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Quantum mechanics of systems periodic in time
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Some expressions for the time evolution of quantum-mechanical systems with Hamiltonians
periodic in time, derivable from the work of Shirley and applied by Young, Deal, and Kestner
and Haeberlen and Waugh —all for finite-basis-set systems —are derived for a general system
(possibly infinite Hilbert space). These results suggest a new type of approximation to the
time-evolution operator, one which is exact at multiples of the period of the Hamiltonian.
Comparison is made to an exactly soluble problem, namely, a nonrelativistic hydrogen atom
in a circularly polarized monochromatic field.

I. INTRODUCTION

Knowledge of the quantum dynamics of systems
with Hamiltonians periodic in time has played an
enormously important role in understanding the
various phenomena which arise when light inter-
acts with matter. The importance of periodic
Hamiltonians is due mainly to the fact that the
semiclassical radiation theory —in which the
matter system is treated quantum mechanically
and radiation is considered to be an externally
provided classical electromagnetic field —usually
leads to Hamiltonians periodic in time through
an assumed sinusoidal time variation of the
electromagnetic field. Also contributing is the
fact that this semiclassical theory is considerably
more tractable than the fully quantized theory.

However, rarely is the periodic property of
the Hamiltonian exploited to any great extent in
determining the time evolution of such systems.
More often than not the temporal behavior of
the system of interest is predicted using time-
dependent perturbation theory to first order. '
Alternately (for two-level systems), the effects
of a sinusoidally oscillating electromagnetic
field may be approximately calculated by trans-
forming to the so-called rotating coordinate
frame by a unitary transformation. This familiar
rotating-wave approximation leads to the Rabi
formula for the behavior of a two-level system
in an oscillating field. ' In the first ease, no
explicit use is made of the periodicity of the
Hamiltonian and in the second case the method
only works for sinusoidal time variation.

There was a time when available light sources
were so weak and/or incoherent that the first-
order perturbation-theory treatment was entirely
adequate. For sufficiently weak excitation other
processes not included in the theory —such as
spontaneous radiative decay, intermolecular
collisions, etc.—prevent any appreciable ac-

cumulation of probability in excited states so
that questions concerning long-term behavior
within the framework of the semiclassical theory
are purely academic. In fact, it has occasionally
been deemed necessary to demonstrate how the
perturbation-theory result may be obtained from
the Rabi formulation. '

The advent of laser light sources, with their
various combinations of high intensity, spectral
purity, and long correlation times, has provided
a host of new and interesting phenomena and has
given new merit to the question of the long-term
behavior of a harmonically driven quantum-
mechanieal system. Our principal interest is
in the long-term behavior of such harmonically
driven quantum systems; however, the result
which we shall establish in this paper depends
only on the periodicity of the Hamiltonian in time
and not on the detailed functional form of that
periodicity.

Quantum-mechanical systems with Hamiltonians
periodic in time have been studied by Shirley'
and Young, Deal, and Kestner, 'within the frame-
work of truncated basis sets and many interesting
results have been established. In their work
attention is directed toward calculating and dis-
cussing the properties of the so-called quasi-
periodic states. These are states which evolve
back into themselves (possibly multiplied by a
phase factor of modulus I) in one period of the
Harniltonian. In other words, if the period is v

and U(r, 0) is the unitary time-evolution operator
which takes a state from time zero to time 7, the
quasiperiodic states are the eigenfunctions of
U(v, 0). It can be rigorously demonstrated only
for finite Hilbert spaces that such quasiperiodic
states exist. %hether or not quasiperiodic states
exist for systems with infinite Hilbert spaces is
not known; however, Young, Deal and Kestner
give a physical argument to support a conjecture
that they do not. Still within the framewoxk of
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finite basis sets, Haeberlen and %augh' employed
similar formulas in their theoretical treatment
of multiple pulse NMR experiments for the high-
resolution NMR of solids.

Sambe' has recently given an extensive dis-
cussion of the quantum mechanics of systems
with a periodic Hamiltonian, beginning, however,
with the assumption that eigenstates for what

he calls the "Hamiltonian for steady states" exist.
Whether or not quasiperiodic states exist for

systems with infinite Hilbert spaces, relations
similar to those established and used for finite-
basis-set systems may be proven for infinite-
Hilbert-space systems, and it is the purpose of
this paper to set them forth. In Sec. II me shall
prove the principal result of this paper; in See.
QI we wi11. show that this suggests an entirely nem

type of approximation method for describing the
long-term behavior of systems with periodic
Hamiltonians and discuss the relationship of the
present work to that of Shirley and Young, Deal,
and Kestner. In Sec. IV me compare the approx-
imate solution for a nonrelativistic hydrogen atom
interacting in the dipole approximation —with a
circularly polarized monochromatic electro-
magnetic field —with the exact solution to the
same problem. In addition, we consider the
existence of quasiperiodie states for this same
model.

