
PHYSICAL RKVIE N A VOLUME 10, NUMBER 1
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II. Shielding effects for the two-electron yroblem
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The determination of shielded diatomic orbitals (SDO) is investigated from the exact resolution, in

prolate-spheroidal coordinates, of the two-center problem with an dFective parametric potential. This

potential, which is cylindrically symmetric in order to preserve the separability of the Schrodinger

equation, is obtained either by classical electrostatic considerations or by a variational procedure.

Calculations are carried out for two-electron diatomic systems, i.e., H„He2'+, and HeH+ in their

ground state. From the results and also from theoretical considerations, these SDO appear to be close

to self-consistent-field orbitals. Extension to the N-electron problem is considered.

I. INTRODUCTION

Recently, Teller and Sahlin' have sketched out
a method for treating many-electron diatomic
systems, within the diatomic-sphex'oidal-orbital
scheme, without adding further difficulties to the
treatment of one-electron diatomics. In order to
partially take into account the intereleetronic dy-
namic correlation, they introduce an effective po-
tential that still preserves the separability of the
one-electron two-center Schr6dinger equation.
Within the molecular-orbital scheme, this method
is equivalent to building up the diatomic wave func-
tion from shielded diatomic orbitals (SDO) and
can be considered, in some respects, as a pxe-
Hartree-Pock calculation. Up to now, to oux'

knowledge, except fox the H, molecule, ' ' such
SDO orbitals have not been determined.

In the present paper, the determination of SDQ
orbitals is investi. gated as exact solutions of a
two-center pxoblem with an effective parametric
potential. The values of the parameters are found
either by classical electrostatic considerations,
or by a variational method. The basic procedure
of determination of the SDQ orbitals has been de-
tailed in a previous paper' (noted hereafter as l}.

Calculations are carried out. for two-electron
diatomic systems, i.e., H„He,", and HeH' in
their ground state. Extension to N-electron sys-
tems and the determination of the corresponding
successive SDQ orbitals will be given in a forth-
coxnlng paper.

II. DETERMINATION OF AN EFFECTIVE POTENTIAL

The Schrodinger equation for the N-electron
thoro-center problem with the charge g„,g~ at dis-
tance R (as foci) is

In order to keep the usual orbital picture of the
many-electron problem and to reduce the solution
of Eq. (l) to the simpler problem of solving one-
particle equations, one has to introduce in an
average way the interelectronie repulsion terms
as a sum of one-particle effective potentials V, .

A. Separated equations

When introducing prolate-spheroidal coordinates

~=(r„+r,}/Z, i -X&

p = (r„-rs)/R, -l ~ g ~ +i

0 «y «2m',

the equation for the one-electron two-center prob-
lem after multiplying both sides by —,'R'(X' —g') be-
comes

+, +, , —p'()P -p')+R (Z„+Zs)X
A,
' —1 I —p,

' By'

-ft(&„-&,)v+-'-&'(&'-u')&(&, v, q) P(&, v, 9)=o,
(2)

where p'=-2EB'. As pointed out before (see
paper l), when introducing a cylindrically sym-
metrical potential'"' ' of the general form

i'(&, ~) =[4/&'(&' —~')] [f(&) + g(~)],
the wave function p(A. , y, , y) remains capable of
being factorized, i.e., the solution of Eq. (2) can
be written
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y (X, p, p) =A (X)M (g, y) =A (X)G(y)e""",
where A(A. ) and M (p, y) are solutions of the following pair of differential equations:

m2
(I - n') ——,+p'u' &-(z z-, )p &-g-(p) M(p, q ) =0,

8 p, 8p. 1 —p.2

g3
(~'-I)——, -P'Z'+H(Z„+Z, )a+A-f(X) A(Z)=0.

The separation constant A. is the eigenvalue of the invariant operator'

8 =-I.'-—A —,-A(Z„cos8„-Zscos8e)+ (I —V')f (&) —(&'- I)g(u) -p'.
4 8z' A A B B )„2 p2

L is the orbital angular momentum of the electron.
At the limits =0, 9 still reduces to -I.', and
hereafter the united-atom labeling (n, l) is used.

