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Prolate-spheroidal orbitals for homonuclear and heteronuclear diatomic molecules.
I. Basic procedure
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In vicar of further determination of shielded homonuclear and heteronuclear diatomic orbit~1fL the
problem of one electron in the field of two fixed nuclei and a cylindrically symmetric parametric
potential is investigated. The sunultaneous resolution of the separated equations, in prolate-spheroidal

coordinates, is performed by a matricial technique using a NeMon-Raphson scheme; as the orbitals are
expanded in terms of orthogonal functions only symmetric band matrices are involved. Calculation of
monoelectronic and bielectronic integrals is described.

I. INTRODUCTION

The solutions of the problem of one electron
moving in the field of tmo fixed nuclei should oc-
cupy much the same position in approximate treat-
ments of diatomics, and even to some extent of
polyatomic molecules, as the general hydrogenic
functions oeeupy in the treatment of complex
atoms. Nevertheless, the use of these functions,
i.e., diatomic orbitals (DO), within the one-con-
figuration molecular-orbital scheme has not been
very sueeessful, "owing to the difficulty of taking
into account the interelectronic interactions and,
moreover, owing to the complexity of calcula-
tions. For one-electron diatomic systems, al-
though vax ious forms of the DQ solutions have
been obtained with great numerical accuracy, ' '0

the many-electron case has not been extensively
studied i 2 ~ »»

In atomic problems, considerable success has
been achieved by using an "effective nuclear
charge" to represent, in an average may, the
electronic correlation. Within the diatomic -sphe-
roidal-orbital (DO) scheme, the systematic intro-
duction of screening effects (or of an effective po-
tential that may be considered as a first step
toward the construction of a separable Hartree-
Fock-like solution) can be attempted following
the general features which have been described
by Teller and Sahlin. " The application of these
methods calls for the resolution of equations anal-
ogous to those of the single-electron case; it is
then necessary to have at hand a reliable and ac-
curate method of resolution to treat eithex' homo-
nuclear or heteronuclear diatomics, for any values
of the charges Z„,Z~ and of the internuclear dis-
tance B on which the diatomic shielding effects
depend.

In the present papex, the systematic determina-

tion of both homonuclear and hetex onucleax' DO
orbitals by a matricial technique mithin a direct
Newton-Raphson scheme is reinvestigated. Our
procedure differs, in some points, from other
Px'evlous mox'ks

y l.e.y 1t 1ntroduces a d1fferen
expansion of the functions in order to always deal
with symmetric-band matrices. The main purpose
of this paper is to give the theoretical background
necessary when considering the shielding problem
and further use of DO orbitals in molecular calcu-
lations. It is not our intention to present exten-
sive tables of DO orbitals for various values of 8,
and only fem illustrative and comparative test
xesults mill be gi.ven.

B. THEORY

Within the Born-Qppenheimer approximation,
the Schrodinger equation for the one-electron
two-center problem, mith the charges Z„,S~ at
the distance R (as foci), is

6+2 + +2E g =0.~B
+a

It is well known that Eg. (1) is separable when

introducing prolate spheroidal coordinates.

A. Separation of the Schrodinger equation

Let us define px'olate-spheroidal coordinates
(Fig. 1):

A. =(r„+re)/ft, I ~A. &~

p =(r„—rs)/ft, -1~p~l
O ((p &2g

The electronic bound-state wave function can
then be factorized and written

4(~, p, y) =A(~)M(p, 9 ) =~(~)&(u)e™'.
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is therefore A = -l(l+1). Hereafter, the united
atom labeling (n, l} of the states will be used.

B. Wave functions

A o pg ~s

FIG. 1. Prolate spheroidal coordinates.

In order to transform the resolution of the cou-
pled differential equations (2) and (3) into the
determination of the simultaneous eigenvalues of a
pair of symmetric band matrices, we have assumed
for the M(p, , (p) and A(A.) solutions an expansion
in terms of orthonormal functions.

