Attenuation-coefficient measurements for 3.3- to 165.8-keV photons: Analysis in terms of total photoelectric cross sections

K. Parthasaradhi* and H. H. Hansen

Central Bureau for Nuclear Measurements, Euratom, Geel, Belgium (Received 29 October 1973; revised manuscript received 14 January 1974)

Total photon interaction cross sections at 22 energies in the region between 3.3 and 165.8 keV are determined in the elements Al, V, Cu, Mo, Sn, Ta, Au, and Pb, using high-energy resolution Si(Li) and Ge(Li) detectors on a "good geometry" setup. An analysis of the experimental data in terms of total photoelectric cross sections is presented.

I. INTRODUCTION

The interest in the study of the photoelectric effect has been recently focussed on very low photon energies (<10 keV) in view of the scarcity of, as well as the discrepancies in, the experimental data,¹⁻³ and of the difficulties associated with the theoretical developments. In a recent review article published by Pratt et al.⁴ definite conclusions are drawn only for photon energies above 10 keV. Especially at low photon energies, the photoelectric cross sections can be obtained from the total attenuation coefficient, as the contributions due to the coherent and incoherent scattering processes are very small. Only a few experiments using solidstate detectors for total attenuation measurements at low photon energies (E > 9 keV) have been described.⁵⁻⁷ Hence, in the present investigations, systematic measurements are made on the total photon interaction cross sections for eight elements $(13 \le Z \le 82)$ in the energy region from 3.3 to 165.8 keV (22 energies) using high-energy resolution Si(Li) and Ge(Li) detectors.

II. EXPERIMENTS

The total photoelectric cross sections are determined by measuring the total photon interaction cross section and subtracting the calculated contributions due to coherent and incoherent scattering. The investigations have been restricted to only those cases where the amount due to coherent plus incoherent scattering does not exceed 10% of the total. Measurements were performed with the transmission technique on a "good geometry" setup, as already described elsewhere.⁸⁻¹¹ The photon energies used and their origin are shown in Table I. The radioactive sources were prepared by drop deposition onto metal-coated VYNS foils of about 180- μ g/cm² total thickness or by vacuum evaporation onto a 1-mm-thick copper disk. The strength of the sources was between 20 and 50 μ Ci. Disks of Al, Cu, and Pb having a central hole of

between 0.4- and 0.8-cm diameter were used as collimators. Their thickness was between 0.25 and 1.0 cm. Various of these disks, with different appropriate distances between them, were suitably arranged, depending on the energy of the photon, its origin, and the source strength, in order to define the "good geometry." About 150 foils of the elements Al, V, Cu, Mo, Sn, Ta, Au, and Pb were used as attenuators. They had a diameter of 1.8 cm, and their thicknesses ranged from 100 $\mu g/cm^2$ to 500 mg/cm². They were fixed between two Al rings, and could be placed reproducibly into the photon beam. The photons were measured with a Si(Li) (Fig. 1) or a Ge(Li) detector in combination with an appropriate electronic circuit and a 1024-channel analyzer. The energy resolution of the detectors was 260 eV at 5.9 keV for the Si(Li). and 1.8 keV at 165.8 keV for the Ge(Li) crystal. Typical examples of the pulse distribution of the

FIG. 1. Scheme of the experimental arrangement. As an example, the scale model of the "good geometry" setup for a $20-\mu$ Ci ⁵⁷Co source is shown.

563

Photon energy $E_{\rm ph}({\rm keV})$	Photons	Origin and remarks			
3.3	Np $M \alpha$ x rays	²⁴¹ Am; average energy ^a			
4.8	Ba L x rays	¹³⁷ Cs; average energy			
5.9	Mn K x rays	⁵⁵ Fe			
6.4	Fe K x rays	⁵⁷ Co			
7.1					
8.0		Secondary Cu x rays			
8.9	$\left. \right\rangle$ Cu K x rays	originating from the backing of the ²⁴¹ Am source			
13.9)				
17.8	$\left\{ Np \ L \ x \ rays \right.$	²⁴¹ Am			
20.8)				
26.4	γ rays	²⁴¹ Am			
32.1	Ba K x rays	¹³⁷ Cs			
36.5)				
41.3	Eu K x rays	¹⁵³ Gd			
47.3)				
59.6	γ rays	²⁴¹ Am			
84.3	γ rays	¹⁷⁰ Tm			
97.3	γ ravs	¹⁵³ Gd			
103.4					
122.1	γ ravs	⁵⁷ Co			
136.4) /5-				
165.8	γ rays	¹³⁹ Ce			

TABLE I. Energy and origin of the photons used.

^a Reference 13.

different photons used (of $E_{ph} < 10$ keV), measured with the Si(Li) detector, are given in Fig. 2.