i S —U(t, f 0) = H( t )U( t, f 0}
a

with formal solution obtained in the usual may

by integrating once and then iterating":

t
U(t, f,) = 1+—. dt'H(f')

ik
t t'

+ dt'H(t') dt" H(t")+ ~ ~ ~

(iS)' to

(2)

We shall assume without further ado that the
formal solution (2) exists (i.e. , the expansion
converges); however, we note that the expansion
does not manifestly diverge. " This may be seen
as follows: Let H be the maximum value of
H(i) chosen by selecting the maximum absolute
value of each matrix element of H(t) throughout
its period (we exclude periodicities such as
secret); then each matrix element in each term
of (2) is certainly less than the corresponding
element in the expansion obtained from (3) by
replacing H(t) by H In the .latter case the nth

term in the expansion is (I/n!) gE„t/iS}" so that
the expansion converges to e ' ~' ".

%'e mill now prove that

U(t + v, 0) = U(t, 0)U(v, 0).

To do this me mill first show that

II. TIME-EVOLUTION OPERATORS
FOR PERIODIC SYSTEMS

Hamiltonians in the semiclassical radiation
theory generally have the form

U(f+ ~, ~) = U(i, 0)

from which (3) follows immediately. From the
formal solution (2), we may write

(4)

H(t) =H, +V(t) —iy,
where H, is the time-independent Hamiltonian
operator for the unperturbed atom or molecule,
etc. , V(t) describes the coupling of the atoms
to the externally provided electromagnetic field,
and y is an optional diagonal matrix for the ap-
proximate inclusion of damping effects. ' When

V(t) is periodic in time with period 7, we have

H(t +v) =H(t).

We consider the time-evolution operator U(i, to}
which converts a state at t, into its state at t,
0l.e. )

U(t, f,) satisfies the boundary condition

U(f 0, f 0) = 1

and, in the usual case mhere the y term is omit-
ted, U(t, i,) is unitary. U(i, f,) is a solution
of the Schrodinger equation

t+T

U(t + 7, v) = 1+—. dt'H(t')
iS

t+T t'
+ . , dt'H(t') df"H(i") + ~ ~ ~

(i S)'

(5)

and make the variable changes s'= t'+ v, s"= t" + v,
etc. in every term. By virtue of the periodicity
of H(t), the expansion (5) becomes

t
U(t+ ~, v) = 1+—. ds'H(s')

0

8
+ . , ds'H(s') ds" H(s") + ~

(i S)'

= U(f, o).
Multiplying from the left by U(7, 0) gives the
reciuired result. Note that U(t, 0) does not com-
mute with U(v, 0) except at t=nv so that a vari-
ation of (3) with the right-hand-side product re-
versed does not hold.
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III. DISCUSSION

ol

It is rare that any information is required about
the time evolution of a system over time scales
comparable to v. In most cases [where the inter-
action term V(t) is weak relative to Hh] the
interesting behavior occurs on time scales many
ordex s of magnitude larger than 7. If me know

U(T) we may then calculate U(t) exactly at t=nv
which is much more fine-grained information
than usually desired.

If the Hilbert space of the problem is finite
(e.g. , a truncated basis set), then U(r) may be
diagonaiized by some unitary transformation S."
That is,

S U(r)&=e tG

where D is a diagonal matrix. Vhth the defini-
tion H' =(tt jr)D we may rewrite (8) as

StU( )S=e

and consequently

U(~) Se ITII'/h St-
whereupon

U(&)n Se-in Ttt'/h S1'

Defining the constant Hermitian matrix

a.llows us to write (7) as follows:

e-in T Q/h

which suggests an approximation for U(t) which
we call Us (t) (with p standing for periodic since
this approximate time-evolution operator will
be exact for t=n7):

U (t) e-itQ/h (8)

That the above is consistent with previous work
may be shown as follows: Define a time-dependent
matrix A(t) by

A(t) = U(t)e"

A(t) is periodic with period T since

The most immediate consequence o' (3) is that

U(r, 0), the time evolution over one period, pro-
vides essentially all the information me ever need
about the long-term behavior of the system with
Hamiltonian (1). That is [now suppressing the
th=0 index and writing U(t) =—U(t, 0)]

U(2v') = U(v) U(T) = U(v')',

U(t )U( )
eiGT/h eiQt/h

U(t ) e iGt/h

=A(t)

by virtue of the fact that U(v) =e ' '/". Then U(t)
may be written in the form

with A(t) periodic in time as established by
Shirley.

