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Brownian motion in a critical mixture: K-dependent diffusion*
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A light-scattering investigation of Brownian motion in the critical mixture nitroethane-isooctane is

reported, along with a theory to explain the results. The diffusion constant of 0.3-p, Teflon particles

was measured by autocorrelation spectroscopy, at various values of scattering wave vector K. The

experimental results exhibit a K dependence stronger than can be accounted for by a simple dynamic

scaling approach to the shear viscosity. The theory presented takes into account the nonlocality of the

shear viscosity and its effect on the diffusion of small material particles. In addition, we develop a
theory to explain the effect of a specific interaction between the particles and the two fluid

components. Defining an effective viscosity as q,„=k~T/6n. R D, where D is the diffusion coefficient,

the theoretical results may be expressed as q,„=q(g, ) -p Ga'g,'[1/2 —(R/QK, (2R/g, )],
(&

' = (0.94R) ' + g
' + a K', (, '—:Ba + ( '+ a'K', where q(g) is the viscosity expressed as a

function of the correlation length (, a is the dynamic scaling parameter (a = 1.12+ 0.1), and K,(x)
is the Bessel function of imaginary argument. The parameters G and B are nonadjustable and depend

on the particle size R, the intermolecular spacing„and the Ornstein-Zernike parameter. The parameter

a is a measure of the surface interaction between the particles and the fluids. The resulting expression

fits the data within the experimental error of 1%.

I. BROWNIAN MOTION IN A CRITICAL MIXTURE:
K- DEPENDENT DIFFUSION

The problem of Brownian motion in critical mix-
tures has received scant attention in the literature.
The interactions between the critical fluctuations
of average size ( and small material particles of
comparable size are important in this situation.
To discuss the problem, let R be the radius of the

spherical particles and D be their diffusion con-
stant. Then we can define

Equation (1) is written such that in a normai liquid

we have Stokes's law with q„f='fj„„d, where q„,d is
the hydrodynamic shear viscosity. In the critical
region g„exhibits an anomaly which is apparently

hyd

logarithmic in character. ' It has been found by
other workers' that the anomaly may be described

d, q/g„, = (q„, g, )/q„, -=zing-, ~,

where g, is a background viscosity extrapolated
from temperatures well above T, and A and Q~ are
parameters.

In the critical region it has been found experi-
mentally that Stokes's law is not obeyed. That is,
g,„is not the same as g„. A tracer diffusion
study' using isotopieally labeled moleeules of 3-
methylpentane in the mixture nitroethane-3-meth-
ylpentane, that is, for the case R«(, found that
the anomaly disappeared completely (g,~-q, ). On

the other hand, a microphotography study, 4 for the
case Ra (, showed an enhancement of the anomaly

[(g,„-q~)/hq»1]. If this effect is assumed to be

because 8/$ is becoming small in the critical re
gion, then the lack of an anomaly in the tracer dif-
fusion study is an apparent contradiction. For this
reason it was desirable to study an intermediate
situation by the most accurate means available,
namely light scattering.

%e have recently studied Brownian motion of
0.3-p. Teflon particles in the mixture isooetane-
nitroethane by a light-scattering technique. '6 The
results have indicated a very strong dependence of
the diffusion coefficient upon the scattering mo-
mentum transfer. Indeed, the observed K depen-
dence cannot be accounted for by simply using a
dynamic scaling approach to modify the hydrody-
namic viseosi, ty. %e have previously outlined a
theory6 to account not only for this enhanced E de-
pendence, but also for the enhanced temperature
dependence of the viscosity anomaly observed in
the earlier work. The purpose of this paper is to
expand on that theoretical treatment and to report
the details of the experimental arrangement. In
Sec. II, we describe the experimental apparatus.
In See. III we present the results and the compari-
son with a simple dynamic scaling approach. In
See. IV we develop in some detail the theory of the
ggro contributions to the anomalous effective vis-
cosity, and in Sec. V we compare our data to that
theory. A discussion of the effects of dealing with
a distribution of particle sizes is included in the
Appendix.

