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A method is presented for calculating the pair-correlation functions for a high-density
quantum-mechanical plasma of protons and electrons, The Slater sum is approximated in the form of a
classical Boltzmann factor with the Coulomb potentials replaced by effective potentials. The efFective
potentials contain the classical potential plus quantum corrections. The quantum efFects may be
separated into symmetry efFects, difFraction efFects, and coupling between the two. This method is exact
at infinite temperatures and is tested here down to temperatures at which there is about 40%
ionization. The pair-correlation functions are obtained from a Monte Carlo calculation. The fraction of
electrons in the ground state of an atom is also calculated; an approximate formula for this fraction is
(1/2)I1-erf(blnT/T )], where b and To are simple fitted functions of the density.

I. INTRODUCTION

The fact that quantum-mechanical effects would
have to be included in the calculation of thermo-
dynamic properties of a dense plasma was rea-
lized more than 40 years ago. Uhlenbeck and
Gropper' formulated the problem in 1932. It mas
clear that the. short-range classical Coulomb
divergence for the proton-electron interaction
would have to be eliminated by including the
quantum-mechanical effects. Many authors' "
have treated this problem using a variety of ap-
proaches. While Kirkmood' was the first to have
suggested the use of an "effective" potential be-
tween charged particles as a means of including
quantum effects, Morita' mould appear to have
been the first to apply the idea. Ebeling and co-
workers'0'i' have made considerable progress on
the problem. They have made assumptions which
kept most of their calculations analytic. Storer
and Davies"" and Barker" "have developed
methods for the exact evaluation of effective po-
tentials in the low-density limit. Dunn and
Broyles" developed a technique for including the
density dependence of the effective potentials.
This method was applied to the electron gas and
mas later extended to a hydrogen plasma. " This
paper mill apply the same general method to hy-
drogen and will investigate whether or not this
method, which mas developed for plasmas, can
be extended to a system which is not completely
ionized.

Since hydrogen is completely ionized at very
high temperatures, it is desirable to take the
nuclei (protons) and electrons as the constituent
particles in any theoretical treatment. As the
temperature is lowered, some electrons mill com-

bine with the protons to form atoms and ions as
nem particles. The number of these particles will
be subject to fluctuation, since they mill be con-
tinually forming and breaking up. But the most ser-
ious difficulty arises in the determination of the
potentials that act between these atoms, ions,
nuclei, and electrons. Conceptuatly, the simplest
procedure is to continue to treat the systems as nu-
c1.ei and electrons. Then the interaction potential
is known to be the Coulomb potential. If properly
handled, these electrons mill associate mith the nu-
ctei in such a manner as to form the proper number
of atoms and ions.

A first step in this direction was presented in
Ref. 25. In this paper, we will present a modified
derivation of the method of Ref. 25, improving
the approximations. Distribution functions and
ionization curves for hydrogen at several densi-
ties mill be presented.

In order to obtain distribution functions, it is
necessary to evaluate multidimensional integrals
over the Slater sum

where

(1.2)

X'„=4' „p, a„=n'/2m„p =i/ur.

In these equations, N„ is the number of particles
of the vth kind, each having a mass m„. The wave
function is a properly symmetrized eigenfunction
for the entire macroscopic system with eigen-
value E„, where n represents a complete set of
quantum numbers.
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One may write

W=e (1.4)

The Hamiltonian is
H= — +V, (2.2)

and expand B in terms of two-body functions,
three-body functions, etc.:

B= ~w +~ w"' + ~ ~ ~fj ~ ijk (1.5)

where is a 3N-dimensional vector operator de-
fined so that

Cl'= g c),V,'. , A ~ CIB = g n, V)A ~ V,B.(2.3)

In the limit of infinite temperature, the Slater
sum [Eq. (1.1)]goes over to the classical Boltz-
mann factor

and the interaction potential V is

V = Q v, ) = Q Z, Z)e'/r)) . (2.4)

W r =„exp(-P Pv))), (1.6)

where v;j is the classical Coulomb potential. Thus
the logical first step in using the expansion in
Eq. (1.5) is to truncate the series after the first
term:

In order to obtain a differential equation, we
differentiate the Slater sum with respect to P to
obtain

BW 3N W- VW+-,'c g [( 'e " 'y„)*(e ")'4'„)
n

w]j ~ (1.7) + (e- BH)2@
) 2i(~2 —BH/2 @ )]

(2.5)
One of the purposes of this investigation is to
determine where this approximation is valid. In
the limit of infinite temperature,

Note that the terms in the brackets also occur in
the expression

W]j z
—Pv~j . (1 8) ~W —c g [( 2e 8 )2ip }2'(e 8 ) 1J/ )

The problem is then to determine how w differs
from Pv at finite temperatures. A method for
determining w is presented in Sec. II.