(i} For both homonuclear and heteronuclear
cases, the function M(p, y) is expanded as a linear
combination of spherical harmonics, i.e.,

The functions A(X) and M()), , 9)) are, respectively,
solutions of the following pair of differential equa-
tions"

m2
(1 -)")—— .+PV -R(Z~ -Zs)) A-

Bp. Bp, 1 —p,

xM()), y) =0, (2)

m2
(A2 —1}—— —p2)(.2+R(Z +Z ))) +A

9A. 8 A. A.
2 —1

x A(~) =0, (3)

where P is the energy parameter, i.e., E =-2P2/R2

(a.u. ).
A is the characteristic value of the invariant

operator"'"
R2 828= L2 ——A —--R(Z cos8 -Z cos8)-p'.
4 az2 A 1 B 2

(4)

L is the orbital angular momentum of the elec-
tron. At the limit R=0, since P'=0 as well, 8
reduces to -L' and the corresponding eigenvalue

M()), q)=P f2 1 ()), q).
Q=m

(5)

[F(P,A)] is a symmetric (K —m+1)-dimensional
band matrix and

I f I
is a, (K —m+1)-dimensional

vector, the components of which are the f, coef-
ficients (k =m, K).

When using some of the functional relationships
between spherical harmonics and making explicit
the Wigner 3j symbols, we obtain the following
expressions of the nonvanishing matrix elements
of [5(P,A)] ".

For the heteronuclear case (Z„eZs), all the
consecutive values of k are to be considered. For
the homonuclear case (Z„=Zs), since Eq. (2) be-
comes even in the )), variable, the function M()), , 9))
is even in p. ; consequently the integer k in the ex-
pansion (5) must keep the same parity, i.e., the
values of k jump by steps of two units.

When truncating the expression (5) (k =m, K),
the resolution of Eq. (2) becomes equivalent to
the resolution of the following matrix equation:

2i' —2m'+2i —1
F) &(P,A)=-i(i +1)+p (2i+3)(2i —1) -A,

(i +m 1+)(i —m+1) )~2
F) &+$(p)A) =F(+ $(p)A) )= R(ZA Z)))

(2 1)(2 3)

)' (i ~ +()(i — +()(i+m+2)(( — +2))'i'
i, )+2 Pi $+2, ) Pi (2 i 3) (2i+1)(2i +5)

For the heteronuclear case the matrix [5'(P,A)]
is a pentadiagonal matrix. Obviously, for the
homonuclear case (Z„=Z2), the off-diagonal matrix
elements F„, , (p, A) vanish [Eq. (i)] owing to the
particular structure of the vector

I f I (k jumping
by steps of two units); by an appropriate relabeling
of its elements, the matrix [6'(P,A}] can be tele-
scoped to an effective tridiagonal matrix acting

on a corresponding telescoped vector.
(ii} Alternatively, for the A()).) function, in order

to always deal with symmetric matrices, we
choose an Hylleraas-like expansion'.

(6)
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Z,f(x) =g (-1)'
i —l l~

Moreover, when truncating the expansion (8)
[n —(m/2) =0, N], one is led to solve the following
matrix equation":

['0 (p, A)] I CI = o,

with

(10}

[&(P,A)] =[6t(P,A)l+P '[(P)] '

[$,(p, A)] and [(B(p)] are symmetric (N+1)-dimen-
sional tridiagonal matrices and

~ C~ is a (N+ 1)-
dimensional vector, the components of which are
the C„( ~» coefficients [n- —,'m =O, N].

Using some of the functional relationships be-
tween normalized associated Laguerre polynomials
and their derivatives, we obtain the following
expressions" for the nonvanishing matrix elements
of [$(p)].

where g~j(x) is the normalized associated Laguerre
polynomia124

Z/2

Z((r) =
(, . ', , z((*),

r, , (P,A)=(2i ~ () " " —i —I —
2p)

R (Z„+ZR)
2P

m2
+ + 2 +R(ZA+Zs) -p +Ai

j,i+1(P2A) (+1,((P,A)

= -[(i ——,m+1)(i + —,m+1)] ~2

R (z„+z ) .
2)2p

(13}

In order to obtain square-summable wave func-
tions for each fixed value of the nuclear separa-
tion distance R, one must find solutions of Eqs.
(6) and (10) corresponding to the same value of
p and of A. This will be reached by an iterative
procedure described in Sec. III and Appendixes
A-C.