As long as the Hilbert space of the problem is
finite, a unitary transformation S may always
be found which diagonalizes U(r); however, when

the Hilbert space is infinite a unitary transform-
ation S does not necessarily exist which will
bring S(7) into diagonal form Th.e arguments
which led to writing U(t ) in the form (9) and which

gave the approximation (8) are then not available
for the derivation of equivalent expressions for
infinite -Hilbert-space systems. Nevertheless,
Eqs. (8) and (9) hold for infinite systems. The
proof of this statement is a straightforward ap-
plication of three theorems in Hilbert-space
theory (regarding spectral decompositions of
unitary and Hermitian operators regardless of
their diagonalizability). 'h The first two theorems
simply prove that a spectral decomposition may
be found for every unitary and every Hermitian
operator. From the spectral decomposition of
U(v), we can construct a one-parameter family
of unitary operators which may be written U(v)t/'

for shorthand, mith

U(~)t/T U(~)s/T U(~)(t+ )/ sT

(See the discussion preceding Stone's theorem in
Ref. 13.) Stone's theorem then declares that
U(7)'/' may be written generally in the form

U( )t/T e-iGt/h

where G is a Hermitian operator. [Note that
this does not imply that U(v)' " is equal to U(t, 0).
U(t, t, ) is a two-parameter unitary transformation
so that condition (10) for applying Stone's theorem
does not hold. ]

One of the principal results of this paper is to
prove that an approximation (8) exists for infinite-
as mell as finite-Hilbert-space systems. Finding
the Hermitian operator 6 in terms of Ho and V,
however, is a formidable problem that has not
yet been solved in general.

The question of the existence of quasiperiodic
states [eigenstates of U(v)] may be posed in terms
of the Hermitian operator 6; if 6 can be brought
into diagonal form by a unitary transformation,
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then quasiperiodic states exist. Within the frame-
work of the quantum mechanics of atoms and

molecules, it is usually the case that those op-
erators with a purely discrete spectrum of eigen-
values can be transformed into diagonal form and
those with a continuous eigenvalue spectrum can-
not. Then presumably if G has an entirely dis-
crete spectrum it can be diagonalized.

no loss of information. The only circumstances
in which Uh (t) gives different results from U(f)
is when the detailed relative phases of the wave
functions is important, for example, in deter-
mining the time evolution of some physical quan-
tity whose operator is nondiagonal in the eigen-
vectors of H~. A case in point is the time evo-
lution of the dipole moment operator (written
here as -er= IL) where

IV. EXAMPLE
II(t) = U'(f)IL U(t) (17)

Consider a nonrelativistic hydrogen atom with
unperturbed Hamiltonian H, and electron coor-
dinates x, y, z interacting with a circularly po-
larized monochromatic field of vector potential

A = (E~/&d) (2 coarct + y sin&et),

where 2 and y are unit vectors. The Hamiltonian
for this model system is then

H(t) =H, + eE,(x sinh)t —y cosset) .
It is shown elsewhere" that the time-evolution
operator for this problem may be obtained in
closed form and is given by

U(f ) = tQJ tLe h t t(H etc/Le+eEhe)/h

where L, is the operator for the z component of
angular momentum.

For comparison we can calculate U(v):

U( )
tt'(Hh GJLe+eE&e)/h (14)

and the operators A and G of Sec. III are readily
identified:

where we have assumed the wavelength to be long
compared to the size of the atom. In the dipole
approximation the interaction is er E(t) with

E(t) derived from (11):

E(t) =E,(ft sin&et —y cos(dt),

contains time-dependent phase factors not present
in the corresponding expression using Uh (t).

Quasiperiodic states do not exist for this model
(as defined) since the operator G, (16), cannot
be brought to diagonal form. G is similar in
this respect to the nonrelativistic Stark-effect
Hamiltonian for hydrogen and is not diagonalizable
for the same reasons as in this latter problem.
However, it is important that the nonexistence of
quasiperiodic states is not a consequence of the
periodicity of the driving field but rather of the
detailed form of the interaction operator. It is
easy to imagine similar models —for example,
with a spatially limited driving field —which
would give a diagonalizable G operator, and for
which quasiperiodic states would exist.

The periodic operator A, (15), is simpler for
this model than might have been expected, being
diagonal in the eigenvectors of H, . However,
there seems to be no reason why one would expect
such simplicity in all cases.

One further comment needs to be made: we
have made an especially fortuitous choice of phase
of the driving field (11). We would not expect the
phase to have an effect on any physical quantity.
However, it may be shown by the methods of
Ref. 14 that if (dt is replaced by (df+ 5 in Eq. (11},
U(~) takes the form

and

+-$&tL /h (15)
U(~) e thLe/h e tto/h-- (18)

G =Ho —(dL, +eEox. (16)

The exact U(t) differs from the approximate
time-evolution operator U~ (t) [Eq. (8)] only by
a unitary factor which is diagonal in the eigen-
vectors of H, . Clearly transition probabilities
calculated from U(t) and U~ (t) will be identical
so that in this respect the use of Ue (f) entails

with the same G as before. In fact, this must
still be representable as e " " but since L,
and G do not commute, the operator G' will be
some complicated funct'ion of L, , G, and their
various commutators. " Thus, although the
physical properties must be independent of the
phase 5, the form of the solution is very much
simpler for a particular choice of phase.
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