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%'e present a calculation of the photoionization cross section for the 4s subshell of neutral zinc using
many-body perturbation theory. The cross section is strongly affected by correlations among 4s and 3d
electrons. Resonances due to the 3194s np configurations dominate the cross section and are split by
the spin-orbit interaction. %e have also included interactions between resonances. Correlations reduce
the Hartree-Fock cross section by an order of magnitude near threshold. Our results are in qualitative

agreement with the experimental data of Marr and Austin.

I. INTRODUCTION

The calculation of accurate photoionization cross
sections fox atoms near threshold provides a good
indication of our understanding of atomic struc-
tures. As discussed in reviews by Fano and
Cooper' and by Marr, ' the photoionization cross
section v(&) near threshold depends on aspects of
the atomic system which axe often not adequately
represented by an independent-particle model.
Methods for including many-body effects have
recently been applied to the calculation of a(&o) for
the rare gases' 6 and FeI, ' These calculations
have demonstrated the importance of correlations
among outer-shell electrons.

In this paper we present a calculation of o(~}
for the 4s subshell of Zn I including correlations
among the 48 and 3d electrons. The cross section
for this atom is of particular intexest because near
threshold we find that the Hartree-Fock cross section
differs by an order of magnitude from the experi-
mental data of Marr and Austin. ' In addition, their
data for the 4s cross section is dominated by reso-
nances which show large effects from spin-orbit
splitting and it is interesting to test whether theory
ean reproduce this complex structure.

This calculation is based on the many-body per-
turbation theory (MBPT) of Brueckner' and Gold-
stone" and our techniques" "for applying MBPT
to atoms. We use the prescription for o(u) de-
veloped in Ref. 7 from the relation'

o(~) = (4s/c) ~ Im n(~),

where o.'(~) is the frequency-dependent dipole
polarizability'4'is and e is the speed of light. Atom-
ic units are used throughout unless otherwise
noted. As is clear from Eg. (1), we consider only
dipole radiation. We also neglect relativistic
effects.

In Sec. II we give the theory with emphasis on
new features of this calculation. These include
the identification of diagrams in the expansion of
o(&) which correspond to interactions between

resonances and the modification of this expansion
to include spin-orbit splitting of resonances. The
formulation of o(&u) in the region of an isolated
resonance in terms of general MBPT quantities
has been carried out by VFendin. " Section III
contains an account of our calculations and numer-
ical results. Section IV contains discussion of
results and our conclusions.

II. THEORY

In previous work' a well-defined perturbatiom
expansion for o(&) was obtained using Eq. (1) for
an atom with Hamiltonian

where v, &
is the Coulomb interaction between elec-

trons. An expansion has also been obtained for the
length (L }dipole matrix element

g(p-k)-=(%(kp ')lpga, l4', },
where 40 and 4(kP ') are exact many-particle
ground and continuum states and 4(kp ') results
from the excitation of an electron from the ground-
state orbital p to the excited-state orbital k. The
velocity (V) form is obtained by replacing the ma-
trix element in Eq. (3) by

where Eo and E~ are energy eigenvalues corre-
sponding to 40 and 4(kp '). Our continuum orbitals
are normalized according to

B,(r)- (1/r) coslkr + (q/k) ln(2k&) ——,
' v(I —1)+ &g1

as r-~, (4)

where V(r)-q/r. In this case'

&x(~}= (sw/c)N(~/k}lz(p —k)l',

where k =[2(~ —I}]'~' with I the ionization energy
and N a "normalization" factor (usually close to
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unity) discussed below.
The matrix element Z(p —k) is obtained from the

series of all open diagrams' with one dipole inter-
action and any number of interactions with the
electron-correlation per turbation

N N

V(r, ),
g &q=1 =1

where V(r, ) is the single-particle potential used
to generate the single-particle orbitals. The order
of interactions in the diagrams is from bottom to
top corresponding to the ordering from right to
left in the matrix element Z(P - k). Coulomb inter-
actions before and after the dipole interaction con-
tribute to ground-state correlations (GSC) and
final-state correlations (FSC), respectively. De-
nominators occurring after the dipole interaction
are shifted by +td and are evaluated according to
the rule

lim(D+ t tl) '= P-D —t ve(D),
'/~0

where P stands for principal-value integration.
Following W'endin, " in the diagrams we denote
contributions of tv&(D) -by a horizontal line. We
have only included diagrams which occur in the
random-phase approximation with exchange
(RPAE). ' Examples of these are shown in Figs.
1(a)-1(c). The RPAE also includes the corre-
sponding exchange diagrams. Figure 1(d) shows
a diagram not included in the RPAE. For closed-
shell atoms, the m, , m, dependence of all diagrams
ending in the hole-particle pair p, k with k in the
state (m, , m, ) is given by C'(l, , m, ; Ih, m, )."'" It
is convenient to consider "reduced" diagrams
which are obtained by factoring out this coefficient.
Denoting the sum of the reduced diagrams by
Zs(p- ft), the many-particle matrix element
Z(P-k) is given by