In view of our further studies of the many-elec-
trons case and of the screening effects, it is nec-
essary to consider both the calculation of the elec-
tronic integrals (see Appendix D) and the one-
electron problem with an additional potential.

C. Introduction of a particular additional potential

Let us assume that this additional potential is

1'(~, v) =(4/[R'(~'-u')]] [f(~)+g(u)1, (14)

where f(A.) is linear in A. and g(p) is quadratic
in p. , i.e.,

b, , (p) =4p+2i+1,

b, (,(p)=b(, ((p)=-[(i — 2m1+)(i+ mz+1)]'~ ,
2

f (A.) =R(a, +a2Z),

g(p, ) =R(b, +b, p. +b, g2).
(15)

(12)

with det[(S(p)] 22 0.
The nonvanishing matrix elements of [(R(P,A)]

are given by

When introducing this additional potential, the
Schrodinger equation remains separable in p, and
A and the functions M(p, , jp) and A(A) are now solu-
tions of the following pair of differential equations:

a m2
(1 —p2) ——

2 +(p2 —Rb2) p2 —R(z~ —Zs+b2) p, —(A+Rb2) M(p, , jp) =0, (ls)

m2
(12 —1)——, -P2l(2+R(zz+Zs —a, ) A, +(A Ra, ) A(A) =0. - (17)

As a consequence, the introduction of the additional potential [(14), (15)] results in a slight modification
of the expressions (7) and (13) of the elements of the [F(P,A)] and [$(P,A)] matrices, which are now

P, (P,A)=-j(jrj) ~ (P' —Rp, )
(

. .
) )

—(A+Rp, ),

(18)

p Rb, (i+m+1)-(i —m+1)(i+m+2}(i —m+2} 2~2

, +222Pi 2+2, 2 (2i+1)(2i+5)
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r, , (p, A) = (2i +1)
R (Zed +Zj) —Qg ) —i —1 —2P +4m +i+R(Z„+Zs-a, —a, ) —P +A,

r, , „(pd)=, rt t(p t): [(i ——,'m ~ 1)(i ~ —,'m+t)]'t'( " ' —i —t),
(19)

It should be noted that if the additional potential would contain f (][.) and g([]) polynomials of higher degree
k, the same procedure would remain valid but the corresponding [P(p, A)] and [$(p,A)] matrices to be
considered would become (2k+1}-diagonal band matrices.

III. SIMULTANEOUS RESOLUTION OF THE SEPARATED TWO-CENTER EQUATIONS

In order to find the pair of eigenvalues p and A, which classify the discrete quantum states and are
to be common to both matrices (6) and (10), one can use a Newton-Raphson (NR) scheme. This method
involves the computation of the numerical values of the determinants and their partial derivatives with respect
to p and A. As the matrices [6:(p,A)], [6t(p, A)], and [$(p)] are band matrices, this calculation can be
performed rather easily using recursion formulas. This is possible for tridiagonal matrices" (see Ap-
pendix A) and also for pentadiagonal matrices (see Appendix B).

Details of the NR method can be found elsewhere. " Briefly stated, the algorithm is as follows: starting
from a pair of values p, and A„one obtains improved values

p j+~ ——pi +4p j, Ai+, -—Ai +bA j

and iterates until convergence. Within the NR scheme

(p(, A(),

(pI, AI),

where

4p, = — (det[P(p, A)]}, det['J(Jp, A)] —(det['JJ(p, A)] }, det[F(p, A)]eA i
' eA i-

bA, = (det[F(p, A)]}, —det['(i(p, A)] —[det['[l(p, A)]}, —det[6:(p, A)] D
I p j i

(20)

(21)

D(P, ,A, )=( det[t((P, A)] —det[Y(P, A)] ——det['l((P, A)] detld(P, A)]
i i

(22)

One has to be careful when calculating the incre-
ments nP, and 4A, [see Eqs. (20) and (21}],be-
cause they are obtained as ratios of quantities the
order of magnitude of which can vary on a large
scale. In order to obtain the required accuracy,
a suitable scaling factor is automatically adjusted
by the computational routine.