In the present paper, we limit ourselves to con-
sider a truncated expansion of f (A. }and g(p) up to
the quadratic terms

f (A. ) =R (ao+ a,A. + a,)P),

g(u)=fl(b. + b~ +b~'},

where ao, a, , a, bo, b„and 5, are parameters
to be determined.

tion with one electron bound to one of the two
atoms.

Homonuclear molecules (Z„=Zs = Z)

When assuming the particular form of the effec-
tive potential V(X, y.) [Eqs. (2) and (7)], one gets
the following expression of the total electrostatic
potential Vr(Z} of Eq. (2) in terms of the inter-
particles distances (r„,rs, Il }:

B. Determination of the parameters

In fact, without loss of generality, one can as-
sume b, =0 (or a, =0) since, in the V(X, p) poten-
tial, the constant term is 8( aob+, ). In the follow-
ing sections we assume bo =0. The determination
of the remaining parameters a„a, , a„b, , and
b, could be performed either by considering limit-
ing electrostatic cases of spatial configurations,
or by a direct variational procedure. The screen-
ing method leads to values of the parameters
which can be advantageously used as starting val-
ues for the variational procedure.

The former procedure has been first applied by
Teller and Sahlin' for the H, molecule. We have
extended it to the general homonuclear and hetero-
nuclear two-center two-electrons problem. In .

both homonuclear and heteronuclear cases, the
parameters are obtained by using symmetry prop-
erties and by considering two extreme situations:
on one hand, the united-atom scheme with one
electron at a great distance from the two nuclei;
on the other hand, the separated-atom configura-

Since we are dealing with a homonuclear molecule,
we must require the total potential to be sym-
metric with respect to reflection in a plane that is
perpendicular to the molecular axis at its mid-
point; hence we must select 5, to be zero.

Let us consider the successive limiting cases.
First, within the united-atom scheme, we assume
that the electron "j."under consideration is far away
from the nuclei (r„-rs»R) and also from the
other electron" 2". Vfhen replacing r„by the follow-
ing expression (see Fig. 1),I 2- 1/2

1 +—cos8 +B + B

and, after expanding the total electrostatic poten-
tial in ascending powers of (R/rs), (R «rs) and
retaining only the first two terms, it is easy to
show that it must classically be

[Vc(Z)]„„,, =—-2(2Z -1)+ —2(Z —1)cos8s+ ~ ~ ~
R

B B

From Eq. (8), one gets the following corresponding limit of Vr(Z):

(10)

[Vr(Z)j„„(,= +—-2(2Z —a, ) + —[2(Z —1)cos8s+a, + (2 -a, ) cos8e+ (a, +b, ) cos'8s)]+ ~ ~ ~ . (11)
4a
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On the other hand, within the separated-atom
scheme when the electron "1"under consideration
is bound to nucleus B (rs «R) while the other elec-

tron "2" is at a great distance (r„-R) and near
the other nucleus A, the potential of the electron
classically becomes (see Fig. 2)

2Z 1 r
[Vc(Z)] p=- —-R 2(Z —1) —~ 2(Z —1)cos8s+ ~ ~ ~

B

where the expansion of

2YB a x/2
r =8 1+ Bcos8 + ~8' 8

is used to obtain [Vc(Z)]„expanded in power of (rs/R). Correspondingly, from Eq. (8) one gets

(12)

-1 1
[Vr(Z)]~~ =—(-2Z +a, +a, +b, +a,)-— [2Z —a, +2b, —2a, —(a, +b, -a, ) cos8s]

B

r~ a, -3(a, +b, ) a, +b, -3a,+~ ' ' ' +(a —2Z)cos8 + ' ' 'cos'8 + ~ ~ ~

(13)

a, =0. (14)

When comparing the expressions (10}and (11}as

We must now satisfy pairwise the equality of the
potential Vc(Z) and Vr(Z) for each limiting cases.
First, for the united-atom limit (R «r„rs}, i-n

order to satisfy the equality of potentials (10) and

(ll) one must require foremost

well as the expressions (12) and (13), we must
first satisfy the equality of the predominant terms
and we obtain the following conditions to be satis-
fied:

a, =1,

a, +a, +5, +a, =0.
(15)