II. EXPERIMENTAL ARRANGEMENT

The method of investigation is autocorrelation
spectroscopy. The relationship of the correlation
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K= (4»n/g) sin —,'e. (4)

From Eq. (3) it is apparent that analysis of the
spectrum in terms of an exponential contribution
superimposed on a constant background will yield a
characteristic decay time or correlation time 7.,
which will be interpreted as the average time re-
quired for a particle to move a distance I/K, and in
terms of which the diffusion constant is obtained as

a= I/2Z'~

Thus, the intensity autocorrelation of light scat-
tered at a specific angle from Brownian particles
is directly related to the motion of individual par-
ticles over a distance of roughly 1/K. In the crit-
ical region of a binary mixture, the coherence
length of the concentration fluctuations becomes
larger than the range of characteristic lengths, ae-
eessible in a light-scattering investigation. We
would not expect that the character of the particle
motion as manifested in the diffusion constant
would be the same for motion over distances com-
parable to $ and over distances much larger than

In other words, we would expect to observe
nonlocal or K-dependent diffusion behavior in the
critical region.

The liquid system chosen for the investigation
was nitroethane-isooctane. The reason for this
choice was that the refractive indices of the boo
components are matched very closely, s differing
only by 6, n = 0.0001 at room temperature and by
slightly more at the transition temperature (31'C).
The intensity of the opalescence scattering is thus
much lower' than in the usual binary liquid system
(n n-0.2). . This allowed us to study the diffusion
of the particles even very close to the transition
without significant interference from light scat-
tered by the concentration fluctuations themselves.

The liquids were both purified to 99.95+% before
the mixture was made, and the final mixture was
sealed in a glass vial with a tightly fitting, triply
ribbed Teflon stopper. Outside the stopper was a
glass cap, secured by a Teflon O-ring. This ar-
rangement was thus similar to that used by Stein,
Allegra, and Allen. ' The purification of both liq-
uids was carried out in a spinning-band distillation
column, and the purity was cheeked by gas chro-

properties of the scattered light to the diffusion
constant of the particles has been derived by
Clark, Lunacek, and Benedek. ' Their result is
that the intensity autocorrelation function for light
scattered at an angle 8 is given by

I

&f(~)f(f +~)& =f2(1+~'e-"» '), (3)

where N is the number of coherence areas incident
on the detector, D is the diffusion constant, and K
is the scattering momentum transfer

matography with an estimated sensitivity of 0.01%.
All handling of the liquids after purification was
done under a dry atmosphere.

The particles chosen for the investigation were
0.3-p, Teflon particles. They were obtained from
a Teflon suspension manufactured by Dupont. The
width of the size distribution, as estimated from
the correlation spectrum, was 10% (see Appendix).
After centrifugal fractionation in a sucrose gradi-
ent the sucrose was removed by dialysis. The
particles were then evaporated from the pure wa-
ter suspension to complete dryness in a mixing
vial. Purified nitroethane was added and the vial
was agitated in an ultrasonic bath to disperse the
particles. This "doped" nitroethane was then used
to make the final binary mixture. No correction
was made for the weight of the particles in weigh-
ing the nitroethane, since the mass fraction oc-
cupied by the particles was negligible. %e esti-
mate the particle density to be IO~ cm ' as evi-
denced by the scattering cross section. .

The critical concentration of the mixture has not
previously been determined with good accuracy 8-xo

The reason for this is that the matched refractive
indices of the components make meniscus observa-
tions very difficult. %e were able to make use of
a nucleation raining phenomenon' as an indicator
of the transition. This method allowed accurate
location of the meniscus even very close to the
transition. If the homogeneous sample was cooled
very slowly through the transition, all the Teflon
particles would be carried up into the isooctane-
rieh phase. Using a laser beam it was then simple
to locate the meniscus position, since there would
be a very sharp change in the scattered intensity at
the meniscus. In fact, the change as measured by
our detector was several orders of magnitude, and
easily visible to the eye. By this technique we lo-
cated the critical concentration to be 4V.6+ O. l-wt%
nitroethane. In the final sample used for the work
reported here itwas 4V. VO+ 0.01 wt%. While the
transition could be located in a relative sense by
this technique to an accuracy of 0.001'C, the abso-
lute accuracy. of that determination was 0.2'C, ow-
ing to thermometer calibration. The value found
was (30.V5+0.2)'C, in good agreement with most
previously reported values 8"xo

