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Large-angle inelastic scattering is considered using the Glauber approximation for the
scattered wave function, but without the additional approximation of purely transverse linear
momentum transfer. At large angles, the electron-proton. interaction dominates and has
Rutherford q 4 behavior. Furthermore, with the direction of q unrestricted the Ly-o,' radia-
tion is found to be, in general, elliptically po1.arized.

I. INTRODUCTION

Previous authors" have discussed the advan-
tanges of the Glauber' approximation for calcu-
lating total and differential electron-hydrogen
cross sections for both elastic and inelastic scat-
tering.

The Glauber scattering amplitude is one in which
the exact scattered wave function 4K is replaced by
a phase-distorted plane wave, the distortion being
calculated approximately according to

g
y-„=expi K R —(hv) ' V(R, r)dz u (r),

where V(R, r) is the interaction potential between
the incident particle and the target, R is the co-
ordinate of the incident electron, r is the coordi-
nate of the atomic electron, and g, (r) is the
ground-state wave function. This approximation
to 4„- resembles the eikonal approximation for an
electron scattered by a static potential V(R, r),
in the approximation that the electron is scattered
through small angles. It thus neglects, in zeroth
order, large-angle elastic scattering and all in-
elastic scattering. Such processes can„of course,
be calculated in first order using Eq. (1) as a
zeroth-order approximation to 4„-. This will be
appropriate provided Eq. (1) is a good approxima-
tion to the exact wave function in the regions of
space most heavily weighted in the matrix element

Z(K', K) =(e„-.
i Vie„-),

where C K. = e'K '
~uz(r). Note here that Eq. (2)

places no restrictions on K' or K, i.e. , Eq. (2) can
be used to calculate inelastic scattering amplitudes
or large-angle elastic scattering.

Since Eq. (2) places no restrictions on the values
that K' and K can have, the momentum transfer
q=K-K' can be quite large, indeed it may be
comparable to K, and Eq. (2) will still be a good
approximation provided that the scattering is

dominated by the small-angle elastic contribu-
tions, which are well described in zeroth-order
by Eq. (1), or by small-angle inelastic scattering
in which the energy loss of the incident particle
is small compared to its initial energy. This
feature is common to both the Glauber approxi-
mation and the Born theory, where the zeroth-
order approximation to 4„- incorporates no scat-
tering at all.

The original formulation' of the Glauber theory
also incorporated an additional approximation,
namely, the assumption that q was perpendicular
to K. This approximation is only valid for small-
angle elastic scattering and very-high-energy
intermediate-angle inelastic scattering, consid-
erably restricting the range of applicability of the
theory. Indeed, the restricted Glauber approxi-
mation including this latter approximation does hot
apply to zero-degree inelastic scattering although
the Born theory does. Substantial mathematical
simplifications follow from this assumption; thus
various prescriptions have been given for extending
the Glauber amplitude to large angles, while keep-
ing the mathematical simplicity of the restricted
Glauber approximation. The simplest extension
is to choose the axis of integration i in the phase
factor so that q S =0. Only this choice gives sub-
stantial overlap of the conventional Glauber ap-
proximation with the Born. 4 While this extension
is quite reasonable in that it forces agreement
with the Born at high energy and fixed momentum
transfer but preserves the mathematical simplicity
of the restricted approximation, it has its own
unsatisfactory features. Firstly, the approximate
wave function Eq. (1) requires that z lie along K,
thus q aliis in g.eneral inconsistent with Eq. (1).
However, more general eikonal approximations
might be used to justify the condition q& z but it
is difficult to see how q L z can be justified for
zero-degree inelastic scattering, where K, q,
and K' are collinear. Here the axis of integration
is perpendicular to any reasonable trajectory of
scattered particle. Secondly, and more important-
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ly, some unrealistic physical consequences con-
cerning the polarization and distribution of decay
radiation result from the symmetry of the Glauber
transition amplitude, which does not seem to have
a sound physical basis.

With the assumption that q z =0, we ma. y inte-
grate the amplitude Eq. (2) by parts to obtain'

F(i -f, q) = (iK/27()(+&(r) I
I'(r) Iu, (r)), (2)

where 1'(r) is the Glauber transition operator,

)(ps' b d2$

and b is the projection of R on q. The transition
operator is invariant under two reflections: re-
flections in a plane perpendicular to Kx K' and
reflections in a plane perpendicular to z. The
first symmetry is a symmetry of the exact transi-
tion operator whereas the second is a consequence
of a,ssuming q 2 =0. This additional symmetry
has significant physical consequences, in particu-
lar it implies that electron-excited Ly-a radia-
tion detected in coincidence with the scattered
electron is linearly polarized perpendicular to z
and has no circular polarization. Section IIIB
discusses this point in more detail.