Let us consider once more the effective separated-
atom potential (13). Taking into account the condi-
tions (14) and (15), it becomes

[Vr(Z}] u=
2Z

B

1——[2(Z-1)+(2a,+a, ) (cos8s —1}+ ],

I
I

/

I
~A '

I
I

I
I

I
I

I
I

/
I

I
I

J

I

I

I
I
I
I
I

I
I

I

I
I
I

(16)

and consequently the second term of (16) will be
equal, for any value of 8s, to the term 2(Z —1)/R
of the classical separated-atom limit [see Eq.
(12)] when assuming

0+ 1

Finally, from Eqs. (14}, (15), and (1V), one gets
for the homonuclear case, the following empirical
values of the parameters

~ C
2

A

FIG. 1. United-atom scheme. FIG. 2. Separated-atom scheme.
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1ao--» ax-1, a, -0

50=0, Q, =0, b2=-g»j.

It should be noted that these values of the param-
eters enable one to exactly equate only the first
two terms (in 1/rs and 1/ft) of the classical limit
potential V~ with those of the effective limit poten-

tial V~. Thus the effective potential to be consid-
ered ls

V(~, t ) =[4/Z2(~'- g')](--,'Z+Z~--,'Zp'). (19)

2. Heteronuclear rnolecules (Z„xZs)

One gets the following expression of the total
electrostatic potential:

v, (g„,z )=- "— + ' +a, —~—+~ ~+ I ~ 2 +5, ———~ ~ ~ ~ ~ -2) .2@~ 2@~ «ao I I a I I b r r
&a &Z'a ' &~ &a « ~a '

&a &~ « a
(20)

First, within the united-atom scheme (r„-re»'B}, in the same way as for the homonuclear case, one
obtains the following expression of the classical electrostatic potential for the electron "I"under con-
s ide rations:

[Vc(Z~ Zs}]. , = —-2(Z~+Zs -1}+ —2(Z» -1}c»8s+"I «

From (20}, one gets the following corresponding limit of Vr(Z„, Zs):

4a, I «
[Vr(ZAiZB))~i= + - (2'+ Zs— 1)+ [ (Z~- } os 8

+ao+ (a2+b2) cos 8e —(ai —bi —2) cos8e] +' ' '

Within the separated-atom limit we now consider the following spatial configuration, where the electron "I"
under consideration is bound to one nucleus, for instance B, while the other electron "2" is at a great dis-
tance and near the other nucleus (rs«R -r„). The potential that feels the electron is classically

[Vc(ZA Za}].,=- -H 2(ZA- )-~H 2«A 1)co-s88+"' ~

2@+ I

From (20), one gets the corresponding limit of Vr(Z„, Zs):

I I
[Vr(Z„,Zs)]„~=.—(-2Zs+a, +a, +a, +b, +b, ) -— 2(Z„-1)+2b, -2a, +b, —a, +2 —(a, +b, -a,) cos8s

(23)

ao —3 (a~ +b2)+
2

+ (ai —bi —2Z~) cos8s

a +b -3a
+ ' ' ' cos'8 + ~ ~

2 8

%'e must now satisfy pairwise the equality of the
potential Vc(Z„,Zs) and Vr(Z„, Zs) for each limit-
ing case. First, from the united-atom limit, one
must require foremost

a2 =0. (26)

When comparing the expressions (21) and (22), as
well as the expressions (23) and (24), we must
first satisfy the equality of the predominant terms,

and we obtain the following conditions to be satis-

fiedd

a~ =I,
ao+a, +a2+5, +$2 =0.