Z(p- k) =[A(lh, Ih)]'~'Zs(p-k), (7)

where

A(l„, l,) =2 g [C'(I„m, ; I„)m]'.

nator, and 4s' denotes either one of the 4s elec-
trons.

The diagrams are evaluated using complete sets
of excited orbitals which are calculated using a
Hartree-Fock (HF) V" ' potential. " As discussed
by Amus'ya et al. ' and essentially by Ishihara and
Poe," the appropriate potential for orbitals ex-
cited by dipole transitions from a closed-shell
ground state is obtained by coupling the excited
orbital to the core to form a 'I' state. In the ex-
pansion of H,', this potential cancels not only dia-
grams having interactions with passive unexcited
states but also important intrashell correlation
diagrams occurring in the RPAE." The can-
celed diagrams include diagram l(c) and its ex-
change when p and q are in the same subshell
and k and k' have the same orbital angular mo-
mentum.

According to the MBPT prescription, the energy
denominator occurring in the diagrams is given. by

(~hj ~hi) + (10)

As discussed previously, '"'"'"higher-order dia-
grams may be included by shifting denominator to
D' =D+b, (n), where b (n) includes the correlation
energy of the nl orbital. In this calculation we
have approximately included such effects by re-
placing 8, with minus the experimental removal

I

k'

where g„, and S~, are single-particle energies for
a hole (ground-state orbital) -particle (excited-
state orbital) pair and N is the number of pairs
excited. When D is a GSC denominator, is omit-
ted. For clarity, consider the denominator of dia-
gram 1(c) with k' =nl. Then we have

In Eq. (8) the factor 2 comes from the sum over
m, (for a closed shell) and l equals the lesser of

lp and l„.
The expansion for Z(P -k) does not include nor-

malization diagrams'2; and to lowest order, the
contribution from these diagrams to o„(op) is in-
cluded in the factor"

1+ N 4s', q

where N(4s', q) represents the diagram shown in

Fig. 1(e) and its exchange with squared denomi-

4 I + 'kp j k

I'IG. 1. Diagrams occurring in the perturbation expan-
sion for (S'(kp }[ P;z& ~

4'0}. Solid dots indicate matrix
elements of s. Other dashed lines represent Coulomb
interactions. Time increases upwards. Exchange dia-
grams are not shown. Diagram 1(e) is a normalization
diagram and does not occur in the expansion for
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energy of the q subshell, denoted by E, . Excited
orbital energies were taken to be HF calculated
values. Using this procedure, Eq. (11)becomes
exact, of course, for large fI, and gives photoioniza-
tion thresholds correctly.

Bound configurations which may be excited via
the diyole interaction and which are degenerate
with the photoionization continuum configuration
lead to resonances and will be referred to as reso-
nance configurations. The possible resonance con-
figurations for o„((u) for photon energies below
the M ionization energy are 3d'4s'+'P and
Sd'4s'nf 'P We. have neglected resonances due

to the latter configurations since we find that the
Sd-nf matrix elements are very small. To cal-
culate Z(4s-kp) we first consider all reduced
diagrams not involving final-state correlations
with resonance configurations Sd'4s'+ 'P. These
diagrams are added to form a correlated direct
transition matrix element Zs(4s- kP) which is, in

general, complex. The HF approximation, rep-
resented by diagram 1(a) with P, k =4s, kP, is the
lowest-order contribution to ReZ„(4s - kp). Higher-
order contributions to ReZ„(4s-kP) are shown in

Figs. 1(b) and 1(c) with P, k=4s, kP and in Figs.
3(a)-3(c). Diagram 1(c) with p, k = 4s, kp and q, k'
= M, kP and kf contributes to ImZos(4s - kP) when

the denominator for q, k' is treated according to
-ivy(D). Diagram 2(b) with np replaced by kp and

kf also contributes to ImZ„(4s- kp).
We next consider diagrams which include final-

state correlations with the resonance configurations
Sd'4s'nP. In the following discussion we begin by
considering the case of no spin-orbit splitting and

afterwards generalize our results. The lowest-
order reduced resonance diagram which will be
called RDI is shown in Fig. 1 (c) with p, k = 4s, kp

and q, A,"=Sd, np. This diagram has a series of
simple poles from the sum over energy denomina-
tors

where

and h„(&u) is a resonance energy shift due to inter-
action with the continuum which comes from the
principal-value part of diagram segment 2(d).
Diagrams of the form of 2(a) but with the horizon-
tal line replaced by a principal-value integration do
not form a geometric series when mwn. In this
work we have omitted continuum interaction reso-
nance energy shifts which are usually quite small.