The effective potentials are illustrated in Sec.
III. Distribution functions can be computed by
integrating the Slater sum over all but two, three,
etc., particles. Because of the way in which we
have approximated w, the distribution functions
can be obtained by using one of the procedures
which have been developed for the classical theo-
ry of fluids. Radial distribution functions ob-
tained by a Monte Carlo" " (MC) calculation are
presented in Sec. IV.

+(e 8H y )2'(P e 2 )2y )] /2X

where we have defined

e- BH/2y g ~ ge- BiV/2g
~

(2.6)

(2.7)

Combining Eqs. (2.5) and (2.6), we obtain

BW 3N=—W —VW+ —,'CPW- X. (2.8)

By substituting W e into Eq. (2.8), we obtain

II. DIFFERENTIAL EQUATIONS FOR THE
EFFECTIVE POTENTIALS

W=eg(e 8H)2@ )2'(e 2 ) ill ). (2.1)

In this section we shall derive equations for
obtaining the effective pair potential for any sys-
tem of nuclei and electrons interacting with
Coulomb potentials. This result will be used to
obtain the effective potentials for hydrogen in
Sec. III.

Since the Slater sum is invariant under unitary
transformations, the energy eigenfunctions in
Eq. (1.1) may be replaced by any complete set
of functions, provided that E„ is replaced by the
Hamiltonian. Thus we may write

—= V+ — B ——C1BI EB+Y
gp 2 4

where

Y =X/W —3N/2P —4OB. B (2.10)

has been introduced for several reasons. First,
this form of the equation will make the compari-
son with the method in Ref. 25 clear. Second,
observe that if we replace 4 „by plane waves in
Eqs. (2.1}and (2.8) and neglect the Coulomb po-
tential in the Hamiltonian, then

X/W 3N/2P . (2.11)

Furthermore, at extremely high temperatures
where this replacement is most nearly valid,
B=PV. Hence, the last term in Eq. (2.10) goes to
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zero, and we conclude that

Y 0 as T-~. (2.i2)
BI— s) (2.18)

If, on the other hand, we replace the sum over
n in Eqs. (2.1}and (2.8) by a single state, and let
4 be a real energy eigenfunction, then 4'-8 ~.
Hence, we have

(2.13)

Since this replacement would be valid at low

temperatures where the ground state is dominant,
we conclude that

and he has given a method for computing s„- for
both Fermi and Bose ideal gases. In the numeri-
cal computations, we use the simpler procedure
of inverting the hypernetted chain equation" to
obtain sg~.

Then, if we write

(2.19)

Y Oas T 0. (2.i4) the total effective pair potentials are given by

The above arguments can be made more rigorous
by manipulating various equations of this section.
In summary, we have taken three quantities, each
of which is important in some temperature range,
and combined them into a single quantity which is
relatively small due to cancellation among the
terms.

Exactly the same procedure used to derive Eq.
(2.9), when applied to a mixture of independent
ideal gases, yields

a 13
BI —~FBI UBI+YI . (2.18)

Taking the difference of Eqs. (2.9) and (2.15) and

defining

(2.16)

K]~ =Q]g +S~~

We will now obtain an equation for the diffrac-
tion pair potentials. In order to do this, it is
necessary to use a pair approximation to (Y —Yj)
so that

1' —Yj= Qyi;. (2.21)

The quantity y„. is taken to be (Y —Y, ) for a two-
particle system in which the Coulomb potential
has been replaced by an average potential reflect-
ing the effects of the other particles. A deriva-
tion of y;, using Thomas-Fermi approximations
is given in Appendix A.