The viscosity of the pure binary liquid was mea-
sured as a function of temperature by a standard
capillary technique. It was found that the temper-
ature dependence could be adequately described by
Eq. (2) in agreement with the theory due to Perl
and Ferrell. ' This dependence has been found ex-
perimentally in other systems which were investi-
gated more accurately. Our interest in this mea-
surement was simply to compare Eq. (2) to the re-
sults for the effective viscosity, defined in the in-
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FIG. 1. Organization of the computer-controlled auto-
correlation Spectrometer.

troduction. The fit to our data gave A. =0.0538, in

good agreement with the theoretical value of 0.054,
if we estimate the correlation length to be given by

Estimating $, =3A, we obtain /~=6. 36x106 cm '.
These values are used in the later data analysis, .

in Secs. III and V.
The temperature control of our sample was ac-

complished by an ac double Kelvin bridge of rather
standard design, " The use of ac control a,llowed
the use of inductive ratio arms, which character-
istically have very low temperature coefficients
(-0.02 ppm/'C). "The effect of laboratory temper-
ature fluctuations on the bridge was therefore neg-
ligible. The control achieved was typically
+0.0003'C for periods of half a day or more.

The controlled bath was glycerin, and was not
stirred. Stirring was avoided to preclude any pos-
sibility of transmittance of vibrations into the
sample. This would have interfered with the cor-
relation measurements of the scattered light. The
temperature gradients were effectively removed
by the addition of zone heaters at the top and bot-
tom of the controlled bath, which were indepen-
dently controlled. The temperature variation
across th,e sample was less than 0.0003 'C.

The autocorrelation spectrometer was of rather
unique design. As shown in Fig. 1, it utilized an
on-line computer (Nova 800) to perform the data
analysis. The external device, the time digitizer,
counted time between photon pulses in units of 0.2
p, sec. These sequential counts were transferred

directly to the computer memory via a triple-buff-
er network. The computer was programmed to use
those counts to construct the autocorrelation spec-
trum, in real time.

It was necessary to periodically agitate the sam-
ple to disperse the particles, which were slowly
settling out during the course of the experiment.
Apparently, owing to some amount of irreversible
coagulation, it was found that the particle size
distribution and average size were not exactly the
same after every such agitation. Therefore, it
was necessary to use a normalization procedure
to relate the observed correlation times to an ef-
fective viscosity. After agitation, a period of 8-10
hours would be allowed, during which large par-
ticles (or conglomerations of particles) would set-
tle out of the sample, and a certain amount of non-
reproducible coagulation apparently took place.
After that period it was found that the average par-
ticle size, as observed by the correlation spec-
trum, would undergo a steady drift downward, as
the particles of slightly different sizes settled at
different rates. That drift was slow enough, how-
ever, to allow an interpolation procedure to be
used,

The procedure used consisted of several steps.
The correlation time 7, would be measured at a
calibration temperature at least 1'C above the
transition. Several points could be taken over a
period of 15-18 hours. Then the correlation time
would again be measured at the calibration tem-
perRture. It wRs RlwRys observed to decrease
slightly —never more than 2/0. Defining the cor-
relation time at the calibration temperature to be
~„we would then calculate the ratio r,/7„using
a value of 7, obtained by interpolating in rea, l time
between the initial and final values. The result of
this procedure was a ~eEative effective viscosity.
This, in turn, was related to an absolute viscosity
by multiplying by the known viscosity at the cali-
bration temperature, as measured by the capillary
viscometer. Using this technique we were able to
get very reproducible results.

III. EXPERIMENTAL RESULTS

There are at least three things that might be ex-
pected of Brownian motion in the critical region.
The diffusion constant should reflect the viscosity
anomaly. It should also take on wave-vector de-
pendence. Last, we might expect that the Ein-
stein-Smoluchowski relation"

might not hold for times 7 on the order of the life-
time of the concentration fluctuations. The first
thing we shall do in this section is show by a sim-
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pie argument that the deviations from Eq. (7)
should be small.

The relation (7) may be derived easily by writing
the displacement of a particle in time 7 as

T

~z(v)= j u(s)ds.