Since good approximations for the starting values
P, and A, are available, the use of the NR method
seems adequate. For a given (n, l} state, where
n and l are, respectively, the principal and the
orbital quantum numbers within the hydrogenlike
united-atom labeling, a good initial choice is

Ao = -l(l + 1), po =R(Z~ +Zs)/2s.

Indeed, since A is the eigenvalue of the invariant
operator 8 [see Eq. (4}], this choice of Ao is
valid particularly for small values of the inter-
nuclear distance R. Likewise, po is a good ap-
proximation of p for small values of R, i.e., when
the Bohr expression of the energy remains close
to the true value. For large values of R, the ini-
tial values of A, and po are extrapolated from the
exact A and p corresponding to smaller R.

In general, the iterative process converges

I

rapidly and the accuracy corresponds to ~A„,-A,
~

&10 ' . For a calculation of the determinants and
their partial derivatives contained in the expres-
sions (20} and (21) of Lp, and ~, , we take advan-
tage of a separate consideration of the cr-type
(m =0) and other types (m e 0) orbitals and also
of a distinction between the homonuclear and the
heteronuclear cases. Of course, for m =0, the
matrix ['JJ(p, A)] [see Eq. (11)] reduces to the
matrix [$(P,A)], i.e., to a tridiagonal symmetric
matrix. Moreover, as was pointed out before,
the matrix [6:(p,A)] [Eq. (7)], which is penta-
diagonal for the heteronuclear case, reduces to a
tridiagonal matrix for the homonuclear case.

A. Homonuclear case

(i) The matrix [6 (ppA)] is tridiagonal for all
states (m =0 and m dt0). The required values of
its determinant and partial derivatives are calmm

culated using the appropriate recursion formulas
which are given in Appendix A.

(ii) The matrix ['(i (P,A)] is tridiagonal for m =0,
i.e., for o-type orbitals, and the procedure de-
scribed above is also used for calculating
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det['JJ(p, A)1 and its partial derivatives. For mx0,
i.e., non-o-type orbitals, the calculation of
detf'jj(p, A)] and its partial derivatives needs a
fear more manipulations, which are given in Ap-
pendix C.

8. Heteronuclear case

(i} The matrix [F(p,A. )] is now pentadiagonal
for all states (m =0 and mt 0) and the required
value of its determinant and partial derivatives
are obtained by the recursion formulas of Ap-
pendix B.

(ii) The calculation scheme of det['g(p, A)] and
its partial derivatives is the same as in the homo-
nuclear case.

Our procedure is straightforward and differs,
for the heteronuclear case, from the Helfrich
method. '0 Indeed, to eliminate the manipulations
of pentadiagonal matrices, he has to introduce an
exponential term e'~~ that enables him to keep
the tridiagonal structure of the corresponding
matrix. On the other hand, however, he has to
operate in two stages: first he determines the
characteristic values P and A by the NR scheme
for the tridiagonal matrix; then, using these values

p and & h«inde the
I fl vector by diagonalizing

the pentadiagonal matrix [5:(p,A)].

IV. SOME ILLUSTRATIVE RESULTS

Using the outlined matricial procedure coupled
with the Newton-Raphson scheme, a computer

program has been written (double precision IBM
360-75) which, for any value of m and of the inter-
nuclear distance R, gives the values of the total
energy E~, of the separation constant A. , and of
the coefficients fP and C, characterizing the dia-
tomic orbital. This program eventually takes into
account the additional potential, Eqs. (14) and (15).
Various calculations have been carried out in order
to experiment vrith the effective truncation of the
expansions (5) and (8) of the eigenfunctions
M(p, y) and A(A.); we found that, in general, for a
10 ' accuracy of the p and A values, a sufficient
value of the number of basis functions is E= 10
for the M(p, , qr) function and N= 10 for the A(X)
function.