Since these various unsatisfactory features
stem from choosing an axis of integration z per-
pendicular to q, rather than any inherent unsuit-
ability of the approximate wave function itself, it
seems of interest to investigate Eq. (1) without
the additional restriction q ~ K=0 or the arbitrary
reorientation of the original axis of integration.
The unrestricted Glauber approximation will auto-
matically agree with the Born for large K but fixed
q. Byron' has carried out such an investigation by
evaluating the six-dimensional integral in Eq. (2)
directly by Monte Carlo techniques. His numerical
results show no marked improvement over the
conventional approximation, "but it seems to us
that the unrestricted approximation warrants fur-
ther investigation, particularly since it may yield
some circular polarization of decay radiation which
the Born and the conventional approximation can-
not.

We have therefore investigated the scattering
amplitude Eq. (2) with the approximate wave func-
tion Eq. (1), but without the additional assumption
q -S =O. We find that the six-dimensional integral
in Eq. (2) may be written in terms of a two-dimen-
sional integral suitable for numerical integration.
We do not carry out the numerical integrations
hexe, rather we concentrate on the formal aspects
of this modification to the Glauber approximation.

The circular polarization of electron-excited

radiation is parametrized by the expectation value
of L on the state function'

where I' is the scattering amplitude for exciting
the magnetic substate described by the wave func-
tion g . Now (4

ILIA�)

must vanish if all the am-
plitudes in Eq. (5) are relatively real. Since the
approximate wave function Eq. (1) is phase-dis-
torted and since the distortion factor singles out
the z axis, we expect that this distortion will
manifest itself by an m-dependent phase factor in
Eq. (2), with a consequent nonzero value for
(0 I LI 4). Since (4 I

f I0 ) relates to the circular
polarization of the collision-excited light, this
general prediction of our modified Glauber ap-
proximation can be experimentally studied. The
experimental significance of (O'

I
L I% ) will be dis-

cussed more completely in See. III.
A second aspect of the Glauber theory, which

we consider here, is large-angle inelastic scat-
tering. Thomas and Gerjuoy' find that the large-
angle (large q) 1s-2s inelastic scattering cross
section varies as q, i.e., it varies as the Ruther-
ford cross section. In contrast their 1s-2p cross
section varies as q

' for large q. Both cross sec-
tions are considerably larger than the Born. Their
enhancement was attributed by Tai et gl. ' to elec-
tron-proton interaction effects in Eq. (2), which
are present in the Qlauber approximation, but not
in the Born.

This interpretation seems reasonable, but can-
not be verified directly, since Eqs. (3) and (4) for
the Glauber transition amplitude do not permit
separate evaluation of the corresponding electron-
proton and electron-electron interaction matrix
elements (~; Il'.,I+;) and (~; Il'„I~-,) in Eq
(2), where V, and V„are the electron-proton
and electron-electron interaction potentials and V
is the sum V= V,~+ 7„. We find that with the as-
sumption q, =0 and with our order of performing
the integration in Eq. (2) these separate integrals
diverge and only the matrix element of the total
interaction potential converges to give the result
obtained by Thomas and Gerjuoy.

%e find, however, that with q, 40 the separate
integrals converge, and upon evaluating them for
large-angle 1s-2p scattering to first order in in-
verse powers of q' that the only non-negligible
term varies as q

2 and arises from the electron-
proton interaction, thus indicating that this term
dominates the large-angle inelastic scattering.
Hence we find the cross section for exciting the
2p states has q

4 dependence a,s opposed to the
q

6 dependence of the conventional Qlauber result.
The following is an outline of this paper. Section
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II sketches the derivation of the double-integral
expression for the scattering amplitude, which for
q, =0 reduces to Eq. (28a) of Ref. 7. Section III
sketches the method of approximately evaluating
the integrals for large-angle scattering with
arbitrary excitation and presents the results for
large-angle scattering with 2p excitation. Section
Iv summarizes the principal results of this paper.