From Eq. (8) we can construct the mean-squared
displacement in terms of the velocity autocorrela-
tion function for the particle. Taking the time
derivative of the resulting expression me obtain

jeff
(c.P)

0.7

0.6

( SUPERIMPOSED DATA)

vt K) = q &4sf g)
~Ka +2+(-2) I ja

Ignoring the long-time "tail" of the velocity corre-
lation function which ha, s recently been discovered
(in normal liquids), "we can write that function as

(lo)

and, for times»m/y, we see that the relation (7)
is obtained. As mentioned, the expression (10) is
not entirely correct. This is due to inertial effects
in the liquid movement. ' However, the value of
the time integral of Eq. (10) remains unchanged
when this effect is included. This can be under-
stood intuitively since the time integral is related
only to the cu-0 component of the velocity Quctu-
ation spectrum. It is reasonable that inertial ef-
fects should therefore disappear from the result.
Moreover, for the same reason me should not ex-
pect the effect of the liquid inertia to become
anomalous owing to critical fluctuations. Hence
we can conclude that the result (7) should remain
valid in the critical region, for the time regime
t»m/y. The important time in the problem is
thus not the lifetime of the fluctuating force (which
is related to the lifetime of the concentration fluc-
tuations) but rather to the velocity correlation
time of the particle. The latter should not display
a large anomaly in the critical region, and even
decreases as the viscosity increases. For our
system we estimate m/y =4xl0 ' sec. Since the
time scale of the motion being studied is measured
in milliseconds, any effect due to deviation from
Eq. (7) may be ignored. We therefore do not ex-
pect any anomalous deviation from exponentiality
of the correlation spectra in the critical region.
None was observed.

The other two effects were observed, however.
The data, taken at the five indicated values of E,
are presented in Fig. 2.' The dashed line in that
figure represents the hydrodynamic viscosity ob-
tained in our capillary measurements. The solid
lines are calculated by the dynamical scaling pro-
cedure indicated at upper right in the figure for the
five experimental values of K. The value of the
dynamic scaling parameter, a = 0.55, mas chosen

O. I

T-Tc ( C)

I

I.O
I

IO

FIG. 2. Simple dynamic scaling approach to the effec-
tive viscosity data. The five solid lines are calculated
by simply replacing the correlation length by an effec-
tive value, obtained by a dynamic scaling approach, in
the theoretical expression for the anomalous viscosity.

by a least-squares procedure. The fit to the data
is poor and the value of the scaling parameter is
approximately half that theoretically expected. If
the scaling parameter mere arbitrarily chosen as
1.0, the solid lines would all fall mell helot the
relevant data points. %e conclude that the effective
viscosity as derived from the friction coefficient
determined by measurement of the diffusion con-
stant cannot be simply related to the K-dependent
hydrodynamic shear viscosity. Further we note
that there is an apparent extra anomaly in the ef-
fective viscosity which is evident in the region
0.01& T- T,&0.1, which mould be even more obvi-
ous if a= j..0 mere chosen. Also, it is evident that
the K dependence of the results is stronger than
indicated by the simple dynamic scaling approach
taken above. %e interpret these facts as evidence
of a contribution to the friction coefficient of a
particle from some source other than the usual
viscosity phenomenon.

IV. THEORY

There are two parts to the theory to be presented
here. First, we shall derive the way in which the
nonlocality of the viscosity enters into Stokes's
lam. Next me shall consider the additional anomaly
indicated by our data in the last section, as mell
as by the data of others.

To see how the K dependence of the viscosity
enters into Stokes's lam, me use an approach orig-
inally due to Zmanzig. " In his treatment, he uses
a theorem due to Faxen" which relates the force
on a spherical particle to the (steady state) veloc-
ity field which exists in the absence of the particle.
The velocity is simply averaged over the surface
Z of the sphere,
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1F = 6«qR — dQ v(Z).
4w

For the case of a K-dependent viscosity we must
modify this theorem. In this case, the Navier-
Stokes equation, on which Eq. (11) is based, is
valid only in an operator sense —that is, in k
space. If the velocity field is a pure Fourier com-
ponent, v= v~e' '', the Navier-Stokes equation is
valid by definition, provided we replace g by g, .
Thus, we see that the necessary modification of
Faxen's theorem is to write