By substituting Eqs. (2.18), (2.19), and (2.21)
into Eq. (2.17), we obtain

we obtain j&j k

(2.22)

—=V+-' 'U--' U U--'aU aa +Y- Y

(2.i7)

where

+ jj;, + —,(n;+ aj)V; u;,
8u]~ 2

gp

We will refer to Bj as the symmetry (or ideal gas)
effective potential, U as the diffraction effective
potential, and B as the total effective potential.
Those effects due to the symmetry of the wave

function required by Fermi or Bose statistics,
which would be present even in a noninteraeting
system, are included in BI. The effects of the
classical potential, the diffraction effects due to
the uncertainty principle, and the coupling be-
tween symmetry and diffraction effects are all
contained in U.

At this stage we see that two major obstacles
must be overcome. The function F involving a
summation over a complete set of wave functions
must be evaluated. In addition, this many-body
equation must be separated into equations in-
volving only pairs of particles.

Lado" has shown that BI may be approximated
by

—k (u;+ uj}V,u;, .V,u,;
1 i+ j} i ij i ij+yij {2.23)

1
Tijk &+klVkuik k ujk

+Vku;k' Vksjk+Vku, k Vks;k] . (2.24)

To obtain a solvable equation, the summations
must be eliminated. To do this, multiply Eq.
(2.22) by e '"'» and integrate over dr„dr, .
Some manipulations then give

~+ u&

&p
„-= jj„,——,(e„+k„)u„„—Q„„

k(~„+o'.—) (Vui .' Vs„.)"+y„,
11

6k(upk uvk+ uiLk svk+ uvk s pk)i2Q

x ik 0, (2.25)
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where we have defined

&p = QpX (2.26)

Q„„(&)= a(n„+ u„)&u„„(r) Vu„„(r); (2.27)

both the tilde and the superscript E denote the
Fourier transform

effects) on the effective potentials are nearly in-
dependent of the relative spin orientations of two
interacting electrons. If we let 1 denote protons,
2 denote spin-up electrons, and 3 denote spin-
down electrons, then the total effective pair po-
tentials are givers by

(2.28)
11 ll (3.1)

(3.2)

A comparison of Eq. (2.25) with Eq. (33) of Ref.
25 reveals that the difference in the two methods
is that y» was neglected in Hef. 25. As we shall
see in Sec. III, including y„, gives significantly
better results.

Under the assumption that u» must be the same
function for all particles 4 which are of the same
type (e.g. , nuclei), the last term in Eq. (2.25) may
be simplified to

1
P q 6 f)g P qQ P g

—g P P
6

PQ P P S
)tf P

—PP fI & fIQ ~ 1I S fi

where the sum over q now denotes a sum over the
types of particles. %e have also utilized the fact
that

v~ a~~i »

22 33 22 + 22

~23=~32="22 y (3.4)

with s» denoting the symmetry potential for a system
of electrons with parallel spine at a density of p„
which diverges logarithmically at the ol igin.
We now simplify notation by dropping the sub-
scripts from s» and defining

(3.5)

(3.5)

(3.V)

%'e then obtain the equations for the Fourier
transforms of' the three diffraction effective po-
tentials, from Eq. (2.25):

since there is no symmetry interaction between
particles of different types.

BP
= 5 - Q6 Qll —@11—g Qpf Q 1

—gpss Q

(3.8)

III. PAIR EFFECTIVE POTENTIAI. S

We will now apply Eq. (2.25) to hydrogen. Be-
cause the Hamiltonian does not contain the spin
orientations of the particles, we may consider
particles with different spin orientations to be of
distinct types. Therefore we should consider
four kinds of particles: spin-up protons, spin-
down protons, spin-up electrons, and spin-down
electrons. %e assume equal numbers of each
type of particle. Because only relatively high
temperatures will be considered, the spin of the
nuclei will be neglected. The problem may be
further simplified by observing that the fourth
term on the right-hand side of Eq. (2.25) only oc-
curs in the equation for the diffraction potential
for electrons with parallel spin. If we neglect
this term, then the diffraction potentials between
pairs of electrons with parallel and antiparallel
spin are equal. Numex ical calculations at low
densities indicate that this is an excellent approx-
imation. This does not mean that the total effec-
tive potentials are the same; the symmetry effec-
tive potential must still be included to get the
total effective potential for electrons with parallel
spin. It does indicate that the effects due to the
spatial extent of the wave function (diffraction

," = —' —2(1+5)'"i2 —@i2+yi2

——,'5pe s„u„-~pe u„(u,,+ —,
' s ), (3.9)