Qlustrative results are given for H~' and some
heteronuclear iona (HeH", LiH", and LiHe")
and checked vath other previous results, ashen
available elsewhere. ' " The expansion coefficients
of the iso diatomic orbital (R =2 a.u. }as well as
the values of the total energy E~, of P and of the
separation constant A are collected in Table I.
In Table II are gathered results concerning some
other diatomic orbitals at the equilibrium distance.

In both tables, coefficients less than 10 6 that
have no significant influence on the total energy
value are not given. From experience we found
that, when R increases, the A. expansion (8) of
the eigenfunction A(A} converges rapidly, i.e.,
the number of significant coefficients decreases,
whereas one observes the reverse situation for
the expansion (5) of M(p, , y). However, this last

TABLE I. Parameters (in a.u. ) and coefficients of the iso diatomic orbital (R =2 a.u.).

H+
2

0.811729 58

1.485 014 62

HeH2

3.157 838 03

2.241 514 23

8.060 296 00

3.162 92334

7.133389 40

3.319449 77

-0.60263421 -1.51219302 -3.50204202 -2.50937339

fo
f&

~(v, q)
f3

Coefficients f4
fs
fs
fv
fs
fs

C()

C)

AQ,)
Coefficients C3

C~

Cs

0.993269

0.115781

O.OO3 314

0.000 044

0.998 825
-0.048 330
-0.003 562
-0.000 562
—0.000 123
—0.000029

0.748 159
0.593 131
0.283 490
0.087 039
0.022 175
O. OO4 374
0;000 765
0.000 111
0.000015
0.000002

0.999451
-0.033 067
-0.001 824
-0.000 222
-0.000 038
-0.000 008
-0.000 002

0.587 716
0.665 538
0.415 845
0.184 912
0.064 554
0.018465
0.004 491
0.000 947
0.000176
0.000 029

0.999822
-0.018 821
-0.000 872
-0.000086
-0.000 012
—0.000 002

0.608 209
0.651 372
0.411716
0.178601
0.063 564
0.018032
0.004 500
0.000 951
0.000 183
0.000 031

0.999369
-0.035 498
-0.001 089
—0.000091
-0.000 012
-0.000 002
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TABLE II. Parameters (in a.u. ) and coefficients of some diatomic orbitals at the equilibrium
distance.

Orbital

H+
2

2p 7lf

HeH2+

2Po

LiH3'

Total energy Ez,

8.0

0.053 71732

2.881 725 21

-0.13451063

0

0.799 70868

2.872 046 39

-0.531 081 31

6.0

0.725 385 67

4.267 630 24

-0.511814 88

fp
fg
f2
f3

M (p, , y) f4
Coefficients f5

fe
fv
fs
fg

0.976 251

0.216 001

0.016 621

0.000 653

0.735 448
-0.655 959

0.032 882
-0.164 996
-0.017 807
-0.014 463
-0.001 746
-0.000 640
-0.000 072
-0.000 017

0.571 320
-0.720 374

0.356 706
-0.054 514

0.148 141
0.039 650
0.029 204
0.007 945
0.002 928
0.000 675

Cp

C)

Coefficients C3

C4

Cs

0.989 758
-0.142 714

0.003 356
0.000 174
0.000 019
0.000 003

0.995477
-0.094 997

0.000 637
0.000 038
0.000 004

0.993201
-0.115486

0.005 343
0.000 052
0.000 003

point is not significantly complicated since, when
calculating the matrix elements, the p, part is
integrated analytically using Wigner 3j symbols.
From the comparison of our results to those of
Bates and Carson" for the HeH" (R = 2 and R =5
a.u. ) DO iso, it appears that the introduction of
the exponential factor e'~" in the p, expansion (5)
of M(p, y) does not improve the convergence.