~& R

F =6«R
( )3 gpvp4 Jl dQe

It is possible to make a first-order approxima-
tion which can be evaluated exactly for a critical
fluid. From the theory of Perl and Ferrell' we
have for the first-order expression for the anom-
alous part of the k-dependent viscosity in the crit-
ical limit

ti, r4=@~Aln(QD/k),

where q, is the "background" viscosity, A=0.054,
and Q~ is an empirical parameter. Substituting
this into Eq. (16) we may perform the integral to
obtain the anomalous part of g,ff

d'k sinkR
(2«)' "~ ' kR (12) 2 sin x

=A~a lnQDR- —,lnxd
7T p x

Using Zwanzig's treatment, it is easy to show that
the velocity time correlation function is related to
the time correlation function for the stress tensor
as,

«6( +k )

(13)

= Aq~ ln(1.31QDR) . (18)

There is a correction which should be applied to
this, however. We have used the expression of Eq.
(IV) for extremely low k (all the way to k =0) where
it does not apply. In fact, the entire negative con-
tribution to the integral in the second line of Eq.
(18) comes from this region. We can make a. first-
order correction for this fact by giving the integral
a nonzero cutoff on the low side. That is, we must
add to the above result the integral

The time integral is then given, using the fluctu-
ation-dissipation result for the K-dependent vis-
cosity, to be

2 ~/K

Ag~ — lnxdx,
1T p

(19)

y= dt FO' t
B 0

(15)

We note that the effective viscosity is related to y
as q, « ——y/6«R. The integral that results in Eq. (15)
may be simplified considerably by use of Eq. (14)
and we obtain, using x=kR,

2 sin x
g ff dx 2 g~/~ ~

77 p x (16)

In the limit as R becomes large, this reduces to
just the hydrodynamic viscosity g„as it must.
However, if R is small enough that there is sig-
nificant k dependence for ks 1/R, then that k de-
pendence must be taken into account in writing
Stokes's law by replacing g by g,«as given by Eq.
(16). In a critical fluid, since the correlation
length can be as long as about one micron, this ef-
fect must be considered in treating the motion of
particles of the size used in our experiment, 0.3 p, .

r (v~ v~, (t))dt = 16«6 (k + k' )ks T/k 'q» . (14)
0

Using Eq. (12) we construct the force autocorrela-
tion function. The friction coefficient is related to
that function by"

Aq.«=Ay, In(0. 94Q~R). (20)

To extend this approximate result outside of the
critical limit we use

= (( + 0.94R ) (21)

in place of $ to calculate the viscosity to be used
in Stokes's law to obtain the friction coefficient for
the particles. This ad hoc "scaling law" assump-
tion has simply been chosen to give the limiting
behavior found in Eq. (20) as T, is approached.
This "first effective correlation length" $„ then,
gives a "Stokes's effective viscosity" which should
describe the diffusion of the particles in the ab-
sence of any additional contribution to the friction
coefficient. The approximation used in Eq. (17) as
corrected in Eq. (20) is probably good to order

where $ is the estimated maximum value of $
which can occur (thus, k -I/$„). It is likely that
impurity effects, as well as breakdown of the Orn-
stein-Z ernike theory, "would become important
in the region of T- T,a 0.001'C. For this value of
temperature, we have ( -0.75 p from Eq. (6).
Using this we obtain R/$ --,', and the correction
becomes -0.33Ag, . Adding this in gives the final
result
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A=0.054, or about 5Q of the value of d, g,«. The
essential point is that we do obtain the intuitively
expected result that in the critical limit the anom-
alous part of the effective viscosity is obtained by
substituting R for $, within a factor of order unity.

As pointed out in Sec. III, however, it is apparent
that there is an additional phenomenon leading to
an increase in the effective viscosity over the hy-
drodynamic value [as opposed to the result of Eq.
(21) which leads to a decree. se]. Clearly, this
must be related to the concentration fluctuations in
the host mixture, and their interactions with the
foreign particles under investigation. The above
calculation has included only that part of the inter-
action that takes place via the velocity field of the
fluid, and the modification of that field by the
presence of the fluctuations. There is, however,
the possibility of a direct interaction between the
concentration gradients and the particles. Another
way of describing this difference is to say that the
above calculation has taken account of interactions
between the two types of host molecules present,
but has ignored the interaction of the surface of the
particles with the host molecules.