Let us now consider once more the effective
separated-atom potential (24). Taking into ac-
count the conditions (25) and (26), it becomes

2~& I
[Vr(Z„, Zs)j„=,— s —— 2(Z„—1}—(2a, +a, +b, }(1—cos8s)+ ~ ~ ~ (27)

Consequently, when assuming that

2ao+a~ +5~ =Oy (28}
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the first two terms of the potentials [Vc(Z„,Zs)]~
and [Vr(Z„, Zs)]„~ become equal for any value of
e~. One easily obtains the conditions correspond-
ing to the alternative situation where the electron
under consideration is bound to the nucleus A, by
interchanging A and B in the relations (22), (24),
and (2"I), i.e.,

ao+ax +a, —b, +b, =0,

2a, +a,
(29)

Finally, from Eqs. (25}, (26), (28), and (29) one
gets, for the heteronuclear case, the same em-
pirical potential [Eq. (19)]as for the homonuclear
case. This is not very surprising, owing to the
fact that we have considered only limiting cases
which are symmetrical when interchanging nucleus A.

and B. Other possible situations of the separated-
atoms scheme, such as the two electrons bound
to the same nucleus, have not been taken into ac-
count. Their eventual influence on the determina-
tion of the parameters will be discussed in Sec.
IV.

III. CALCULATIONS

For both homonuclear and heteronuclear cases,
the empirical potential V(X, p, ) [Eq. (19)] is linear
in A. (a, =0) and quadratic in g; this corresponds
to the additional potential we have previously con-
sidered [see Eqs. (14) and (15) of paper 1]. Fur-
thermore, the construction process for the
shielded diatomic (SDO) orbitals has been de-
scribed in this paper. Hereafter the same nota-

Orbital 1o
Type of

calculation

DO SDO
'tgxthout Empx~cal Varxattonal

screening screening screening

1.274 33395 1.314 71541

1.815 768 76 1.654 644 32

1.282 997 51

1.566 296 57

fo

~(V, tip)
f4

Coefficients f8

fs

0.984435
0.175 588
0.007 553
O.OOO151
0.000 002

0.983 531
0.180 562
0.007 983
0.000 164
0.000 002

0.984 242
0.176 659
Q.Q07 644
O.{}00154
0.000 002

Coefficients

C o O.998 66
C1 -0.051608
C 2 -0.002 904
C3 -0.000388
C 4 -Q.OQQ 075
C 5 -0.000 018
c, -0.000005
C 7 -0.000 002

1.153 63

0.999 757
-0.021 955
-G.001 835
-0.000 292
-0.000 063
-0.000 017
-0.000 005
-0.000 002

0.658 92

1.125 17

0.999 700
-0.024 396
-0.002 094
-0.000 343
-0.000 077
-0.000 021
-0.000 006
-0.000 002

0.981 14

1.081 82

tions will be used. The eigenfunction M(p. , y) of
Eq. (4) is expanded as a linear combination of
spherical harmonics:

(20)

where, for the heteronuclear case (Z„eZs} all
the consecutive integer values of k are to be con-

TABLE IC. DO and SDO (10') orbital of the HeH+ mole-
cular ion (R~ =1.4 a.u.).

TABLE IB. DO aml SDO (lo') orbital of the He22+ mole-
cular ion (a =1.3 a.u.).

TABLE IA. DO and SDO (10') orbital of the H2 mole-
cule (R, =1.4 a.u.). Orbital. 10

Type of
calculation

DO
%'ithout

screening

SDO
Empirical Variational
screening screening

Orbital 10'

Type of
ca1,culation

DO
Without

screening

SDO
Empirical Variational
screening screening

1.454 085 54 1.539 758 93 1.210 205 02

1.640 805 21 1.450 527 29 1.335 064 78

M(p, q)

Coefficients

Coefficients

0.997 898
0.064 790
0.001 052
0.000 008

Co 0.999 094
Cg -0.042 334
C2 -0.004 252
C~ -0.000 824
C4 -O.GGQ 216
Cs -0.000 068
Ce -0.000 024
C7 -0.000 009
Cs -0.000 GQ4

C9 -0.000 001

0.997 273
0.073 793
Q.001 361
0.000 012

0.999426
0.033 364
0.005 682
0.001 474
G.QGG 477
0.000 177
0.000 073
0,000 032
0.000 014
0.000 005

Q.S97 692
0.067 887
0.001 154
G.GOO 009

0.999 375
0.034 769
0.006 146
0.001 647
G.QQG 548
0.000 210
0.000 088
0.000 039
0.000 017
0.000 007

0.44389032 0.50742Q 73 0.465 68435

1.12186624 0.8530S334 0.79559529
~(v, v)