—gpel722(Q22+ 8) +y22 (3.10)

Equations (3.8)-(3.10) were solved numerically
using the boundary conditions indicated by Eq.
(1.8):

u„„=4mpZ„Z„e2/x ~, (3.11)

where u is defined in Eq. (2.28).
Let us first examine some limiting cases of the

effective potentials. First, because of the bound-
ary conditions on the diffraction potentials and the
fact that the symmetry potential becomes negligi-
ble at high temperatures, the total effective poten-
tials go over to the classical result at high tempera. -
tures. Second, at sufficiently high densities and
low temperatures, Q and y become negligibly
small and Su„„/eP goes to zero as the ground
state is approached. Then the equations for the
effective potentials are the same as those ob-
tained by Allen and Dunn3' using a variational
calculation.
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For finite temperatures and very low densities,
those terms explicitly containing p may be ne-
glected and the equations decouple. We may then
compare these "zero"-density results with those
obtained by Barker. " Barker directly performed
the summation in Eq. . (1.1) for a two-particle sys-
tem. This comparison is illustrated in Figs. 1-3.
The proton-electron effective potential is the most
important one, and here the agreement is most
striking. Figures 1 and 2 also show the result of
neglecting y in Eq. (3.9), as was done in Ref. 25.
It is seen that while y is not an extremely large
term, including it greatly improves the results.
The proton-proton effective potential, which is
not illustrated, is essentially identical to Barker's
result, except for small deviations at distances
less than 0.5 Bohr radii. There are several fea-
tures of importance in these effective potentials.
They are all asymptotic to +Pe'/r. As expected,
the divergence of the Coulomb potential at the
origin has been eliminated; this is due to the
tunnel effect. The extended linear behavior of
the proton-electron effective potential at small
radii is quite striking. An explanation for this is
readily obtainable. If one retains only the ground-
state energy eigenfunction ip. the two-particle
Slater sum, one gets

~(2) (c/g)e-2r/ao-8+p (3.12)

-4

-l2

-l6

-20

-24
0

I

4
I

8
f/ap

I I

l 2 l6

FIG. 2. Zero-density proton-electron effective po-
tentials at T =1x104'K. Solid line, Barker (Ref. 22);
dash-dot line, Coulomb; dashed line, present calcula-
tion including y; dotted line, present calculation, ne-
glecting y.

shown that for all densities, u» will have the cor-
rect slope at the origin. Assume that

or
u» = (const) + br. as r - 0 . (3.14)

u = —inW ~ PEo+ 2r/ao+ 1n(w/c), (3.13}

where E, is -1 Ry and a, is the Bohr radius. This
not only' gives the correct slope of u», but also
explains part of the temperature dependence of
the value of u».at the origin. It can easily be

Then, we have

u»(x} - —8mb/x' . (3.15}

Wee I '
I I I I I y

Only the first two terms in the right-hand side

ut2

-8
0

I

2
I

3
I

4 r/op

s I s I s I

2 4 6
r/ao

FIG. 1. Zero-density proton-electron effective po-
tentials at T =5x104'K. Solid line, Barker (Ref. 22);
dash-dot line, Coulomb; dashed line, present calcula-
tion including y; dotted line, present calculation, ne-
glecting y.

FIG. 3. Zero-density electron-electron total effective
potentials at T = 5x 104 K. Solid line, Barker (Ref. 22)
for antiparallel-spin electrons; dashed line, present
calculation for antiparallel-spin electrons; dash-dot
line, Barker for parallel-spin electrons; dotted line,
present calculation for parallel-spin electrons.
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2m, e'
k2(1+ 5)

— o ~ (3.17)

The large-r behavior of the effective potentials
at all densities can also be easily obtained from
the differential equations. Assume that for large
r

u„„(r)-s e'/kT'r, (3.18)

where T' is an effective temperature which is a
function of both temperature and density. Then
we have

u„„(x), ,= a 4we'/kT'x' . (3.19)

Only the partial derivative with respect to P, v,
and the terms explicitly containing the density,
contribute to order 1/x' at small x in Eq. (3.9).
It is then easy to show that

(RHS} of Eq. (3.9} contribute to order 1/x' at
large x. They are

—4we'/x'+ —,'(1+5)(8'/2m, )(8wb/x') =0 (3.16}

or

T'- T as T-~,
kT'- —,'(1+5)' 'k&u, as T-0 .