II. DERIVATION OF INTEGRAL EXPRESSION

A. General form

Our modified Glauber approximation to the
scattering amplitude for an electron colliding
with a hydrogen atom in initial state i and exciting
it to final state f is'

t

F(i-f, q) =(-2m/4vh') J
e'[ aV(R, R')

2
xexp (-i/gv) Vde sou, dRdr,

(6)

with

V(R, R') = e'(1/R' —1/R), (7)

C«exp(-pr +iy ~ r) . (8)

Any product of the bound-state wave functions can
be represented (Cz,. is the appropriate normaliza-
tion constant) by a linear combination of terms
generated by differentiating Eq. (8) with respect
to p. and the components of y after which y is set
equal to zero. Hence the scattering amplitude
Eq. (6) can be written as

where mv = gK is the incident electron's momentum,
R and r are the coordinates (relative to the nucle-
us) of the incident and bound electrons, respective-
ly, R' =R —r, q is the momentum transfer K —K',
and u, and u& are the initial and final hydrogen
bound states. Here z is parallel to K.

In order to evaluate Eq. (6) for arbitrary hydro-
genic states we replace uzu, with the expression

2
F(i-f, q) =( 2m/4vk -)C&,D(p, y) ]

(e'q' V(R, R') exp ( i/kv) V-dz exp( Vr+-iy ~ r) dRdr&
oo y~ 0

z(i ft))=( z|)/2lr)cID-(zy)
I

-f ,.e' '
, ()/)l' —1/R)e p[iq) (z' —z') —iq n( )zz)]

exxp(-pr+iy r)dRdr
7=0 y

where ]7=e'/hv. If q is given a small imaginary part i6, then using the definition of the gamma function
we may write

(10)

exp [i]7ln(R' -Z')] = (R' -Z')'"

where D(i], , y) is the differential operator which generates the required wave functions when operating on

Eq. (8). The conventional Glauber scattering amplitude can be obtained from Eq. (9) by setting q, =0.
Inserting the explicit form Eq. (7) for V(R, R') and evaluating the integral in the phase factor of Eq. (9)

gives the result

We emphasize here that the use of a limiting pro-
cedure in Eq. (11) is only a convenience. One
could as well employ the representation

(R' —Z')'" = [I (-iq)] '
dA. A, '"(it' —Z')

4O

X ~(s'- z')e

which requires no limiting procedure. Since Eq.
(11) has a well-defined meaning and gives simpler
formulas we use it here. In fact the second rep-

F(i f, q) = ( Kq/2v)C&, D(i], , y )(I-' I), —(12)

where the expression for I', the integral of the
I/R' term in Eq. (10), is given by

resentation may be obtained from the first by
integrating by parts and then setting 5=0. When
dealing with integrals that diverge at A. =O if 5=0,
one may integrate by parts and then set 5=0.
Substituting Eq. (11) into (10), taking the Fourier
transform of the factors containing g', and then
integrating over r we obtain

(13)
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and the expression for I, the integral of the I/R
term in Eq. (10), is similar. The integral over
dk in Eq. (13) is readily accomplished using
Feynman integration. We obtain

oo plI'= 2w[I'(-i(7)] ' — ckX '" '
i dXA '—

d JL o ~o

I' =2 '"w'[I'(-iq)) 'F(1 -ig)4p, d
dp,

00 1
I)) 1 dX X 1 (A2 +q 2/) d0 I

0 0

x(A-iq,") '",
and similarly

(16a)

dR R ' exp -Ap+iq' ~ R & -Z

(14)
I=2' '"w [F(-i)))] 'I'(1 —zq)4p,

d 2

dp

q' = q —iX(1 —X)z + Xy ~

(15a)

(15b)

Performing the R integration in Eq. (14) using
parabolic coordinates' gives

where A and q' are defined by

A=[ '(1 —X)'+»XX(I —X)y. +V'X+y'X(1 —X)] ',
oo 1

x dkA. '" dXX '(1 —X)A
'

0 0

x (A2 + q/2)(TI 1(A iq/ ) (16b)

The result of substituting Eqs. (16a) and (16b) into
(12) is the desired double-integral expression for
F(i-f, q),

( 2—

F(i f, q) = -2' '"v[1"(-iq)] 'I'(I i)))Kr)C-&, D(p, y)4y, ,

()0 1

x d11, '" '
J d// '[0(1,0, 0, 0) —0'(1, 1,0, 1)]I,

0 0
(17a)

where

6:(m, p, r, s) = A.'(I —X)'A ~(A'+ q")'" "(A i q,') —'" " . (17b)