Coefficients

A(A, }
Coefficients

fg
f1
f2
fs
f4
f5
fs
f7
fa

Co
c(
C2
c~
C4
C5
Ce
C7

0.870 600
0.458 306
0.174 806
0.037 419
0.007 330
0.001 021
0.000 135
0.000 014
Q.QGQ 001

0.999 370
-0.035 378
-0.002 650
-0-000 406
-0.000 086
-0.000 022
-O.GQQ 007
-0.000 002

0.867 035
0.462 870
0.180017
0.039 151
0.007 828
0.001 109
0.000 150
0.000 Q16
0.000 002

0.999989
0.004 558
0.000 507
0.000 095
O.QGO 023
0.000 007
Q.QGQ 002

0.915782
0.369936
0.153943
0.027 553
0.005 755
0.000 693
Q.ooo 097
0.000 OQ9

0.999999
0.000 569
Q.OGG 065
0.000 013
Q.OOOOO3

0.780 88 0.700 33

0.609 48

0.663 50 1.232 25

0.596 50

1.19706

0.886 15

1.054 14
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TABLE liA. Variation with R of the total energy Ez(in a.u.) of the H2 molecule.

-E
(1)

-E
(3)

-E
(4) (5) (3) (3)

1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

1.069 21
1.07043
1.071 45
1.072 27
1.072 90
1.073 37
1.073 68
1.073 83
1.073 86
1.073 81
1.073 74

1.126 35
1.126 75
1.126 97
1.127 00
1.126 85
1 ~ 126 55
1.126 10
1.125 51
1.124 79
1.123 96
1.123 00

1.13133 1.13136 1.13143
1.132 05 1.132 08 1.132 12
1.132 59 1.132 59 1.132 60
1.132 88 1.132 90

1.13302 1.13302
1.132 96 1.132 97 1.13296
1.132 75 1.132 76 1.132 78

1.132 39 1.13244
1.13188 1.131189 1.13196

1.13125 1.13135
1.13049 1.130 63

0.637 45
0.631 67
0.625 99
0.620 39
0.61489
0.609 48
0.604 16
0.598 93
0.593 78
0.588 72
0.583 73

0.677 23
0.674 47
0.671 72
0.668 98
0.666 23
0.663 50
0.660 77
0.658 04
0.655 33
0.652 62
0.649 92

1.452

0.3366

1.353

0.4374

1.384

0.4241

1.384

0.4283

1.384

0.4020

(1) Without screening; (2) empirical, screening; (3) variational screening; (4) variational screening with a trun-
cated basis; (5) reoptimized calculation.

sidered, whereas for the homonuclear case the
values of k jump by steps of two units.

For the A(A, ) eigenfunction of Eq. (5), we have
chosen an Hylleraas-like expansion '

A(g) —e no&-1
[&-2p(g l)j»&~2

where the quantity n —(m/2) is an integer and

Zf(x) is the normalized associated Laguerre poly-
nomial. The values of the unshielded parameters
A. and p are used to initialize the Newton-Raphson
proc edure.

In order to calculate the electronic energy, we
have computed the Coulombic repulsion integral
(1/r») by a seminumerical technique (see Ap-
pendix D of paper I) very similar to the technique
of Wahl et al." The one-electron energy is calcu-
lated by difference, i.e. ,

&&'~lo+2(
" +~) I&& =~, -&&~lv&~, ~&I&». &32&

g is assumed to be normalized. The normalization
integral as well as the (V) integral in Eq. (32) are
calculated analytically (see Appendix D of paper
l).

Three types of calculation (noted hereafter i, ii,

TABLE GB. Variation with R of the total energy Ez (in a.u. ) of the He2 ' molecular ion.