To see what effect this might have on the motion
of the particles, let us make the assumption
that the energy of a surface element dA in contact
with the fluid is proportional to the concentration
fluctuation at the surface, if we subtract the con-
stant energy due to the average concentration of
the fluid. That is,

dE, = ndA, (22)

where vis a surface tension derivative" with re-
spect to concentration. Evaluating the total energy
for a spherical particle located at ~, due to the kth
component of the concentration fluctuation 5C~e'"
we obtain

E,=4«(i/k)nRBC, sinkRe' 'o. (23)

The force exerted on the particle is then given by

-dE '=4«knRBC sinkRe'"'0.
dr,

(24)

The force correlation function may be evaluated
exactly in terms of the concentration correlation
function. Using the Ornstein-Zernike result" the
final expression is

32R2 s jn2kR
d klan 2 2 -2 sy2.

(25)

An approximate closed-form result may be ob-
tained by ignoring the k dependence of the viscos-
ity, and removing it from the integral, with the
result (see Eq. 15)

Q)2 ~2 (26)

where K,(x) is the Bessel function of imaginary
argument. The proportionality constant is
G=16RZq, &„/9«kaT. For R»$, this effect goes
as $, while in the critical limit where R«$, we

obtain 4g,«= Gn'R' In)/R. Hence, the character
of the anomaly changes, but it does not approach a
hard limit as g -~.

One of the assumptions made above breaks down,

however, in the critical limit. Namely, the use of
the Ornstein-Zernike form for the concentration
correlation function implied the assumption that
the fluctuations at the surface of the particle are
the same as in the bulk of the liquid. It is well
known that the long-range fluctuations exist basi-
cally because By/Bc 0a-t the critical point. How-

ever, if the particle has a specific surface inter-
action with the two components, as implied by Eq.
(22), then Bg/Bc approaches a limiting value given

by no, where v is an area parameter. We would

expect o to be the square of an intermolecular dis-
tance d. In the usual Ornstein-Zernike deriva-
tion the correlation length j,s given by (
(Bp/Bc)nZ, where Z is the Ornstein-Zernike pa-
rameter and n is the molecular number density.
Hence the correlation length (, to be used in place
of $ in Eq. 26 is given by

2=( 2+ QVBZ=( 2+( 2
~ (27)

If $ «R (strong interaction), the maximum value
of the expression in Eq. (26) is b, rl,«= (8Rdn/
9«kaT)rj}. For our case, using n in ergs/cm2 this
works out to about 6ng. The condition $ «R may
be written

1«n«ZnR = nZR'/d-40n (28)

in the same units. It is thus obvious that for par-
ticles of the size used in our study, the strong
interaction case would give a contribution to the
effective viscosity at least comparable to the usual
hydrodynamic viscosity anomaly (which is typically

) in the critical limit.
It at first would seem that the cross correlation

of the forces considered in Eqs. (12) and (24) above
would also contribute. However, for a given k,
the force due to the surface energy is parallel to

/

k, while the force due to the stress tensor (veloc-
ity field) is perpendicular to k for an incompress-
ible Quid. Hence the two force contributions are
orthogonal and the cross term may be ignored.

Therefore, the final result is obtained by adding
the two contributions calculated above for 5g,ff.
In our case we shall find that neither the weak nor
the strong interaction limit applies (see Sec. V), so
the result of Eq. (26) cannot be simplified. Adding
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A preliminary effort was made to fit the data to
Eq. (29) with B=0 (l.e., without surface damping
of the critical fluctuations). The results are shown
in Fig. 3. It is evident that the fit of the five solid
curves to the five sets of data is a definite im-
provement over the results of Fig. 2. It can also
be seen, however, that the dependence for lour-k
values close to the transition is still incorrect.
This is related to the use of the Qrnstein-Zernike
correlation function at the surface of the particle
(i.e., B=0). If the damping of the fluctuations be-
comes significant then the effect would be to de-
crease the temperature dependence, and hence the
low-k dependence, close to the transition. This
would tend to improve the agreement with the data.

The value of the surface energy parameter ob-

0.8—

(Q SUPER)MPGSED DATA)

G.5
G,GG l G.G I

1

IG

FIG. 3. Comparison of the data to the theory of the
effective viscosity obtained by taking account of the non-
locality of the normal viscosity as vrell as the simple
surface energy effect.

that to the simplified result of Eq. (21), we obtain

~q„,=~q, Inq, ~, +a~'~2[ ,' --(Z/~, )Z,(2B/g, )],

$, '=$,ff+(0.94R) ', $, '=-),f2f+Ba,

0=—16ItZq, ~~/9vksT-I. 3x10" cP cm'erg ',
B=nZo=Z/d-2X10" erg '.