Spectra were measured with and without an attenuator foil placed in between the source and the detector yielding the transmitted and the original photon intensities. As a measure of the intensity, the sum of all pulses belonging to a photopeak was taken. This integrated counting rate was corrected for dead time and background events. Corrections for decay time were applied when necessary. In general, the error introduced by these corrections and by counting statistics did not exceed 1%. Furthermore, events from the interference of fluorescence x rays due to higher energetic photons, the influence of photon attenuation in air, and of possible material impurities of the attenuator foils, and the included scattering events have been considered. The corrections for these effects were calculated as usual.⁸⁻¹¹

The total photon interaction cross sections were calculated from the expressions

$$\mu = -\frac{\ln(I/I_0)}{t}, \quad \sigma_{tot} = \mu \frac{A}{N} \times 10^{+24},$$

where I_0 is the photon intensity without the foil, I is the transmitted photon intensity, t is the foil thickness in g/cm², A is the atomic mass of the element used, N is Avogadro's number (6.024 $\times 10^{23}$ mole⁻¹), μ is the mass attenuation coefficient and σ_{tot} is the total photon interaction cross section in b/atom. The photoelectric cross sections as interpolated from σ_{tot} by subtracting the coherent and incoherent scattering cross sections as interpolated from the tables of Storm and Israel.¹² These authors claim an accuracy of within 3% for their calculated values. Thus, as in the present study, these contributions were always lower than

FIG. 2. Typical spectra of photons with $E_{ph} < 10$ keV, as recorded with the Si(Li) detector in a "good geometry" setup. Counts per channel in arbitrary units are plotted versus channel number. The sources used and their emitted photons are described in Table I.

10%; an additional error of $\leq 0.3\%$ has to be considered for the photoelectric cross sections.

III. RESULTS AND DISCUSSION

In Table II the results obtained in this investigation are shown for different photon energies and different attenuator materials. One set of results comprehends three values: the experimental total photon interaction cross section σ_{tot} (exp), with its overall error; the corresponding theoretical value σ_{tot} (th), according to Storm and Israel¹²; and the experimentally obtained total photoelectric cross section τ (exp). It can be seen from Table II that the agreement between experimental and theoretical values is in general satisfactory. For photon energies above 8.9 keV, the expression $|\sigma_{tot}| (exp) - \sigma_{tot} (th)| / \sigma_{tot} (th)$ is usually less than 5%.

ACKNOWLEDGMENTS

The authors are grateful to W. van der Eijk, W. Zehner, R. Vaninbroukx, and G. Grosse for source preparation and permanent support during the performance of the experiments. Furthermore, they would like to thank J. Van Audenhove, H. Eschbach, and their collaborators for preparing the attenuator foils, and G. Bortels for the computer calculations. The authors would also like to express their thanks to A. Spernol for his support of this work. One of the authors (K.P.) is grateful to the Commission of the European Communities for awarding a fellowship during the present investigation.

II. Photon total inte senting the experime	eraction and photoe ental and theoretic	al total interaction	n and the experime	ental photoelectric c			
AI	Λ	Ğ	Mo	S	Ta	Au	Pb
						575 000 ± 23 000 568 300 572 000	
10 000 ± 400 9560 9530		23 860±960 22 150 23 540				256 000 ± 10 000 237 800 253 000	
5530 ± 120 5320 5090	$\begin{array}{c} 48\ 510\pm970\\ 41\ 530\\ 48\ 370\end{array}$	12 660±250 12 570 12 390	60 300 ± 2400 55 660 59 700	105 200 ± 2100 108 600 104 400	111500 ± 2200 105200 109400	$139\ 800\ \pm 2900$ $140\ 900$ $137\ 400$	
	34 950 ± 700 33 500 34 800		49 100 ± 2200 44 730 48 540	93100±1900 87890 92300	93 700 ± 1900 86 040 91 800	120100±2400 114800 117800	
	25 990 ± 780 25 500 25 870		37 300±2000 33 850 36 800	66 400 ± 1700 66 920 65 680	68 000±2000 66 130 66 200	93 200 ± 2800 88 700 91 100	
2530±50 2180 2200	18 980 ± 380 18 450 18 870	5700 ± 110 5400 5490	26160±520 24270 25710	49 200 ± 970 48 160 48 520	49 700±990 47 990 48 100	$65\ 100 \pm 1300$ $65\ 380$ $63\ 100$	80300±1600 76130 78200
1880±40 1610 1590	14 370 ± 290 14 120 14 270	4230±90 4130 4050	19420±390 18470 19000	35 300 ± 700 36 730 34 740	38300±770 37100 36700	51 260 ± 1030 50 730 49 480	62 100 ± 1200 58 880 60 200
449 ± 9 440 427	4160±80 4150 4096	9670 ± 190 9550 9558	5570±110 5550 5298	11 320 ± 230 11 000 10 930	49 900 ± 1000 49 000 48 897	54 310 ± 1090 56 387 53 142	48120±960 46000 46896
218±4 214 201	2080±40 2060 2031	4940±100 4800 4859	2860±60 2800 2694	5390 ± 100 5600 5091	26830±540 25500 26132	34 530 ± 690 34 000 33 643	40960±820 39500 39990
	1370±30 13 4 0 1327	3430 ± 70 3250 3359	12 270 ± 250 12 000 12 108	4000 ± 80 3775 3754	16 730 ± 340 17 000 16 125	23 080 ±460 22 900 22 356	27900±560 27000 27177
	687±14 675 652	1770 ± 35 1700 1707	6220±120 6250 6092	2060±40 2050 1880	9710±190 9300 9260	12 140 ± 240 12 300 11 592	15120±300 14500 14573