(3.23)

(3.24)

logypp & 2loggpT+11 5 (3.25)

where p is in electrons/cm' and T is in 'K.
Some sample values of the effective potentials

are given in Tables I-IV.

The density dependence of the numerical solu-
tions of Eqs. (3.8)-(3.10) for the boundary condi-
tion in Eq. (3.11) is illustrated in Fig. 4. The
main feature is that the effective potentials be-
come weaker, and go over to their asymptotic
form sooner, as the density increases. Also,
the "zero"-density limit, in which Barker's two-
particle effective potentials are valid, is seen to
correspond to a fairly high density, about 6X10'
electrons/cm' at T=4.31X10"K. This density
is a function of temperature, increasing as the
temperature decreases. The condition for no

density effects at large radii may be obtained by
requiring T'= T in Eq. (3.20). This condition ap-
pears to be well approximated by

kT' =a cothPa, (3.20)
IV. RESULTS

where

a = —2(1+5)'~'k~ (3.21)

and &» is the plasma frequency of an electron
gas at this density:

In this section results will be presented for the
distribution of particles in a system of partially
ionized hydrogen, using the effective potentials.
The pair correlation function between particles
of types p, and v is defined by

= (4wpe'/m )'~'

It may be noted that

(3.22) fe dr, dr„
g„.(.„)=(i-' )o*

fe edr, '''dr„
(4.1)

TABLE I. Proton-electron effective potentials at a
density of 6.76x 10 electrons/cm .

T (oK)

r/(0. 3107a ) 4.31x 10 5.09 x 10 8.00x 104 1.12x 105

"I2

I

2
I I I

5 r/00

FIG. 4. Density dependence of proton-electron effec-
tive potential at T =4.31x10 'K. Solid line, p =1x10
electrons/cm; dashed line, p =6.76x10 electrons/cm;
dash-dot line, Coulomb, Pe /r.

0
1
2
3
4
5
6
7
8

10
12
14
16
20

28
32

—7.90
—7.29
-6.68
-6.08
-5 49
-4 91
-4.34
—3.81

3y32
-2.50
-1.96
-1.64
—1.43
-1.13
-0.94
-0.80
-0.70

-V.16
—6.55
-5.95
—5.36
-4.78
-4.21
-3.67
-3.18
-2.73
-2.05
-1.63
—1.39
-1.22
—0.97
-0.80
-0.69
-0.60

—5.43
-4.87
-4.29
-3.74
-3.21

2.72
-2.28
-1.91
-1.62
-1.24
-1.02
-0.89
-0.78
-0.63
-0.52
-0.45
-0.39

-4.38
-3.87
-3.32
-2.81
-2.34
-1.93
-1.59
-1.32
-l.12
-0.87
-0.73
-0.64
-0.56
-0.45
-0.38
-0.32
-0.28
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TABLE II. Proton-proton effective potentials at a
density of 6.76x 10~' electrons/cms.

TABLE IV. Total electron-electron effective poten-
tials for electrons with parallel spins at a density of
6.76 x 10 electrons/cm .

r/(0. 3107ap) 4,31x 10 5.09 x 10 8.00 x 104 1.12x 10' T ('K)

r/(0. 3107ap) 4.31x 104 5.09 x 10 8.00 x 10 1.12 x 105

0
1
2
3
4
5
6
7
8

10
12
14
16
20
24
28
32

124.1
22.18
11.34
7.51
5.59
4 45
3.69
3.16
2.77
2.22
1.8.6
1.59
1.39
1.12
0.93
0.80
0.70

119.5
19.21
9.70
6 44
4.80
3.83
3.18
2.73
2.39
1.91
1.60
1.37
1.20
0.96
0.80
0.69
0.60

106.2
12.84
6.27
4.17
3.12
2.50
2.08
1.78
1.56
1.25
1.04
0.89
0.78
0.62
0.52
0.45
0.39

95.0
9.44
4.51
3.00
2.25
1.80
1.50
1.28
1.12
0.90
0.75
0.64
0.56
0.45
0.37
0.32
0.28