In the first term of the geometric series we in-
clude, in addition to RDI, higher-order diagrams
in which the 3d-np dipole matrix elements are
modified by correlations. These diagrams may be
separated into two categories. Those in the first

kp

sd iImp

h
Bd np

contributes to Ro is shown in Fig. 2(c). The sum
over m in R~ accounts for interactions between
resonances. If these interactions may be neglect-
ed, m =n in diagram 2(a) and the ratio reduces to
one term. This is the imaginary part of the ratio
used in the previous calculation for Ar?.4 When

m =n, the ratio may also be obtained from dia
gram segments of the form shown in Fig. 2(d) where
both real and imaginary contributions from the
denominator for the 4s- kP excitation are included.
Summing the series with this ratio yields RDI
with shifted denominator4

The poles are eliminated by including higher-order
diagrams such as shown in Fig. 2(a) which together
with RDI are the first two terms of a geometric
series with ratio

(13)

(a)

'np

4s kp

where

(14)

4s& 34

ln Eg. (14), v represents the Coulomb interaction
and 4» and 4 ~ are HF 'P wave functions for the
Sd"4skp and Sd~4s'mP configurations. When
=8 ~-E~, ~l is the half-width of the
Sd'4s'mP 'P state. The diagram segment which

FIG. 2. Diagrams and diagram segments associated
vrith resonances. The horizontal line indicates that the
denominator should be treated according to —im6(D).
The denominator for diagram (d) includes both PD ~

and -i'(D}.



10 PHOTOIONIZATION CROSS SECTION FOR THE 4& SUBSHELL. . . 511

category have the form given by

The second category contains diagrams which in-
clude segments excluded from Ms(3d -np). These
diagrams contribute to

D„„=-~p ll&„(~)Z'„(4s-kp)1/D„(~). (19)

The lowest-order diagram in this category is
shown in Fig. 2(b) with the 4s-kp dipole matrix
element replaced by Zss(4s- kp). Higher-order
diagrams of this type represent correlation modi-
fications to 2F„((d) which have not been considered
in this ealeulation.

It is convenient to introduce the quantity q„(~)
defined by Fano in his configuration-interaction
theory":

q. (~) =Z(3d-sP; ~) [(2/k)(4„I~IC.,&*

xZ~(4s-kP}] '. (20}

Our expression for q„((d) differs from Fano's be-
cause his continuum states include a normaliza-
tion factor (2/vk)'~' with respect to ours. In the
expressions which follow, the dependence mill
be understood. Writing Dsr, in terms of q„((d),
we obtain

D = Q [(-,'I'„)q„Z~(4s —kp)] /D„. (21)

Combining D», and D», and summing the geo-
metric series with ratio R~, we obtain a total
contribution from reduced diagrams having final-
state correlations with the resonance configura-
tions

g [(c„lvlc„,&M„(3d -sp))/D„,

(1V)

and M„(3d-np) represents any one diagram in the
expansion of Z„(M- sp; ~}which does not include
a 4s- kp excitation with denominator treated ac-
cording to -i md(D) followed (in upward direction)
by an even number (including zero) of denomina-
tors also treated according to -im&(D). The &

dependence of Zs(3d-np; (()) has been indicated for
emphasis. Examples of diagrams represented by
M„(3d- np; ~) are shown in Figs. 1(a)-1(c)with

p, k = M, Np. Diagram 1(c) with denominator treated
according to ivy(D)-is included except when q, k'

=4s, kP. This contribution is included in the quan-
tity D», defined below. Summing the diagrams
in the first category gives

A(p, d) '~'
D„„-~(,) Q [(@„l~l@„,&

«, (3d- e;~)] /D. (~).