As a matter of curiosity, using our program
for Zs =Z and Z„=O (or Z„=Z and Zs =0), we ob
tained the diatomic orbitals of the hydrogenic
atoms. It should be noted that these orbitals are
not eigenfunctions of L' but of the 8 operator [see
Eq. (4)]. As expected, we found that the p ex-
pansion does not reduce to one term. Of course,
we found again the -Z'/2n' value of the energy.

From the few available previous results" and
our preliminary calculations with DO' s, for the
two-electron molecules, we concluded, as ex-
pected, that it is necessary to include screening
effects by considering shielded diatomic (SDO)
orbitals. The determination of these SDO orbitals
as well as their connection with a separable
Hartree-Fock scheme" is investigated in a follow-
ing paper that largely makes use of the results
of the present paper.
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OF A TRIDIAGONAL MATRIX
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Let us consider an n-dimensional tridiagonal
matrix [%„], i.e., one whose only nonvanishing
current matrix elements are those labeled m, &

with ~i —j~&1. The value of the determinant
det[K„] and its partial derivatives is easily calcu-
lated by use of the following two-terms recursion
formula:

det[5g, ] = m, , det[5g, ,] —m. . .m~, , det[5R, ,],
(Al)

where k runs from 2 to n and the initial values are

det[sg, ] =1,

det[5R, ] = m, ,
(A2)

When taking the partial derivatives of the expres-
sions (Al) and (A2) with respect to a variable x,
one gets
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det[K, ] = det[K, ,] (m, ,) +m„„det[SR», ] —det[SR, ,]

8 8 8
m~ ~,—m„, ~ +m, , ~

—m„~, —m„, ~m~ ~,—det K~,8x (A3)

and

—det[K ] =08

8X 0

—det[K, ] = (, ,).
8 8

(A4}

det[SR, ] = 1,

det[K, ] = m, ,
The partial derivatives of det[K, ] are obtained

by differentiating the expressions (B4)-(B6).

(B6)

where k runs from 2 to n and the initial values are

APPENDIX B: CALCULATION OF THE DETERMINANTS

AND PARTIAL DERIVATIVES

OF A PENTADIAGONAL MATRIX

Let us consider an n-dimensional pentadiagonal
matrix [K„], i.e., one whose only nonvanishing
current matrix elements are those labeled m, &

with ~i —j~&2. From each current k-dimensional
matrix [K,]', let us define the two (k —1}-dimen-
sional associated matrices: [SR»,] is formally ob-
tained from [K»] by suppressing the kth column
together with the (k —1)th row; [K»', ] is formally
obtained from [K,] by suppressing the kth column
together with (k —2)th row. Hence, when expanding
the three corresponding determinants with respect
to the last column, one obtains

(a2)
and

det[SR»'] =m, , „m,+, „,m», ,det[K, ,]
—m, ,m, +, „,det[SR»»]+m»+g ]'t det[K,',].

(a3)

When substituting the expression (B3) of det[SR»]
in (Bl), one gets the following couple of recur-
sion formulas allowing the calculation of det[K, ]
and of det[K,']:
det[K»] ™,, » m», », m»», m», », det[K», ]

-m», »m», » im„»d»et[ K»]

+ m»» det[K», ] —m», » det[SR», ]
I+m»» «m»», dept»K»»] t (B4)

det[K»] = m», » m»+, », det[K», ]
—m», » m», », det[SR»»] +m», «det[K, ],

(BS)

det[K, ] =m, ,det[K, ,]

—m», »det[SR„', ]+m»»»det[SR», ], (B1)

det[SR»] =m»»»m»+, » «det[K»»]
—m», » m»+, », det[SR, ,] ™»+,„det[K, ,],

APPENDIX C: CALCULATION OF THE DETERMINANT

OF THE MATRIX ['g(p,A)] FOR NON-0-TYPE ORBITALS

When m o 0, the matrix ['JJ(p, A)] is no longer
a band matrix, and from Eq. (11}

['9(p, A)] =[6t(P,A)1+ pm'[(p)] ' (C1)