-E
(1) (2)

-E
(3) (4)

-E
(5)

V
(3) (3)

1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40

3.568 26
3.570 36
3.571 83
3.572 74
3.573 13
3.573 04
3.572 52
3.571 59
3.570 31
3.568 69
3.566 77

1.286

1.1380

3.594 03
3.595 50
3.596 37
3.596 69
3.596 51
3.595 86
3.594 80
3.593 36
3.59147
3.589 45
3.587 06

1.262

1.2424

3.608 14
3.609 66
3.610 57
3.61092
3.610 76
3.61013
3.609 07
3.607 63
3.605 84
3.603 72
3.60131

1.263

1.2592

3 ~ 608 15
3.609 67
3.610 58
3.610 93
3.610 77
3.610 14
3.609 09
3.607 65
3.605 85
3.603 73
3.601 32

1.263

1.2580

3.608 14
3.609 66
3.610 57
3.610 92
3.610 76
3.610 13
3.609 09
3.607 65
3.605 86
3.603 76
3.601 37

1.263

1.2564

1.03946
1.027 20
1.01524
1.003 59
0.992 23
0.98114
0.970 33
0.959 77
0.949 47
0.93941
0.929 58

1.12492
1.11597
1.11072
1.098 57
1.090 12
1.081 82
1.073 68
1.065 69
1.057 85
1.05015
1.042 60

' (1) Without screening; (2) empirical screening; (3) variational screening; (4) variational
screening with a truncated basis; (5) reoptimized calculation.
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TABLE IIC. Variation with R of the total energy Ez (in a.u.) of the HeH' molecular ion. '

-Ez
(2) (3)

g
(4)

-E
(5) (3) (3)

1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

ke

2.829 08
2.830 70
2.831 99
2.832 96
2.833 64
2.834 06
2.834 24
2.834 20
2.833 96
2.833 54
2.832 97
2.832 24
2.831 38
2.830 41
2.829 33

1.346

0.5302

2.863 46
2.864 26
2.864 73
2.864 92
2.864 85
2.864 53
2.864 00
2.863 27
2.862 37
2.861 31
2.860 11
2.858 78
2.857 34
2.855 50
2.854 18

1.284

0.6464

2.923 18
2.92443
2.92544
2.92621
2.926 77
2.927 13
2.927 32
2.927 34
2.927 21
2.92694
2.926 54

1.433

0.3916

2.92317
2.924 42
2.92542
2.92619
2.926 75
2.927 12
2.927 30
2.927 32
2.927 19
2.92691
2.926 51

1.432

0.3938

2.923 30
2.924 50
2.925 46
2.926 21
2.926 77
2.927 13
2.927 35
2.927 42
2.927 33
2.927 18
2.926 84

1.440

0.3361

0.91742
0.91080
0.904 38
0.898 13
0.892 06
0.886 15
0.880 41
0.874 82
0.869 38
0.864 08
0.858 93

1.062 40
1.060 46
1.058 67
1.057 02
1.055 51
1.054 14
1.052 91
1.051 80
1.050 83
1.049 97
1.049 24

3 (1) Without screening; (2) empirical screening; (3) variational screening; (4) variation-
al screening with a truncated basis; (5) reoptimized calculation.

and iii) of the ground-state energy and wave func-
tion for the (lo) configuration at various inter-
nuclear distances have been carried out for H„
He,", and HeH' molecule and molecular ions:
(i) without introducing the screening potential
V (A., g}; (ii) taking into account the screening po-
tential [Eq. (19)] corresponding to the empirical
values of the parameters; and (iii) taking into ac-
count a screening potential, linear in A and quad-
ratic in g, the parameters of which are deter-
mined by variation, using a steepest-descent pro-
cedure.

For each case, the equilibrium distance R, and
the force constant k, have been obtained by a
least-squares polynomial fit of the energy (12
points and degree 4).

to be rapidly decreasing, we repeated the calcu-
lation when neglecting the coefficients less than
10 '. These last results [noted (4)] are seen to be
very close to the more elaborate ones (2}.

Although the screening potential is R dependent
[Eq. (I)], the values of its parameters a, and b, ,
which are independent of R within the empirical
scheme, are found to be still quasi-independent of
R when determined variationally. This allows the
transferability, for all internuclear distances R,
of the potential parameters a, and b, , which, con-
sequently are to be calculated only once. Never-
theless, this transferability property has been
fairly checked by reoptimizing the total energy
E r at each internuclear distance R [results noted
(5) in Table II] .