(22)

Finally, combining D» with the sum of the direct
transition diagrams Z~z(4s - kp), we obtain

(23)

In E(I. (23) the (Iuantities Z~(4s kp) and q
(which involves Zn (4s - kp) and Z (M- kp; (d)) are,
in general, complex. However, the imaginary
components come from higher-order effects which
are usually small and have been neglected in this
calculation. In our expansions for ImZs(4s- kp)
and ImZs (3d -np; (d) the lowest-order contribu-
tions come from diagrams of the form 1(c) with

the denominator for q, k' treated according to
iv5(D-) In ou.r expansion for Z~s(4s- kp) this

diagram with q, k' =4s, kp is canceled by the choice
of potential and in the expansion for Zs(3d - np; (())

it is excluded by definition, and is included in D», .
Since in this calculation we axe only interested in

(d(lE~l, there is no contribution from this diagram
for excitations with q =M because then D(&o)&0.
It follows that Im(Zd3- np; &u) =0 for this range of

and similarly, that the lowest-order contribu-
tion to ImZs(4s —kp) comes from diagram 2(b)
with np replaced by kp and kf. This diagram was
found to be small and has been neglected. Thus
there is good justification in this calculation for
considering only the real parts of Z (4s - kp),

(Z3d- np; ~), and q„(&u). In the remainder of this
paper, these symbols will denote only their real
parts. In this approximation, E(I. (23) is e(luiva-
lent to Fano's configuration-interaction-theory
result for the case of many discrete states and
one continuum channel. " However, one can readily
extend the present results by calculating the dia-
grams which have been omitted.

When the spin-orbit interaction is included in the
Hamiltonian, configurations excited by dipole ra-
diation are no longer pure 'P, states but instead
contain admixtures of other L,S4 states with J=1.
In particular, the 'P„'P„and 'D, states of the
M94s2np configurations mix to form intermediate-
coupling states

I X.,&
= C„,('I')I V„s&+C„,('I )I'I'„s&

+c„,('D)l'D„n&,

where n denotes the configuration and j denotes
the intermediate-coupled state within a configura-
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tion. We extend our expression for Z(4s-kp) to
include spin-orbit splitting of the resonances by
inserting the projection operator Q„& IX„~)(X„&l mto
the resonance diagrams discussed above and re-
placing the energy denominators D„(~) by D„&(~)
=EM —S„~+ where 8„&-EM is the energy of the
state X„~ with respect to the ground state and 8„&
is found by diagonalizing the intermediate-coupling
matrix for HF wave functions. Then we have,
instead of D»»

g [(@»lt I x„,&(x„,l4'„,&
so &(p, ~) "

nj

xZs(3d- nP)] /D„& .
(25)

Using Eqs. (24) and (20), we obtain

D, =Q [IC„,('P)l'-,'r„q„zn(4s- kp)] /D„, .
(26)

Modifying diagram segments of the form shown in
Fig. 2(c) gives the geometric ratio

ft,~ = -t g [Ic.,('P)l'-,'r.] /D. ,

Similarly, modifying the diagrams which contribute
to D», gives

D„,"=- p IC.,('P)I'[lr. z;(4 -kp)]/D. ,

(28)

Finally, when the spin-orbit modified diagrams
are combined, we obtain an expression for

Z(4s- kp) having the same form as the right-hand
side of Eq. (23) but with Q„,—,'r„, and D„replaced
by Q„i, —,r„~ =

I C„,('P)l' ,'r„,-and D„, , respectively
This treatment of the spin-orbit split resonances
does not include the interaction of the intermedi-
ate-coupling states lx„~) with the 3d"4skP 'P, con-
tinuum channel. The effects of interchannel inter-
actions on resonance line shapes have been dis-
cussed by Fano and Cooper" and by Mies." We
are currently investigating the generalization of
our diagrammatic expansion to include these ef-
fects.

III. CALCULATIONS AND RESULTS

Bound and continuum orbitals were calculated for
the 3d"4skp, 3d'4s'kP, and Sd'4s'kf configura-
tions (k denotes both bound and continuum orbitals)
using the potential described above. The Silver-
stone-Huzinaga potential"'" was used when nec-
essary to ensure the orthogonality of excited and
occupied orbitals. In order to investigate the
effects of core relaxation on o(tu), we calculated
one set of orbitals for the 3d"4skp configuration
using a frozen-core (FC) potential and another set
using an ionic-core (IC) potential. Occupied or-
bitals of Zn I were used in the FC potential; or-
bitals of Zn' were used in the IC potential. The
bound orbitals of the 3d'4s'np configurations were
obtained from fully self-consistent HF calculations
in order for them to be physically appropriate for
the resonances. The continuum orbitals for this
configuration were calculated with an IC potential.
The Sd'4s'kf orbitals were calculated with a FC
potential. When the FC potential is not used, the

TABLE I. Important diagrams ' in the expansion for Zj, (4s kp) .