Eq. (17a) expresses the scattering amplitude in terms of double integrals which can be evaluated numer-
ically for q, 000. The differentiations implied in Eq. (17a) may be evaluated using the recurrence relations

and

dp,
, 0'(m, p, r, s) =X[(--,'p) p(m, p + 2, r, s) + (i)7 —m) p(m + 1,p, r, s) —2 '(ig +r) 5:(m, p + 1,r + 1, s)],

6(m, p, r, s) = X[-py„(1 —X)6(m, p+2, r, s) +2(i(7-m)(q„+y, )F(m +1,p, r, s)
d

4 g

—(iq+r)y, (1 —X)6'(m, p+1, r+1, s)],

(18a)

(18b)

6(m, p, r, s) = X((-i)p [8(m, p +2, r, s + 1) —iy, (1 —X)F(m, p +2, r, s)]
d

Z

+2(iq -m)(q, +y,)6:(m +1,p, r, s) —i(i)7+r)

x [6(m, p + 1,r + 1, s + 1) —iy, (1 —X)P(m, p + 1,r + 1, s) —6'(m, p, r + 1, s) ]] . (18c)

Since the dependence of P(m, p, r, s) on y, is the
same as on y„Eq. (18b) also applies for y .
Equations (18a)-(18c) show that evaluating the
derivatives in Eq. (17a) produces a number of
integral terms of the form

, /, x, *)- I 0» '" '
0

1

dXX '(I —X)"0(m, p, r, s),
0

(19)

where g is the total number of differentiations
in Eq. (17a) and the integers h, m, p, r, s have the
possible values h &0, m &1, p& s&0, r&0.

B. Small-angle elastic scattering

For em&1-angle elastic (1s-1s) scattering,
where the conventional Glauber approximation
is valid, we can set (1,=0 and show. that Eq. (17a)
reduces to the algebraic expression of Thomas
and Gerjuoy, ' obtained from the conventional ap-
proximation.
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Note that Eq. (8) represents u j~uj for 1s-1s
scattering when

jj

=2/aors

C~j —(jja,)

y=0,

(20a)

(20b)

(20e)

where

x[q'+) 'x]'" '[A -&(I -x}1 '", (21)

A = [&'(I —x)'+ } 'x]"'.
The change of variables I =X(I —X)()j'X) ' per-
mits I to be factored so that

f l
I=) ""q'j" *

j~ dxx '" '(I-x}j"(I+) 'x/q')'" '

@~-~q-s 1 t 1+~2 -a/2 1+F2 u'2

Q

(22a)

where a, is the Bohr radius. So with D(jj, y) =1,
Eq. (1Va) together with Eqs. (20a)-(20c) represents
E(1s - Is, q). With the use of Eqs. (15a) and (15b)
in Eqs. (1Va) and (17b) the double integral of Eq.
(1Va) becomes (q, =0)

Oo f'1
I= dxx @ ' 'I dxx '[I -x(1-x)A ']

Q

Eq. (12) correspond to the terms with 1 and
t(1+i') '~' in the first bracket of the I integrand.
For large t the integrals representing I' and I
both go as t ', thus the separate integrals diverge
logarithmically but the total I' -I converges.
Hence q, 40 is a necessary condition for unam-
biguously evaluating the individual electron-elec-
tron and electron-proton contributions to the
Glauber scattering amplitude. In Pec. III we
evaluate the separate electronic and nuclear con-
tributions to 1s-2p scattering at large angles
where jj/q, «1.

III. LARGE-ANGLE APPROXIMATION

For high-energy scattering at large angles, one
can obtain an approximate scattering amplitude
by expanding the integrand of Eq. (17a) in powers
of jj,/q and keeping the lowest-order terms. We
have done this for 1s- 2p scattering to determine
the qualitative differences from conventional
Gla,uber results.

In the Cartesian coordinates defined following
Eqs. (42) an orthonormal basis for the 2p state
is defined by

u(2p, ) =ijj ~'(2a, ) 'i'»exp(-r/2a, ), (25a)

with similar expressions for u(2p„) and u(2p, ). The
normalized 1s wave function is

The integral over X can be written as a hyper-
geometric function" so that u(ls} = jj ~'(a, ) ~'exp(-r/a, ) . (25b)

1
2jqqjjjj -2d-XX-jjj-&(I X)jjj(1 +)X/jnq) 2j

Q

=(-I)™1'(-ij))i'{I+ij))q'(-p, '/q') '"

x,E,(1 —i j}, ij};1; --)j'/q'), (22b)

while the change of variables jj= [(I+I') ' —i]'
transforms the integral over t so that

=2'" dv 1 —v '" '=-2'" sg '. 23

Combining Eqs. (1Va) and (1Vb) and Eqs. (20)-(28}
we find

+(Is- ls, q) = (-1) (-ji) K2qa, 'I'(1 - ij7) I (1+ij})

2x, [» j",E,(l i.q, iq; 1—; »)], -(24)

with»= -jj,'/q'. This is equivalent to Eq. (28a)
of Thomas and Gerjuoy.