When right-multiplying both sides of (Cl) by
[Q(p)], one gets

[&(p,A)1 = ['9(p, A)1 [(p)1 =[[tl(p, A)] [(p)] + pm'

(C2)

The matrix [K(p,A)], being the shifted product
of Qe two-tridiagonal symmetrical matrices
[$(p,A)] and [$(p)], is a nonsymmetrical penta-
diagonal matrix, the nonvanishing elements of
which are

f$, j«»(p A) +', [«l(p A) k', (p)

f, .„,(P,A) =~, , (P,A) k, ,„,(P)

+~[,(„(p,A) &;„,[„(p), (C3)

f, , (p, A)= g &. (p, A)& „(p)+pm',

where the matrix elements r, &(p, A. ) are given
by Eq. (13) [or by (19) when the additional poten-
tial (14) is taken into account], and the matrix
elements k, &(p) are given by (12).

From the expression (C2)

det[E(p, A)] = det['[((p, A)] det[$ (p)],

and, since det[[s(p}]x0,

det['JJ(p, A)] =det[v (p, A)] /det[$(p)].

Consequently,

pet[)((p, d)]=( det[r(p, d)]) det[te(p)]
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—' as([x((),a)] = ae)[a{))) t)et[a(), a)l -aa([r{),a)[ —' ae([a() ))) (ae([m() )I)'.
8P ep BP

Since [[[[[(P)]is a tridiagonal matrix, det[$(p)]
and [S(det[$(P)]}jSP) are easily calculated from
formulas (Al) and (A3) of Appendix A; formulas
(84)-(86) of Appendix 8 are used to calculate

det[V'(P, A)],

det[f'(p, A. )],

—,
'

det[r(P, A)].

APPENDIX 9: CALCULATION

QF THE ELECTRONIC INTEGRALS

A. The bielectronic repulsion integral J,„,„
1

~ebb~ = 4s (~x) [xx) (/)x)[t)b( (x) [xx) i/xx) f J g

x g, (Xz) P b) '[['x)P(x (Q) [ b) q'b) dzx diaz)

y(~, [x, q }=M([, q)A(~).

The M(p, , y) and A(A.) functions are defined hy
Eqs. (5}and (S}.

d7 =-'bR'(A. ' —[x') dA. d[x d{[x.

One introduces the Neumann expression of 1/&»
in terms of the symmetrized associated Legendre
functions of the first kind 5'x (A) and of the second
kind Qx (A}, and the spherical harmonics yx ( p, , y),
l.e.,

P +6';(g)Q;(g)lx(p„qx)yx ([ „V.).
)=p ~=-i

(D2)

Formula (D2) holds for A, & A, one has to ex-
change Ax and Q in it for the case A & A .

i-m [ '"

l-m [ '/'

Then, the integral J~«can be written

z„,= —„gP (I {);(q)x.(~, )x,(~,)aq ) 's;(~.)x.(x,)~„(x,)dq

+ ! Q, (X )x,(A )x (X,)dh IP(g) {X),A(A, )AdX,) Z, ((, l)Z, „(x, )),
1

(D3)

~ab(1) f) = d9xx ~i(&x) ([xx) Ma ([xx) i/'x)Mb(&x) 9'x)("x &x}d[xx~
p wj

and its counterpart J,'~(2, l) is defined hy an analogous relationship (1-2, a- c, f)- d). Since the M(p. , 9))
functions are expanded in terms of spherical harmonics, the Zb(1, 1) and Z, ~(2, l) are easily calculated,
and one obtains

Z.,(1, i) =~;A.,(l) a.,(f), -
S,„(2,l) = x',A„(l)—a„(f), (D4)

E gb

(1) (2f 1)x/b P g ( )sl fb)bf slb[(2g + 1 )(2P 1)]x/b b b () b

f5 b mb
m -m, mb 0 0 0

EN Xb 4+2

B„(l)=—A„(l)+(-)"b—(2l+1)'/' Q Q f, bf„b Q (2j+1)[(2k.+1)(2kb+1)]'/'
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and their counterparts A, „(l) and B,z(f) are de-
fined by analogous relationships (a-c, b-d).