Diagrams 0.10

Length form
k'
0.30 0.50 0.10

Velocity form
0.30 0.50

1(a)'
1(b)'
1(b)g
1(c)h
3(a)
3Q) +3(c)
other
Zz+ (rs kp)

-1.2066
0.1667
0.0485
0.0719
0.2454

-0.0104
0.1061

-0.5784

-1.4091
0.2322
0.0757
0.1162
0.2453

-0.0169
0.1240

-0.6326

-0.8676
0.1982
0.0802
0.1332
0.1711

-0.0195
0.1303

-0.1741

-0.6813
-0.0731
-0.3812

0.5083
0.1610

-0.0914
-0.0171
—0.5748

-O.v5v8
-0.0915
-0.5428

0.7393
0.1233

-0.1325
-0.0992
-0.6696

-0.3992
-0.0649
-0.4923

0.7016
0.0704

-0.1246
0.0211

-0.2880

~Entries give values of reduced diagrams defined in Sec. II.
Contributions from exchange diagrams are included.

~Multiplying entries by ~I) gives contribution to Z (4s kp).
k =(2(&u -Ig4sl)) ~ t, where IE4, I is the ionization energy for a 4s electron.

'p, k =4s, kp.
p, k =4s, kp; q, k' =4s, np.

~p, k =4s, kp; q,k' =M, kf.
"p, k =4s, kp; 4, k' =3d, kf .
~ Contributions from other diagrams.
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excited orbitals are not rigorously orthogonal to
ground-state orbitals, however, we found that the
overlaps are quite small.

In the following discussion of the diagrammatic
expansion of Z(4s- kp) we will always be referring
to the reduced form of the diagrams. The conver-
sion factor [A(l, , l~)]'~' between Z(P-k) and

Z„(P-k) is understood to be included. This factor
equals P, and &for Z(4s-kP) andZ(Sd- nP), re-
spectively. Exchange diagrams corresponding to
the diagrams shown in the figures will not be dis-
cussed but are understood to be included.

In lowest order Z~(4s-kp) is given by the HF
approximation and is represented by diagram 1(a)
with P, k =4s, kP. Values of this diagram near
threshold are given in Table I. The corresponding
cross section is shown in Fig. 4 for FC orbitals
by curves labeled HFL and HFV for length and
velocity calculations, respectively. When IC or-
bitals are used, the L and V forms are increased
by 31'% and 23/&&, respectively. The first-order
diagrams, which have one interaction with H~, are
shown in Figs. 1(b) and 1(c) with p, k =4s, kP. We
used the experimental removal energies" E„
= -0.3452 a.u. and E~ = -0.6356 a.u. We calculated
diagram 1(b) for q, k' =4s, kp; 3d, kp; and 3d, kf.
In calculating diagram 1(c), we included only the
continuum part of the q, k' = 3d, kp and 3d, kf ex-
citations, according to our prescription for
Z~(4s - kP), with bound excitations treated sepa-
rately. Excitations with q, k' =4s, kp were also
omitted due to the choice of potential. The values
near threshold of the largest first-order diagrams
are given in Table I. As shown in Table I, the
dominant correlations in first order involve 4s
-np and Sd-kf dipole matrix elements. The L
and V forms of diagram 1(b) with q, k' =4s, np give
corrections to lowest order which are roughly
equal in magnitude but opposite in sign and which

bring &r~(&) and ov(&) closer together. The V forms
of diagrams 1(b) and 1(c) with q, k' = M, kf are very
large and are opposite in sign. Their net effect is
a reduction of o„(+}. The corresponding length
diagrams are equal in sign (to each other) but
much smaller in magnitude so that these diagrams
are less important in the L form than in the V
form. These diagrams also reduce o~((o}.

The largest higher-order diagram is shown in
Fig. 3(a) with k' = kP and kf, and its values near
threshold are given in Table I. The diagram of
Fig. 3(a) is important because FSC diagrams with
4s - np dipole matrix elements do not occur in
lower order and because it has the time ordering
which gives the smallest energy denominators.
Other diagrams with more than one interaction
with H', were found to be relatively small. Because
of the importance of first-order correlations with
3d-kf velocity dipole matrix elements, we cal-
culated the diagrams shown in Figs. 3(b) and 3(c).

bJ
Eo 3—

fo

O

b 2—

ikp
~kp

4qr ~gkf

8
0

o 0 I

9.5 I 0.0 I 0.5 I I.O

(b)

3dl~, ~kf

(c)

FIG. 3. Important second-order (in H, ') diagrams in
the expansion for Z (4s kp).