0
1
2
3
4
5
6
7
8

10
12
14
16
20
24
28
32

7.88
6.25
5.23
4.48
3.90
3.42
3.02
2.70
2.18
1.82
1.56
1.36
1.10
0.92
0.79
0.69

7.45
5.83
4.82
4.09
3.51
3.05
2.68
2.37
1.90
1.57
1.34
1.17
0.95
0.79
0.68
0.60

6.36
4.77
3.79
3.09
2.57
2.16
1.85
1.60
1.25
1.03
0.88
0.77
0.62
0.52
0.45
0.39

5.61
4.04
3.09
2.44
1.96
1.61
1.35
1.15
0.90
0.74
0.64
0.56
0.45
0.37
0.32
0.28

TABLE III. Electron-electron diffraction effective'
potentials at a density of 6.76x 10 ' electrons/cm .

T (.K)

x/(0. 3107ap) 4.31x 10 5.09 x 10 8.00 x 10 1.12x 10

0
1
2
3
4
5
6
7
8

10
12
14
16
20
24
28
32

3.85
3,55
3.29
3.05
2.83
2.63
2.45
2.29
2.13
1.88
1.66
1.48
1.33
1.09
0.92
0.79
0.69

3.59
3.30
3.03
2.80
2.58
2.39
2.21
2.06
1.91
1.67
1.46
1.29
1.16
0.94
0.79
0.68
0.60

2.9.5
2.65
2.40
2.17
1.97
1.79
1.63
1.49
1.37
1.16
1.00
0.87
0.77
0.62
0.52
0.45
0.39

2.53
2.24
1.98
1.76
1.57
1.41
1.27
1.14
1.04
0.86
0.73
0.64
0.56
0.45
0.37
0.32
0.28

where particle 1 is of type p, particle 2 is of type
~, and 0 is the volume of the system. In Ref. 25
the hypernetted chain integral equation" was used
to obtain the correlation functions, but this method
proved to be inadequate. Hence, a Monte Carlo
method was employed here. Because of the long-
range nature of the effective pair potentials, it
was necessary to use the Ewald" sum for includ-
ing the effects of the long-range interactions. We
used a MC method developed by Barker"; it is
essentially an extension of the one-component

method used by Brush, Sahlin, and Teller" for
the classical electron gas. The pair correlation
functions were obtained from

g„,(r) =N„„(r—,hr; r—+,ar)/(4vp—,r'hr),
(4 2)

where N„„ is the average number of particles of
type v counted in a spherical shell about a particle
of type p, .

The basic cell contained 60 particles: 30 pro-
tons, 15 electrons with spin-up, and 15 electrons
with spin-down. A mesh of 1000 points across the
basic cell in each direction was used. As few as
90000 and as many as 330000 attempted moves
were generated for each run, with the first 30000
thrown out. It was possible to discard relatively
few moves because the final configuration from
the previous temperature was used for the initial
configuration with relatively small steps in tem-
perature, so that each run was started close to
equilibrium. Up to 1000000 moves were used in
runs made to check the accuracy of the procedure.

Figures 5 and 6 illustrate the temperature de-
pendence of the parallel- and antiparallel-spin
electron distributions P„„(r)=4wp„r'g„„(r) at a
density of 6.00&&1020 electrons/cm'. P(r) gives
the probability of finding a particular particle in
a spherical shell of radius r about a given particle.
The Fermi hole in the parallel spin case is clearly
visible; it is caused by the symmetry effective
potential which diverges as -2 lnr at the origin.
The peaks in P» at the lower temperatures are
evidently caused by the presence of a few nega-
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tive ions in the system. The temperature depen-
dence of the proton-proton distribution is shown
in Fig. 7. The peaks at the lower temperatures
are possibly caused by a few H, molecules and

H,
' ions. The primary feature of the. proton-elec-

FIG. 7. Temperature dependence of proton-proton
distribution P~~ =4&pr g~~ at p =6x10 electrons/cm .
Fifteen-point smoothing was used on the original Monte
Carlo data. Every fifth point is plotted. Solid circles,
T =5.09x10 'K; x's, T =3.73x 104'K; open circles,
T =3.29 x 104 'K.

tron correlation function is a large peak at the
origin which grows as the temperature is lowered.
Since a plot of this peak would be uninformative,
we have plotted P» in Fig. 8. The trend is for
the peak to rise as the temperature declines; the
position of the peak increases from 1ao as the
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FIG. 8. Temperature dependence of proton-electron
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Carlo data. Every fifth point is plotted. Solid circles,
T=5.09x104 K; x's, T=3.73x104 K; open circles,
T =3.29x10 'K.
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temperature increases. This function for an iso-
lated atom in the ground state wouM be, at small
distances, proportional to &'e '" 'o, which, of
course, has a peak at 1a,. Thus, as the tempera-
ture decreases and more atoms are found, one
would expect P„(r) to increase as it does.