K. PARTHASARADHI AND H. H. HANSEN

	Pb	8770±175 8600 8352				1745 ± 17 1730 1536		2015 ± 20 2040 1908	1740 ± 17 1750 1643	1160 ± 12 1160 1078	867 ± 9 870 794	534 ± 5 540 476
	Au	7710±150 7500 7293	5390±110 5250 5031	3990±80 3850 3695	2790±60 2700 2528	1485±15 1475 1300	2620±25 2610 2499	1805±20 1800 1708	1546±15 1540 1456,	1027±10 1020 952	784 ± 8 780 722	475±5 480 419
	Ta	5745 ± 115 5500 5388	3780 ± 80 3800 3486	2865 ± 60 2790 2631	2140±45 2050 1947	1109±11 1080 963	1990±20 2000 1889	1394±14 1370 1311	1175±12 1160 1099	785 ± 8 780 720	597 ± 6 600 539	
TABLE II (Continued)	Sn	7050±140 6800 6904	4829±100 4800 4699	3550 ± 70 3480 3446	2500 ± 50 2420 2407	1305±13 1317 1236						
	Mo	3780±80 3750 3684										
	Cu	954 ± 19 945 909										
	Λ	403 ± 8 395 375										
	AI											
	Energy (keV)	32.1	36.5	41.3	47.3	59.6	84.3	97.3	103.4	122.1	136.4	165.8

ATTENUATION-COEFFICIENT MEASUREMENTS FOR...

<u>10</u>

567

- *Euratom Research Fellow on leave from the Department of Nuclear Physics, Andhra University, Visakhapatnam, (A. P.) India.
- ¹J. I. Hopkins, J. Appl. Phys. <u>30</u>, 185 (1959).
- ²R. D. Deslattes, AFOSR Report No. TN-58-784, 1958 (unpublished).
- ³A. J. Bearden, J. Appl. Phys. <u>37</u>, 1681 (1966).
- ⁴R. H. Pratt, A. Ron, and H. K. Tseng, Rev. Mod. Phys. <u>45</u>, 273 (1973).
- ⁵J. L. Perkin and A. C. Douglas, Proc. Phys. Soc. Lond. <u>92</u>, 618 (1967).
- ⁶W. Panzer, F. Perzl, and G. Drexler, Paper 42, Premier Congrès Européen de Radioprotection, Menton, France, 1968 (unpublished).
- ⁷L. C. Henry and T. J. Kennett, Can. J. Phys. <u>49</u>, 1167 (1971).

- ⁸J. H. McCrary, E. H. Plassmann, J. M. Puckett, A. L. Conner, and G. W. Zimmermann, Phys. Rev. <u>153</u>, 307 (1967).
- ⁹A. L. Conner, H. F. Atwater, E. H. Plassmann, and J. H. McCrary, Phys. Rev. A <u>1</u>, 539 (1970).
- ¹⁰K. Sivasankara Rao, B. V. Thirumala Rao, B. Mallikarjuna Rao, V. Visweswara Rao, and K. Parthasaradhi, Phys. Rev. A 7, 1001 (1973).
- ¹¹K. Sivasankara Rao, B. V. Thirumala Rao, B. Mallikarjuna Rao, and K. Parthasaradhi, Nuovo Cimento A <u>13</u>, 267 (1973).
- ¹²E. Storm and H. I. Israel, Nucl. Data A <u>7</u>, 565 (1970).
- 13 J. S. Hansen, J. C. McGeorge, D. Nix, $\overline{\mathrm{W}}.$ D. Schmidt-
- Ott, I. Unus, and R. W. Fink, Nucl. Instrum. Methods <u>106</u>, 365 (1973).