PHOTON ENERGY (ev)

FIG. 4. Cross section o(+) for photoionization of the
4s subshell of Zn i near threshold. The curves HFL
and HFV represent Hartree-Fock length and velocity
cross sections using frozen-core (FC) orbitals. The
curves NRL and NRV represent length and velocity
cross sections for ZD(4s kp), the correlated direct
transition matrix element, with no resonance contri-
butions. The curves VCF and VCI represent correlated
(including resonance diagrams) velocity cross-sections
for Z(4s kp) with FC and IC (ionic-core) orbitals re-
spectively. The circles represent experimental data
from Ref. 8.
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Their values near threshold are also given in
Table I. These diagrams increase ov(&u) signifi-
cantly, but have little effect on o'~(+). We estimate
that a more complete treatment of the RPAE dia-
grams would lead to changes of less than 20% in
our L and V cross sections due to ZP(4s-kP). Our
results for the cross section due to ZD(4&-kp)
are shown near threshold in Fig. 3 for Ft. orbitals.
The length and velocity curves are denoted by NRL
and NRV, respectively. Recall that Zp(4s —kp}
omits resonance correlations so that the NRL and
NRV curves represent our correlated cross sec-
tion excluding resonance effects. The correspond-
ing length and velocity IC cross sections are 85/p
and 64Vp greater at threshold. Note that the effect
of the (nonresonance) correlations included in
Zp(4s- kp) is a dramatic reduction in o~(~) but a
smaller reduction in ov((u), and it brings them
into good agreement. The correlated results
shown in Fig. 4 include normalization diagrams
described below which reduce the RPAE results
by 4/p.

In the neighborhood of the 3d'4s'nP resonances,
o(~}depends sensitively on the 3d-np dipole ma-
trix elements. We find that the correlated matrix
elements Z(3d-nP; &o) are strongly modified by
correlations. We have calculated diagrams 1(b)
and 1(c}with p, k=3d, np and with q, k'=4s, kp;
3d, kp; and 3d, kf. For diagram 1(c) the case q, k'
=3d, kp is omitted as it is canceled by the poten-
tial. ' As was found in the calculation of
Zp(4s - kp), the largest correlation contributions
to Z(3d-np; ur) come from diagrams involving
4s -np and M- kf dipole matrix elements In the.

case of Z(3d-np;~), however, the 4s-np cbrre-
lations are even more dominant, the reason being
that (np~s~4s) matrix elements are now present
in the first-order FSC diagram 1(c). In order to
take into account higher-order effects, we used
modified 4s - np dipole matrix elements in the
diagrams for Z(3d-np; &o). We find that correla-
tion corrections to the (np~z~4s} matrix elements
reduce their length and velocity forms for near

0.5007
0.1433
0.0843
0.0578

0.7434
0.1766
0.1002
0.0685

0.5433
0.1383
0.0799
0.0546

0.6943
0.1558
0.0876
0.0546

Unreduced matrix elements are obtained by multiplying en-
tries by [A (p, d)) = Q4 &3 ~

Entries for the correlated matrix elements give values for
Z& (3d np; fd) where ~ is the average energy of the interme-
diate-coupling states weighted by ICE) f (P)~ .

TABLE II. Comparison of reduced uncorrelated and
correlated M —np dipole matrix elements.

Length form Velocity form
n Uncorrelated Correlated Uncorrelated Correlated

TABLE III. Hartree-Fock data for intermediate-
coupling energy matrix .

n E (3d,np) t" (3d,np) & (3d,np)

5.304
0.625
0.229
0.111

1.768
0.198
0.074
0.036

1.470
0.168
0.063
0.031

0.500 0.197
0.500 0.024
0.500 0.009
0.500 0.004

Entries are in 10 a.u.
Direct and exchange Coulomb integrals E~ (n, n') and

G (n, n') are defined in Ref. 18.
Spin-orbit one-electron integrals are defined in

Ref. 29.

TABLE IV. Intermediate-coupling resonance energies
and iP

&
mixing coefficients.