In Eq (22a) the e.lectronic (I') and the nuclear
(I) contributions to the scattering amplitude of

Comparing Eq. (8) with Eqs. (25a) and (251)
shows that the 1s-2p„and 1s-2p, scattering
integrals can be generated by differentiating the
integrand of Eq. (17a) with respect to y, and y,
and setting y =0. The result of these derivatives
and those with respect to ij' [ef. Eq. (17a)] is a
number of integrals of the form of Eq. (19a) with
the parameters g=3, fg =0, 1 &m &4, s &p & s+5,
0 ~s ~2, and 0 &y ~3.

Referring to Eqs. (15a) and (15b) one sees that
the integrand of Eq. (1Va) is degenerate with re-

,spect to y when y = 0. Any y dependence is intro-
duced by differentiating with respect to y„[cf.
Eq (18b)] wh. ieh means the integrands have the
same parity as the excited state. Since u(2p, ) is
odd, the integral over dr for 1s-2p„excitation
is zero.

A. Rutherford term

In the high-energy limit p'/q' «1 and for q, =q,
one may evaluate the integrals approximately by
expanding the arguments in powers of p, /q. Thus
we write

(A'+q")j" ~=[q' 2ixq, (1 —-x)]j" ~+0(u'/q'),
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(A -iq,') '" "=( iq-.) '" "Il —(ir}+r)( iq.-)
'

x [A —g(1 X)] +O(p, '/q')], (26b)

f(m, p, s;e;X)=X ' "'(X-ie)'" "(I+1.')"
x,F,(p/2, 1+i q; 4+i@;x'(I +X') '),

to second order in g/q.
Substituting these approximations into Eq. (19)

with the change of variable t = A.(1 —}t) we have
and

(29d)

I(3;0;m, p, r, s) =H(m, p, r, s) —(ir}+r)
xII(m, p —1,r+1, s)

+(iq+r)H(m, p, r+1, s+1),

where

(27}

e = 2q, p/q'. (29e)

For large angles e ~ p, /q which is a small num-
ber for high energies. So to be consistent with the
approximation in Eqs. (26a) and (26b), H(m, p, r, s)
should be approximated by the first two terms of a
series in powers of c. The second-order McClau-
rin expansion of Eq. (29d) is

H(m, p, r, s) = (-iq, )-'v-"I'(3)r(1 +i') [I'(4 + i@)]-'

x d$ t-'')-"~~ q' 2~q g
~~™

0

f(m, p, s; e;A, ) =f(m, p, s;0; x) —(iq —m)(ie)

xf(m, p, s+1;0;x),
so Eq. (29c) implies

(30)

x,F,(p/2, 3; 4+irt; —p, '/t') . (28) I(m, p, s; e) =I(m, p, s;0)

lt, p, ; I= I f(m, p, ;a;x)dz,
0

(29c)

Applying the analytic continuation formulas" and
the change of variables X= }J./t we find

H(m, p, r, s) = c(m, p, r, s; e)l(m, p, s; c), (29a)

where

c(m p r s. e) —~-jq+s-P( iq )-il1-r(q3)IT)-m

xF(3)r(1+iq)[r(4+i'}] ', (29b)

—(i7}-m)(ie)I(m, p, s+1;0). (31)

Note that f(m, p, s; 0; A.) is singular at x = 0 for
p & s, but integration by parts produces integrals
which can be evaluated to the lowest order in c.
We found that terms with p ~ s do not contribute
to the scattering amplitude in first and second
order.