(29)

The parameters have been estimated using the re-
sults given after Eq. (6), and an estimate of the
Ornstein-Zernike parameter (Z = 10' cm/erg), de-
rived from opalescence intensity measurements.
The K dependence will be contained in the scaling
hypothesis'

tained in the fit of Fig. 2 is 0.025 erg/cm' and the
value of the dynamic scaling parameter found to
give the best fit was a=1.15+0.2. From Eq. (28)
we see that we have g = B(40m = 1). Since we
worked mell into the region g & R, the damping ef-
fect should be quite significant, particularly for
our lowest k value.

The full expression of Eqs. (29) and (30) was
then used to fit the data. The resulting surface
energy parameter was 0.0362 + 0.0005 erg/cm',
and the fit is shown in Fig. 4. (The accuracy of
this number of course depends on the parameter
Z, so its absolute accuracy may be trusted only to
one significant figure. ) Compared to typical sur-
face energies at fluid-gas interfaces this param-
eter seems quite small. However, we did choose
the Teflon particles with the aim of reducing any
such interaction. It seems me were successful in
this attempt.

The fit in Fig. 4 is again an improvement over
the results shown in Fig. 3. In fact, it is now

within experimental error for virtually all the
points. The dynamic scaling parameter, again
chosen by the least-squares technique, eras found

to be 1.12+0.1. Moreover, the apparent paradox
alluded to in the introduction may now be recon-
ciled. Namely, the tracer diffusion results men-
tioned there are obviously consistent with the re-
sults of Eqs. (20) and (21), since no anomaly was
observed in the diffusion coefficient of an isotopi-
cally labeled component. ' No foreign material is
introduced for such a measurement, so the sur-
face-energy correction does not apply. Since $,
in Eq. (21) is limited in this case to a molecular
dimension, the absence of a critical anomaly is
reasonable. The microphotography results of the
Russian group, ' on the other hand, showed an en-
hanced anomaly, far beyond that in the shear vis-
cosity measured by other techniques. This can
norv be understood by assuming that they observed
a surface-energy contribution far larger than in
the Teflon-nitroethane-isooctane system used in
our own investigation.

We see then that the existing data on Brownian
motion in critica, l mixtures are amenable to a con-
sistent interpretation in the light of the theory ere
have proposed. Not only the temperature depen-
dence is explained, but also the k dependence,
which was observed foi the first time in the exper-
iments described here.

All three types of experiments may be under-
stood on the basis of two physically simple phe-
nomena.

(i) For the normal viscosity effect, the zeroth
approximation is to take account of critical fluctu-
ations in calculating the shear viscosity. ' For
small pa, rticles, how'ever, this must be modified
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interaction.
The k dependence of the diffusion constant was

then inserted by a simple scaling hypothesis which,
for this case, must be considered an ad hoc as-
sumption. The resulting theoretical expression
explains the data obtained with the experimental
error of 1%. The value of the scaling parameter
was found to be 1.12+ 0.1, in good agreement with
theoretical expectations. The fact that the k de-
pendence is found to obey Eq. (30) may be taken as
another experimental verification of that scaling
hypothesis.
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FIG. 4. As in Fig. 3, but with surface damping added
to the theory of the surface-energy effect.

by the l't dependence of that calculated viscosity.
We found by this technique [see Eq. (20)] that the
anomaly in the effective viscosity is strongly
rounded in the critical region, approaching a lim-
iting value given roughly by replacing ( by R.