State u& (a.u.) )C„&(P)[ State m~ (a.u. ) )C».(P) ~

4p 3P 0.4105
4p iP 0.4320
4p 3D 0.4356
5p P 0.5640
5p 3P 0.5756
5p D 0.5773

0.051
0.825
0 ~ 124
0.515
0.390
0.095

6p P 0.5955
6P P 0.6075
6p D 0.6082
7P P 0.6087
7p P 0.6210
7P ~D 0.6213

0.569
0.318
0.113
0.585
0.323
0.092

'States are labeled by the multiplet with the largest projec-
tion.

threshold by 22% and 3'Pp, respectively. Table II
shows a comparison of correlated and uncorre-
lated 3d- np dipole matrix elements for n =4-7.
We obtained + for the correlated values from the
average of the resonance energies weighted by
~
C„&('P)~ Not.e that the velocity correlated and

uncorrelated matrix elements converge faster
than the length matrix elements with increasing n.
This may indicate that the t/' form is more re-
liable.

The intermediate-coupling energies and mixing
coefficients were obtained by the method of Wil-
son." Electrostatic energy differences between
the 'P„'P„and 'D, multiplets were computed by
expressing the differences in terms of average of
configuration HF wave functions. The spin-orbit
one-electron integrals &„, for these wave functions
as well as the wave functions themselves were
computed using the HF program of C. Froese
Fischer. " The spin-orbit one -electron integrals
are defined by Blume and Watson. " The spin-
orbit interaction matrix was taken from Condon
and Shortley. " The data used to construct the
intermediate-coupling-energy matrix for n =4-7 is
given in Table III. The resonance energies and the
squares of the 'P, mixing coefficients, C„&('P),
for n =4-7 are given in Table IV. The intermedi-
ate-coupling states are labeled by the LS multiplet
which mixes in most strongly.

To account for normalization diagrams, we cal-
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PHOTON ENERGY (eV)

culated the diagrams shown in Fig. 1(e} (with

squared denominator} and its exchange with q, k'

=4s, kp; 3d, kp; and 3d, kf. This gave for the nor-
malization correction factor, ¹0.96209.

Our results for o(&) calculated from Z(4s-kp)
including normalization diagrams are shown near
threshold in Fig. 4 for the FC and IC velocity forms
by the curves labeled VCF and VCI, respectively.
The FC and IC length forms lie 10@below and 20/p

above these curves, respectively. Note that the
FC velocity cross section (including resonances),
represented by the curve VCF, is strongly reduced
from the FC velocity cross section due to
Z~(4s - kp) only (resonance diagrams not included)
which is shown by the curve NRV. Figure 5 shows
the FC length and velocity forms of cr(tu) in the
region of the 4p resonances. The corresponding
IC cross sections are approximately 6/0 smaller
in this region. Figure 6 shows that the FC veloc-
ity cross sections for the n =5 and 6 resonances and
the 7p'P, resonance. The oscillator strength f is

efined by

f =(el~@*)f&r( )d (29)

In Table V our calculated oscillator strengths for
the FC velocity resonances are compared with the
experimental values of Marr and Austin. ' Table V
and Figs. 4-6 show that most of the oscillator
strength for the 4s cross section is concentrated
in the region of the 4p resonances.

We find that there are important interactions
between the 3d'4s'4p spin-orbit-split resonances.
As shown in Fig. 5, o(&}vanishes once between
these resonances, creating an absorption window
between the two large peaks in agreement with
experiment. When the diagrams corresponding
to interactions between the resonances are omitted,
the absorption window does not occur. However,
interactions between the n =4 resonance and n&5
resonances and between n& 5 resonances are quite
small. Table VI gives, for n=4-7, the values of
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FIG. 6. Cross section
0(co) in the region of the
3d 4s nP resonances in-
cluding the n =5 and 6
and the Vp P resonances.
Solid line, frozen-core
velocity cross section;
dashed line, experimental
data from Ref. 8.

PHOTON ENERGY (e V)



516 ARNE W. FLIFLET AND HUGH P. KELLY 10

—,'I'„and FC velocity q„(~) and Zsn(4s-kP) for
weighted average (as defined above) resonance
energies. Note that the q„(+) change sign after
n =4. This happens because Zn(4s —kp) changes
sign between the n =4 and 5 resonances.

IV. DISCUSSION AND CONCLUSIONS

TABLE V. Comparison between calculated and exper-
imental oscillator strengths.

State Calculated Experiment

4P 3P

iP
~D

5P iP
~P

D
6p iP
P
3D

7P iP

3.75

41.5

1.75
1.23
0.34
0.66
0.34
0.13
0.26

1.69

37.8

0.76
0.50
0.16
0.20
0.09
0.01
0.15

'Results are in units of 10
Experimental oscillator strengths are from Ref. 8

and are given in order of increasing energy.
Entries give sum of oscillator strengths for the two

large resonance peaks labeled P and D in this calcu-
lation).