When p & s, the change of variables x = X'(I +A.') '
converts I(m, p, s; 0) to a form which appears in
integral tables. " The result is

I(m, p, s; 0) = [I'(—,'p)] 'F(-,'(ig+p —s))I'(—', (s —iq)),F,(~p, I+i7},—,'(iq+p —s); 4+i'; —,'p; 1)

I ( (17/+p —s))I ( (s —1'g))F(—(6 —it) —p +s))F(4+ifj)
2F(3)r(-,'p)r(-,'(8+i@ —p+ s)) (32)

(33a)

(33b)

(33c)

(33d)

Using Eqs. (27)-(31) we find that the electronic and nuclear contributions (where p. = ~ao) to the ls-2p,
and 1s- 2p, scattering amplitudes are

E(ls —2p„q)=2'p, '(2v) '(I -i')'(3+i'd} 'I'(I+iq)I'(--,'iq)I'( —,'(I -iq))q'Kq„q '(-ic) '" ',
E(ls —Sp„q) =Z2'p, '(2v) 'I'(I+iq)I'( —', (I -iq))1'(—,'(2 —iq))Kq'q '(-ie) '" ',
N(ls —2p„q) =t2'g '(2v) (1 —zq)I'(I+i@)I'(—', (1—iq))r(-,'(2 2Yf))K7pq„q -( if) '", -
N(ls —2p„q)=-2g '(2s) '(3+i')I'(1+iq)I'(-,'(2-tq))I'(-,'(I —iq))Kr}'q '(-ie) '"

+2' '"p '(2w) '(I -iq)'r(1+i@)r(-', (I -iq))r(-,'(2 ig))Kq'q-'( te) '""-
—i2 p '(2v) '(1 —ig)I'(1+iq)I'(—'(1 —ig))F(—'(2 —iq))Kt7 q (-ie) '" '

—2p. ~(2v) '(1 —iq)F(1+i@)I'(—,'(1 —iq))N —', (2 —iq))Krt'q ( ie) '""-
+i2'p, '(2v) 'I'(I+i@)I'(—'(1 —iq))I'(—'(2 —iq))Kq'q '(-ie) '" '.

The total scattering amplitude for 1s-2p„or
1s-2p, is the sum of the electronic and nuclear
contributions from Eqs. (33a)-(33d). Since e —2p/
q when q =q, the first term of N(ls-2p„q) is
proportional to q ', as is the Rutherford scatter-

I

ing amplitude, while for q, -—q, all other terms
of Eqs. (SSa}-(33d)are at least proportional to
q '. So to lowest order only the electron-proton
interaction is important and only the 2p, state
is excited. In contrast, the proton contribution
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is identically zero in the first Born approximation,
while the 2p, excitation is identically zero (as a
result of taking q, =0) in the restricted Glauber
approximation. ' Our asymptotic expansion as-
sumes fixed K but large q. For large q but small
fixed energy loss we have q -2k sin(8/2), thus our
expansion is in powers of sin(8/2) '. Since the co-
efficients in the expansion depend upon g ~K ' we
cannot be certain that the expansion is also an ex-
pansion in inverse powers of K for large K but
fixed e. We can show, however, for fixed 8 but

large K, that the electron-nucleus amplitude de-
creases at least as fast as K ', and the electron-
electron terms as K '. The demonstration is quite
tedious, but to support the conclusion that the
electron-nucleus term dominates for large K and

fixed 8 (which automatically ensures p, '/q' «1) we

sketch the proof for the electron-electron term.

The arguments also apply to proton-hydrogen-
atom scattering provided the incident proton
velocity (not K) is large.

Our proof is conceptually very simple. We

calculate an upper bound to the integrals
I(g; 0; m, p, r, s) by replacing the argument of the
double integral by its absolute value. Since g oc-
curs only in the phase factors in Eq. (17b) these
upper bounds essentially depend only on q. The
main effort consists of enumerating the relevant
terms and the dominant power of K in their coef-
ficients obtained by applying the recurrence rela-
tions Eqs. (18a)-(18c}to Eqs. (17a) and (17b).
These are tabulated in Table I. Only terms with

s = 0 or 1 appear. We first co'nsider the bound

for s=1 ~

With the change of variables t = A(1 -X)/(gv )t} we
have for I(3;0;m, p, r, s) in Eq. (19) the result

oo 1

I(3;0;m, p, r, s) =g' ~ '" dtt '" "'(t +1) ~ d)t(1 —X)'"X' ~ "+ '(q'+p')t —2itq, p&g)A™
0 0

x].[(t +1} —t]~~X —tqg '" '. (34)

For s=1, the integral is bounded by

00 1

dt(t'+1) ~ '
d)t)t [(q'+V'X)'+4t q'.u'X] '([(t'+1) '- t] u'X+qg "

0 0

2tq, pv X -qg
x exp -g arctan —

2 2 exp g arctanq+px (35)

Since

q'~(q'+t X)'+4t'q!} 'X

and

q. -[(t +1) —t] } X+q.