From the nonvanishing conditions of the %'igner
3j coefficients in {D5), one gets the following
selection rules: m =m, —m, = m, —m~; E must
have the same parity as (k, + k~) as well as (k, + k~).

The integration in p, can be carried out analyti-
cally, whereas one has to use a seminumerical

method to integrate in ~.
When substituting in {D3)the expression (D4) of

J,',(1, l) and J,~(2, l}, one obtains

I,[„~(f)= [qA, ~(f) —B,&(f)]q, (q) ii, (q)A [,(q) dy~ ' [qA, ~(f) -B,~(I)]6'P(q)'ii, { )g~(q) d

Using the Riidenberg's transformation, '' the integral I„,~(l) can be written

Op(g) 1I, (l) = +', )
E„(l,+)E, (f, X,) (-)" („, 1)[+„(,)],E,(l, Q)E, (I, Q)dQ,[( 1 1 "I l "1

„X
E (l A, )= 'dz6'"(z)[z'A (l)-B {l)]e '~+'~'" "[2p-(z-1)] ~i'[2p (z-1)] [i'

Z Cn-~ /2CM-m i2&~-'~ i2[2pa(z —1)]Z„~„i, [2p[(z -1)],
tt=m /2 g=m~/2

and its counterpart E,~(l, X,) is defined by analogous relationships (a- c, k d). -At this stage we have used
%ahl's" procedure to numerically terminate the remaining ~ integrations; i.e., after a few manipulations
we used a three-points Simpson rule for calculating the E&&(l, &} and an N-points Simpson rule for calculat-
ing the I„,~(l}

8. Normahtion of the 90 orbitals

Since the DO orbitals are exact self-adjoint equations, they are orthogonal and ere need only to calculate
the normalization which can be performed analytically. Setting

one obtains

Rs 1 2n+1 1I = ——P C' 1 —8 (0)+ + [(Rn+1['+(n-m)(num[+(n-m+1[(a+m+1}])
2p tt ttt cc p 4p 2

——
~ g C„C„~+~ 1+ [(n —m+1)(n+m+1)]'ia+ ~ g C„C„~+~

tl- ttt tt= t5

x[(n-m+1)(n —m+2)(n+m+1)(n+m+2)]'i'

with m =-,'m, .
B (0) is a particular value of the expression (D5). The normalization constant of the g(A, , p, , y) function

is I-'/'

C. Matrix elements g,~ of the additional potential V{Xp, )
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V(A., p. ) = &,(, „(a,+a, A, + b, + b, p, + b,p').g2 g2 ~2~) 0

Since the M(g, (t)) functions are expanded in terms
of spherical harmonics, the integration in the p.

and rp variables is easily performed in terms of
3j Wigner coefficients. For the integration in the
A. variable, one has to distinguish between off-
diagonal and diagonal matrix elements.

Off dkago-nat matrix elements

'U~q —-~B b,D,q+528, ~ 0 A, X Aq X &,

~A„(0) [a ~ 5 +u, x)A, (x)A, (&)d&},

where A„(0) and B„(0)are particular values of
the expression (D5) and D„ is defined as follows:

0 -m, m~ 0 0 0

with m, =m, .
The integration in the X variable are performed

numerically by a Gaussian quadrature.

Z. Diagonal matrix elements

The calculation of these elements is performed
analytically and one obtains

8 2n+1c„„g+5 +u, + D(+8(„(„)0+
~

a,}
N

, g C„C„„a,[(n-m+1)(n+m+1)]'t'
P tf=tll

with m = —,'m, .
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