(ii) The surface interaction between the particles
and the fluid molecules is a very important contri-
bution to the friction coefficient of the particle.
Using a very simple approach, and a correction
based on surface damping of the Ornstein-Zernike
concentration fluctuations, this contribution has
also been calculated in Eq. (29), and was shown to
approach a limiting value again, but this time de-
pending on the strength of the surface-energy
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APPENDIX: EFFECT OF FINITE PARTICLE SIZE
AND SIZE DISPERSION

Following the treatment of Clark, Lunacek, and
Benedek' we consider the problem of calculating
the intensity autocorrelation function for light scat-
tered from N particles treated as point scatterers,
moving independently of each other. We find that,
for a specific scattering angle 0,

(1(t)f(t +r)) =x'I &'
I

'+
I
E' I' g '(exp[ —iK (ter —nri)]), (A1)

where the primed summation indicates m xj, the
displacement of the jth particle between time t and
t+ v is hx~, and where we have assumed that all
the particles are the same size so that the scat-
tered field amplitudes are identical (i.e., E, = E ).
Assuming that the particles move independently,
the sum in Eq. (Al) may be written

~2
I ( i k.kF)

I

2 —~2+ (r)2 (A2)

(ei k ~ Dr(r)) exp[ llf2(nr(r)2)] (A3)

We use the Einstein-Smoluchowski relation to de-
fine the diffusion constant and the intensity auto-
correlation function takes the form

where we dropped terms of order N. If we assume
that the motion is a Gaussian process, this quantity
is easily evaluated, and we find

(I(t)I(t+ ~)) = tt'(1+ e-'~» '), (A4)

where we have not accounted for the effect of
multiple-coherence areas in this expression. We
see that in this case, analysis of the spectrum in
terms of an exponential contribution superimposed
on a constant background will yield a decay time ~,.

Two of the assumptions made above can be re-
laxed without affecting the result greatly. Namely,
the assumption of point scatterers and the assump-
tion of no size dispersion can be changed.

Treating first the effect of finite particle size,
we note that this will merely introduce an angular
dependence of the scattered amplitude. If we are
observing a small enough solid angle that the an-
gular variation of the field over the detector is
negligible, then that term is the same for all the
particles and may be factored out of the sum in the
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f (1/d) = d 'exp[ —(1/d —1/d, )'w'] (A5)

expression for the scattered field. It enters only
into the total cross section of the scattering, and
not into the correlation properties of the light.
The condition of small solid angle is always satis-
fied in our experiment.

The assumption of no size dispersion can be re-
laxed with a bit more difficulty, but the difficulties
are merely algebraic, so long as the fractional
width of the size distribution is small. We do not
know the size distribution in our sample, so we
can only hope to make a correction based on some
assumed distribution, with a single parameter to
represent the width, and expect that correction to
be small. Taking this approach, we may define a
size distribution which makes the mathematics
particularly easy. We will define the distribution
of inverse particle diameter to be

r dxexp[ —(x-d )'u'-K'7yx]
0

= exp[ —(K'y/do)r+ (K y/2w) T']

dxexp[- [x- (I/d, -K'7y/2w')]'w'),

where

y =-ks T/6n g .

(A8)

Now we put in the assumption that the width of the
distribution is small, that is, do/w «1. Since the
maximum delay time 7 involved in a typical spec-
trum is such that

K'y~ /d, S 5, (A9)

we see that the location of the peak of the integrand
m Eq. (A8), under the small-width assumption,
can be written

g~(T) = N Q N~ V~( exp[ —K ar~(~)]), (A6)

where we have N~ particles of volume V„, and d is
the particle diameter. Following the procedure
used to obtain Eq. (AS) we write, using the distri-
bution function of Eq. (A5),

for reasons that will become evident in the ensuing
treatment.

It is clear from Eq. (A5) that the modification
necessary in the quantity g, (r), defined in Eq. (A2)
is merely to write it as

x exp[2(K2y/2w) T'])
= N'E" (1+e '~'~exp(r'/r ')] (A11)

(1/d )[1—(K yr /d )(d /w) ]z (1/d )[1—5(d /w) ].
(A10)

This makes it obvious that the region of integration
can be extended to -~ without significantly affect-
ing the validity of the result. The remaining inte-
gral then cancels with the, one in the denominator,
which may similarly be extended to -~, and we
obtain the final result for the spectrum

(I(t)I(t+~)) =N E' {I+e

g, ~)=ff (x)x ' exp[--,'K'(z'(r, x))]dx
jf(x)x 'dx (A7) 7, = do/2K y, T = Ww/K y

and we see that the width is given by

(A12)

for 7.«T, where we define two correlation times

where the weighting factor f (x)x ' will be referred
to as the intensity distribution function. The inte-
gral in the numerator becomes

d, /w =2~(~, / ),T (A18)

which in our experiment was typically less than 0.1.
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