Equation (35) is easily seen to be bounded by

(36a)

(36b)

TABLE I. Terms in the electron-electron matrix
element.

Dominant
coefficient

e2 1l' 0 ~ & Pq 2 mq
&0

dt(t'+1) ~ ' for p & 2.

(37)

For the term with p =1 and m =3 it is necessary
to integrate over y before applying the bound (36a).
The result is still a bound of the type (const)
q ~q ". Combining the factor Kg' from the co-
efficient of the integrals in Eq. (17a) with the
factor of q from the first column in Table I we
see that all terms with s =1 go as Kg'q 'fx: K '
for large K and fixed e. For s =0 we must first
integrate by parts according to our discussion of
Eq. (11}and then apply the bounds. The integration
by parts introduces a factor (-iq) ', but otherwise
the bounds are similar to Eq. (37). We see that the

'QQg ~ RQg
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Table entries with s=0 all decrease as K ' or
faster. Since the first tex'm in our asymptotic
expansion of the P, nuclear matrix element goes
as Zq'q ' we conclude that the nuclear Rutherford
term dominates for large K and fixed scattering
angle. Note here that bounds of the form Eqs.
(36a) and (36b) and (37) also apply to the individual
terms in the expansions of Eqs. (26a) a,nd (26b).

The presence of a Rutherford term multiplied
by some power of q in the excitation amplitude at
large angles is expected on physical grounds since
large-angle scattering at high energies requires
considerable momentum transfer to the atom as a
whole. For bound states most of the momentum is
taken up by the nucleus, independent of whether
the atom gets excited in the process. This trans-
fer of momentum is most efficient if it is trans-
ferred directly to the nucleus, rather than to the
bound electron and then to the nucleus. 'The direct
transfer is described by the Rutherford formula,
thus in our expression for the scattering amplitude
we expect a term corresponding to the Rutherford
amplitude q '. Thus, in agreement with Tai et
g/. ,

' we find that large-angle scattering is domi-
nated by electron-nuclear effects, furthermore
we trace these effects to the electron-nuclear
term in Eq. (10).

We may understand the dominance of the elec-
tron-nuclear term by examining Eq, (10}ln detail.
The electron-nuclear interaction enters into both
the potential 1/8' —1/R and the phase factor. We
expect large momentum transfex to corresyond
to close collisions with the nucleus, i.e., with
small g. For small g the phase term oscillates
rapidly for fixed r. The oscillation tends to de-
crease the contribution from small 8, for both
the 1/8' and 1/R terms. This decrease is partial-
ly compensated by the increase of 1/R in the elec-
tron-nucleus term, but there is no corresponding
compensation for the 1/R' term at fixed r.

B. Polarization of radiation at large angles

Recently, experiments have been performed
which detect the radiation emitted by a collision
excited atom in coincidence with a scattered par-
ticle."" These experiments promise to give
detailed information on the departure from the
Born approximation. The polarization and angular
distribution of the emitted radiation are of par-
ticular interest. We will discuss these types of
measurements in terms of the "orientation" and
"alignment" parameters commonly used, e.g. ,
in optical-pumping work. " The relationship of
these parameters to scattering amplitudes and to
experiment will be briefly reviemed. Detailed
discussion may be found in several works. 6 '6 "
We will follow the development of Ref. 6.

The intensity of radiation is proportional to the
squared matrix element

Q I(+Ie rl+..)I',
where 0 is the polarization of the emitted light,

is a wave function of the state reached in the

decay and 4 is given by

Equation (38) has the structure of the expectation
value of the operator

Q r'Ie )(e Ir „

which is a second-rank tensor. According to the
Wigner-Eekart theorem the irreducible compo-
nents of this tensor are proportional to the ir-
reducible components of the tensors constructed
from (R~ ~ L)(L ~ e) where L is the orbital-angular-
momentum operator. Thus

f~ Q g h 1q [all (g )g [s(y
I T l'a]

I @)
k ~ q'

(41)

fl =(ply„le)/C,

&'o' = (g I 3L,', —f.'
I g)/c,

w; =(qII.„I.,+r.,r,, Iq)/c,

x;,'= (yI I,'„I,'„Iq)/c, -

(42a)

(42b)

(42c)

