of Table II.

For the HeH* molecular ion (see Table IIIC),
the empirical value of b, is zero, whereas this is
not the case when obtained by variation. This can
be explained by remembering that in our electro-
static considerations we have not introduced non-
symmetrical electrostatic situations; for instance,
within the separated-atom scheme, we have not
introduced the possibility for the two electrons to
be both on the same nucleus (for instance B). For
that case, the limit of V;(Z,, Zp) is still given by
Eq. (24), whereas the classical potential that feels
the electron under consideration becomes

-2(Z, -0)
[Vc(ZA’ZB)]”p=——_TBB_
_112 [22.4‘(%) 2Z,cosby +- ] ,

(33)

where o is the atomic screening of the inner elec-
tron. In order to satisfy the equality of the first
term of the potential [V,(Z,, Zg)]«p and

[Ve(Z,, Zg)lep [Eq. (24)], the following condition
is to be satisfied:

@y +a, +a,+b, +b,=20. (34)

Taking into account the strong condition a,=0
[Eq. (25)] and the condition previously determined,
and also corroborated by the variational results
[see Table IIIC],a,+a,+b,=0;

TABLE IV. Some comparative results (in a.u.).

H, He,?* HeH*
—ET Re ke ‘ET R, -ET Re ke

1.128 062

1.127 64P

1.13360° 3.6091°¢

Present work 1.13302 1.384 0.4020 3.61093 1.263 2.92742 1.440 0.3361
SCF 1.133 6429 1.3759 3.6111809 1.3 2.93393° 1.455% 0.3193°

Best value 1.174475° 1.40068 0.3692" 3.679 8459 1.32 2.978 67 1.4632!
2See Ref. 3.
bSee Ref. 2.
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TABLE V. Values of the virial ratio ((E7/E pot))g,, -

Without Empirical Variational Expected
screening  screening screening value
H, 0.4159 0.4669 0.4991
He,2* 0.4652 0.4757 0.4997 0.5
HeH* 0.4165 0.4322 0.4984

when solving the remaining equations [(26), (29),
and (34)] by a least-squares method, one obtains

b,=0.

This result appears consistent with the optimized
result, since from Slater’s rules 0 =0.30 [see
Table IIC].

The introduction in V (A, u) [Eq. (7)] of poly-
nomials f (\) and g(u) of higher degree in A and u
does not result in special technical difficulties:
the method remains valid, but one must deal with
slightly larger band matrices. Nevertheless, in
this last case, in order to determine the empirical
values of all the parameters a; and b;, we would
have to take into account other possible limiting
electrostatic situations which have not all the
same weight of importance. On the other hand, the
the determination of these parameters by optim-
ization would be equivalent, at the limit, to an
analytical separable Hartree-Fock calculation.!
Our results, which correspond to a two-variables
pre-Hartree-Fock calculation introducing a part
of both angular and radial correlation when the
potential parameters are optimized, are not too
far from the Hartree-Fock limit.

The corresponding values of the equilibrium dis-
stance R, and of the force constant 2, are in good
agreement with the self-consistent-field (SCF)
values (see Table IV). In order to test the quality
of the wave function, we have applied the virial
theorem, i.e.,

Ep) =26 4R (2E2)

where (Epot) is the value of the total potential en-

ergy. Since at the equilibrium distance R,, the
derivative term vanishes, one should expect that

(E 1)/ (Epot) )z, = % -

For the three types of calculation, the values of
this last ratio are given in Table V and it is seen
that the introduction of screening effects goes
with a better fulfillment of the virial theorem.
Our results are gratifying in view of the fact that
we have limited ourselves to an expansion of the
effective potential which is linear in A and quad-
ratic in u.

As a matter of curiosity, using our program for
Z,=0and Zz=2 (or Z,=2 and Z,=0), we obtained
the diatomic orbitals 1S of the helium atom which
are no longer eigenfunctions of L? but eigenfunc-
tions of the operators @ [Eq. (6)] and L,. Results
are given in Table VI.

V. CONCLUSION

We have determined both empirically and varia-
tionally the SDO for two electrons systems in their
ground state and have found that these SDO are,
in some respects, comparable to the SCF orbitals.
Furthermore, the screening parameters are inde-
pendent of the internuclear distance, and conse-
quently such SDO can be advantageously used as
basis orbitals in molecular calculations. Never-
theless, when extending the method to N-electrons
diatomic molecules, the empirical procedure be-
comes more involved, owing to the fact that many
limiting possible electrostatic situations can be
considered and it is rather difficult to weight their
relative importance. On the other hand, the varia-
tional determination of the effective potential does
not involve further difficulties when one assumes
the additivity of the screening effects and deter-
mines the successive SDO, from the inner shells
to the outer shell: Once the (N —1) inner. SDO are
known, the determination of the outer Nth can be
performed in the same way as for the two-elec-
trons case. Such an extension, as well as others
and calculations of molecular properties with the
SDO will be given in a forthcoming paper.

TABLE VI. Total energy of atomic helium ground state (10)? (in a.u.).

Diatomic scheme

Atomic scheme

Without

screening (1) -2.75
Empirical

screening (2) -~2.8168
Variational

screening (3) —2.8547

—2.75 (Hydrogenics)

—2.8475 (Slater’ s orbitals)

—2.861 68 (SCF orbitals)
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