IV. RESULTS AND DISCUSSION TABLE IIIA. Potential parameters of the H2 molecule.

For each molecule or molecular ion (H„He,",
and HeH'), the results concerning the lo diatomic
orbital are comparatively displayed for the three
types of calculation. The values of A and p (in
a.u. ), the expansion coefficients f, and C, [see
Eq. (30) and (31)], as well as the values of the
electronic integrals, near the presumed value of
the internuclear distance R„are given in Table
IA-I C.

For dach type of calculation already described,
we have computed the total energy E r (in a.u. ) for
several internuclear distances round the minimum
(Table II). Since the expansion coefficients appear

Empirical
values

Variational
values

1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

ao
-0.500

-0.454
-0.453
-0.447
-0.447
-0.447
-0.447
-0.444
-0.442
-0.439
-0.437
-0.435

a&

1.000

1.059
1.061
1.066
1.066
1.066
1.066
1.071
1.073
1.076
1.078
1.078

b2
-0.500

-0.492
-0.493
-0.491
-0.491
-0.491
-0.491
-0.491
-0.490
-0.490
-0.489
-0.487
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Potential parameters of the Het + mole-
cular ion.

TABLE IIIC. Potential parameters of the HeH' mole-
cular ion.

ao a& b2 a& b2
Empirical

values -0.500 1.000 -0.500
Empirical

values -0.500 1.000 -0.500 0.000

Var iational
values

1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40

-0.295
—0.295
—0.295
—0.295
-0.295
-0.295
—0.294
-0.293
-0.292
—0.291
-0.289

1.134
1.134
1.134
1.134
1.134
1.134
1.136
1.137
1.137
1.139
1.140

-0.664
-0.664
—0.664
—0.664
-0.664
-0.664
-0.666
-0.666
-0.666
-0.668
-0.671

Variational
values

1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

-0.424
-0.423
-0.422
-0.419
-0.419
-0.419
-0.420
-0.418
-0.417
-0.421
-0.420

1.096
1.097
1.098
1.100
1.100
1.100
1.102
1.103
1.105
1.104
1.103

-0.557
-0.556
-0.556
-0.551
-0.551
-0.551
-0.554
-0.552
-0.551
-0.557
—0.557

0.282
0.284
0.286
0.293
0.296
0.296
0.296
0.300
0.304
0.307
0.310

Although the optimized values of the parameters
a„a, , and b, remain close to their empirical
values, and vary very slowly with R (Table III),
the energy E~ is very sensitive to their variation,
as can be seen from comparison of the results (2)
and (3) of Table II.

For the HeH' molecular ion (see Table IIIC),
the empirical value of b, is zero, whereas this is
not the case when obtained by variation. This can
be explained by remembering that in our electro-
static considerations we have not introduced non-
symmetrical electrostatic situations; for instance,
within the separated-atom scheme, we have not
introduced the possibility for the two electrons to
be both on the same nucleus (for instance B). For
that case, the limit of Vr (Z„,Zs) is still given by
Eq. (24), whereas the classical potential that feels
the electron under consideration becomes

[v, (z„,z, )]„,=

2g —~ 2g cos8 +'''
A g A B

(33)

a +a, +a, +b, +b, =2o. (34)

Taking into account the strong condition a, =0
[Eq. (25)] and the condition previously determined,
and also corroborated by the variational results
[see Table IIIC],a, + a, + b, =0;

where 0 is the atomic screening of the inner elec-
tron. In order to satisfy the equality of the first
term of the potential [Vc(Z„,Zs)]„~ and

[Vr(Z„, Zs)]~ [Eq. (24)], the following condition
is to be satisfied:

TABLE IV. Some comparative results (in a.u.).

H2

Re -E
He 2+

2 He H"

Re

Present work
SCF

Best value

1.128 06
1.127 64b

1.13360
1.13302
1.133 642
1.174475

1.384
1 375
1.400 6g

0.4020
~ ~ ~

0.3692

3.6091
3.61093
3.611180d
3.679 845

1.263
1.3
1.32

2.927 42
2.933 93
2.978 67'

1.440
1.455
1.4632'

0.3361
0.3193

~See Ref. 3.
See Ref. 2.
S. M. Rothstein (private communication); C. T. Llaguno, S. K. Gupta, and S. M. Rothstein, Intern. J. Quantum
Chem. 7, 819 (1973).
W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
S. Pfyerimhoff, J. Chem. Phys. 43, 998 (1965).

f W. Kolos and L. Wolniewicz, J. Chem. Phys. 49, 404 (1968).
&G. Herzberg and L. L. Howe, Can. J. Phys. 37, 636 (1959).
"B.P. Stoicheff, Can. J. Phys. 35, 730 (1957).
' L. Wolniewicz, J. Chem. Phys. 43, 1087 (1965).
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TABLE V. Values of the viri. al ratio ((ET/E~t))g, .