(42d)

where Pg
~k~ is a constant depending upon the angular

momentum of the initial and final states, Q~'~{e)

is an irreducible tensor depending only on the
polarization and direction of emission of the ob-
served photon, g~k~ is a depolarization factor rela-
ting to the fine and hyperfine structure of the initial
state, and T '~ is a, tensor constructed from the
elements of L. Equation {41)is to be averaged over
all directions of the scattered element in a non-
coincidence experiment, but is not averaged when
the electron and photon are detected in coincidence.
Here we neglect the spin of the electron, which is
also normally averaged over. Explicit equations
for coefficients of T~~l in Eq. (41}may be found in
Ref. 6. We concentrate on the values of (4 I

T~'~ I4 }
as calculated with Eq. (39) using our asymptotic
amplitudes for I", which are to be compared with
similar quantities extracted from experiment,
when such data becomes available. "

With C=l(f+1)P IE I' (where l is the orbital-
angular-momentum quantum number of the excited
state} the alignment and orientation parameters of
the excited states of hydrogen are defined' to be
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where the coordinate system is chosen with z
along K, y along KxK' and x perpendicular to z
and y.

These quantities are the only nonvanishing com-
ponents of tensors of rank 0, 1, and 2 constructed
from the elements of K. The other components
vanish since they are not invariant to reflections in
the scattering plane. The conventional Glauber
transition operator is also invariant to reflections
in a plane perpendicular to z. Since 0,'" and A', +

change sign under this operation, they vanish when
is approximated by the conventional Glauber

amplitudes. Our modified amplitudes do not have
this additional symmetry so that our 0,"and A', +

may not be zero. Now 0,"' is the only axial vector
quantity in Eq. (41), thus a measurement of this
quantity must incorporate an axial vector. Such
an axial vector is the axis of a circular polarizer.
Since 0'," is the only quantity which changes sign
when the axial vector L,„ is reversed, the circular
polarization, which is proportional to the differ-
ence of two signals with the direction of the axis
of a circular polarizer reversed, is also propor-
tional to 0,"'.

When Ly-n light is observed perpendicular to
the scattering plane in coincidence with the scat-
tered particle, we find that the circular polariza-
tion P, relates to 0,"' explicitly by

P, = (42/25)01 ',
in the approximation where hyperfine structure
is neglected. In the absence of fine structure we
have P,=20;", thus the factor of 42/25 incorpo-
rates a slight depolarization due to fine structure.

Since excitation of the 2p, state dominates for
p/q, «I, to first approximation the alignment
parameter A;" of Eq. (42b) is unity which implies
maximum linear polarization along the incident
beam direction. This corresponds to the Born
prediction since q is approximately parallel to the
z axis.

In second order, other amplitudes contribute.
In contrast to the Born approximation and to the
conventional Glauber approximation the 1s -2p„
amplitude differs in phase from the 1s-2p, am-
plitude. In this case all the parameters of Eqs.
(42a)-(42d) are nonzero including the orientation
parameter 0,"' which relates to the circular polar-

TABLE II. Orientation parameter 0&" as a function
of scattering angle for 1s 2p electron-hydrogen exci-
tation at 100 eV.

Angle
(deg)

80
100
130
160
170

0.208
0.158
0.0919
0.0353
0.0176

ization of the decay radiation (cf. Table II). The
orientation is small but nonzero. Numerical cal-
culations (now in progress) at smaller angles and
lower energies are desirable to form an over-all
picture of the polarization properties of the radia-
tion in the Glauber approximation with q, 40.

IV. SUMMARY

Our investigation of large-angle, inelastic elec-
tron-hydrogen scattering employing the Glauber
scattered wave function (but not the assumption

q, =0) in a modified Glauber amplitude shows that
the integrals for the electron-electron and elec-
tron-proton interactions individually converge
when q, 40 with the result that the electron-proton
term dominates to give a q

4 behavior to the in-
elastic differential cross section. We find, at
large angles, that only the 2p, state is excited
(implying linear polarization of decay radiation)
in first order in p, /q while in second order the
radiation is elliptically polarized to a small extent.

We conclude that the Glauber approximation used
here gives a satisfactory account of large-angle,
Rutherford-like inelastic scattering, in that it
traces such behavior to the electron-proton inter-
action. Furthermore, since our approximation,
in general, predicts nonzero orientation, it shows
that Byron's modified Glauber apyroach may de-
scribe a wider range of physical phenomena, i.e.,
circular polarization of radiation, than is possible
when the assumption q, =0 is employed. Such
phenomena relate more directly to the detailed
assumptions of the theory, in particular, the sym-
metry aspects of the transition operator, than do
scattering cross sections.
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