Our calculations indicate that a((u) is suppressed
near threshold by the presence of the 3d'4s'4p
resonances as suggested by Marr and Austin, ' but
we find that other correlation effects are also
very important. Reduction of the cross section
near threshold due to correlations has also been
reported by Amus'ya. " Correlations with the
3dm4snp and 3d'4s'kf configurations are particu-
larly large as shown in Table I. The fact that the
length form of ZD(4s- kp) is most affected by
4s -np correlations while the V form is most af-
fected by 3d- kf correlations probably corre
sponds to the emphasis by the L form on greater
distances from the origin compared to the V form.
This difference in emphasis may also be respon-
sible for the velocity correlated and uncorrelated
3d- nP dipole matrix elements converging faster
than the corresponding length matrix elements.
These calculations suggest that the V form of the
resonances is more reliable than the L form.

From our investigation of Z~(4s-kP), we find
that diagrams with more than one Coulomb inter-
action are small unless they represent important
correlation effects not present in lower order.
A good example of this type of diagram is shown
in Fig. 3(a) with k' =kP and kf. That is, this is
the lowest order in which there is a diagram in-
volving final-state correlations and the large
(nj~z~4s) matrix elements. The good convergence

of the diagrammatic expansion is partly the result
of the choice of potential which cancels diagrams
which are found to be large. We expect that the
discrepancy between our FC and IC results for
o(&) near threshold may be reduced by including
diagrams outside the RPAE. We plan to investi-
gate this in future work. From Eq. (23) and in-
cluding the spin-orbit modifications, we have in
the neighborhood of a resonance,

iZ(3d- nP)i'
lp (30)

TABLE VI. Resonance parameters for frozen-core
velocity cross section.

12.96
-137.6
-58.16
-45.08

6.352x 10 ~

0.347x 10 ~

0.111&&10
0.506x 10 4

Z+D (4s kP ~)

0.2025
-0.0284
-0.0725
-0.0893

co is an average of resonance energies weighted by
Ic„,('z & I

'.

where (d„ is a resonance excitation energy. Equa-
tion (30) indicates that the resonance oscillator
strengths will be very sensitive to correlation
modifications in the quantities Z(3d-nP; &o) and
&I'„(~). It is probable that much of the discrepancy
between the calculated and experimental oscillator
strengths for n =4-7 is due to such modifications.
In this calculation we have included onIy the lowest-
order contribution to 2I'„(~). Marr and Austin'
have obtained half-widths for the 4P resonances
by fitting their data to models based on the theo-
retical studies of Shore"'" and Mies." Their
results suggest that —,'I;(&) may be about 50%
larger than our value. We plan in future work to
investigate the effect of correlations on —,'I'„. Other
correlation effects associated with interactions
between the 'P, and 'P, continuum channels may
also be important.

From the recent analysis of Martin et al. ,~ we

do not expect the Wilson method to be fully ade-
quate to determine the energy levels and mixing
coefficients for the 3d'4s'4P configuration. There-
fore, the excellent agreement with experiment ob-
tained for the n =4 resonance positions is probably
fortuitous. On the other hand, their analysis does
indicate that our intermediate-coupling results
for n) 5 are reasonably accurate. Most of the
discrepancy in the positions of these resonances
is probably due to the electrostatic correlation
energy of the 3d 4s'np configurations which we did
not include. However, part of the discrepancy is
due to our omission of continuum interaction energy
shifts.
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Our results show that the absorption window be-
tween the 4P 'P and 'D resonances is obtained only
when interactions between these resonances are
correctly included. An important aspect of the
experimental data which our treatment does not
account for is the variation in the resonance peak
heights. As shown by Eq. (30), the diagrams dis-
cussed in this work yield roughly constant peak
heights. A preliminary investigation indicates
that the variation of peak heights is due to inter-
action between the 'P, and 'P, 3d"4skp continuum
channels.

In addition to the 3d'4s'np resonances (and the

3d'4s'nf resonances which we have omitted}, there
are also resonances in the 4s cross section due
to the excitation of both 4s electrons to excited
bound states although these have not been observed.
Another interesting correlation effect which be-
gins to contribute slightly above threshold is photo-
ionization accompanied by excitation of a core
electron. " We intend to study these processes
in future work.
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