Without Empirical. Variational Expected
screening screening screening value

H2

He ~'
2

HeH'

0.4159
0.4652
0.4165

0.4669
0.4757
0.4322

0.4991
0.4997
0.4984

0.5

when solving the remaining equations [(26), (29),
and (34)] by a least-squares method, one obtains

where (E~,) is the value of the total potential en-

This result appears consistent with the optimized
result, since from Slater's rules o =0.30 [see
Table III C].

The introduction in V(A. , p, ) [Eq. (7)] of poly-
nomials f (X) and g(p) of higher degree in X and p.

does not result in special technical difficulties:
the method remains valid, but one must deal with

slightly larger band matrices. Nevertheless, in
this last case, in order to determine the empirical
values of all the parameters a,. and 5, , we would

have to take into account other possible limiting
electrostatic situations which have not all the
same weight of importance. Qn the other hand, the
the determination of these parameters by optim-
ization would be equivalent, at the limit, to an
analytical separable Hartree-Fock calculation. '
Our results, which correspond to a two-variables
pre-Hartree-Fock calculation introducing a part
of both angular and radial correlation when the
potential parameters are optimized„are not too
far from the Hartree-Fock limit.

The corresponding values of the equilibrium dis-
stance R, and of the force constant k, are in good
agreement with the self-consistent-field (SCF)
values (see Table IV). In order to test the quality
of the wave function, we have applied the virial
theorem, i.e.,

(Ep,t. ) =2(E r) +8 s&E r)

ergy. Since at the equilibrium distance R„ the
derivative term vanishes, one should expect that

((E r)~(Er t) )z, = 2 ~

For the three types of calculation, the values of
this last ratio are given in Table V and it is seen
that the introduction of screening effects goes
with a better fulfillment of the viri. al theorem.
Qur results are gratifying in view of the fact that
we have limited ourselves to an expansion of the
effective potential which is linear in X and quad-
ratic in ~.

As a matter of curiosity, using our program for
Z„=O and Zs =2 (or g„=2 and pe =0), we obtained
the diatomic orbitals 18 of the helium atom which
are no longer eigenfunctions of L' but eigenfunc-
tions of the operators g [Eq. (6)] and I, Results
are given in Table VI.

V. CONCLUSION

We have determined both empirically and varia-
tionally the SDO for two electrons systems in their
ground state and have found that these SDQ are,
in some respects, comparable to the SCF orbitals.
Furthermore, the screening parameters are inde-
pendent of the internuclear distance, and conse-
quently such SDO can be advantageously used as
basis orbitals in molecular calculations. Never-
theless, when extending the method to +-electrons
diatomic molecules, the empirical procedure be-
comes more involved, owing to the fact that many
limiting possible electrostatic situations can be
considered and it is rathex difficult to weight their
relative importance. Qn the other hand, the varia-
tional determination of the effective potential does
not involve further difficulties when one assumes
the additivity of the screening effects and deter
mines the successive SDQ, from the inner shells
to the outer shell: Once the (N —I) inner. SDO are
known, the determination of the outer Nth can be
performed in the same way as for the two-elec-
trons case. Such an extension, as well as others
and calculations of molecular properties with the
SDQ mill be given in a forthcoming paper.

TABLE VI. Total energy of atomic helium ground state (lo) (in a.u.).

Diatomic scheme Atomic scheme

Without
screening (1)

Empirical
screening (2)

Variational
screening (3)

-2.75

-2.8547

-2.75 (Hydrogenics)

-2.8475 (Slater' s orbitals)

-2.861 68 (SCF orbitals)
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