The density dependence of the correlations
are shown in Figs. 9-13. The radial excess
4wpr'(g„—1), plotted in Fig. 13, has the uniform
probability subtracted out. It emphasizes that
for a given temperature, the number of atoms in-
creases as the density increases. Of course, if
we had gone to sufficiently high densities, pre.;—
sure ionization would have terminated this tr nd.

While the results illustrated in this section are
all quite reasonable, very unreasonable results
were obtained when MC calculations were done
at lower temperatures than those illustrated: all
the particles in the MC base cell formed a cluster
which might be interpreted as an H» molecule.
While the effective potentials appear to be reason-
able, it must be remembered that the forces be-
tween molecules are in a very delicate balance
due to the cancellation of all the Coulomb forces.
Hence, a small error in the pair effective poten-
tials could be causing this problem; there is much
room for improvement in the reduction of Eq.
(2.1V) to Eq. (2.25). Qn the other hand, this could
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well be indicating that the pair approximation is
no longer adequate when there are molecules pre-
sent; three- or four-body effective potentials
might have to be included.

From Fig. 8, and the discussion about it, the
idea arises that from the proton-electron correla-
tion function and our knowledge of the wave func-
tion for the ground state of an isolated atom, one
should be able to ascertain the fraction of parti-
cles in the ground state of an atom. Indeed, it is
possible to do this. The method for obtaining this
information from the MC data is derived in Ap-
pendix B. Figure 14 compares our results with
those of Patch, "who employed the known isolated
atom energies. It was necessary to interpolate
from Patch's tables to obtain the desired numbers.
Figure 14 shows that at low densities, we are in

good agreement with Patch. The highest density
shown illustrates the potential value of the present
technique; Patch could not obtain results at this
density primarily because of polarization of the
atoms. However, the MC calculation used here
handles this problem very easily and naturally.
Our results for the fraction of particles not in
the ground state of an atom may be summarized
by the fitted formula
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some points have been omitted for clarity. Solid cirlces,
p =1.00 x 10 electrons/cm; x's, p = 6.00 x 1020 ele
trons/cm; open circles, p = 6.76 x 10 electrons/cm .
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f =~t1+erf(b inT/To}] (4.2)
where

To = 10 'K/(24. 62 —1.04 log, op),
5 = 14.35 —0.61 log, o p

and p is measured in electrons/cm'.
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V. CONCLUSIONS

The Slater sum has been approximated in the
form of a classical Boltzmann factor with the
Coulomb potential replaced by effective potentials.
The differential equation resulting from differen-
tiating the Slater sum with respect to P, Eq. (2.17),
has been broken into a part which can be expressed
as sums of effective potentials, and a part F- Fl
which contains a sum over eigenfunctions of the
system and which has been shown to be well ap-
proximated by a modified Thomas-Fermi method.
This equation was reduced to a differential equa-
tion for pair effective potentials, Ecl. (2.25), and
was solved numerically. Pair-distribution func-
tions, computed from these effective potentials by
a Monte Carlo calculation, appear to be reason-
able. The Fermi hole is clearly visible in the
parallel-spin electron-electron correlation func-
tion. The proton-electron radial excess 4m' '
(g» —1) increases as the temperature is lowered,
and has a peak near la„as expected. The pro-
ton-proton and antiparallel-spin electron-electron
pair correlation functions provide evidence that
some H and H,

' ions may have formed at the
lowest temperatures. In spite of the excellent
agreement of the pair effective potentials with
Barker's results at low density and with Allen
and Dunn's results at high density and low tem-
perature, the failure of the procedure when fewer
than 4(@ of the atoms are ionized seems to indi-
cate that either three-body effective potentials
must be considered or that the pair effective po-
tentials must be calculated more accurately. The
excellent agreement with Patch's results for the
fraction of particles in the ground state of an
atom, and the ability to extend these calculations
to higher density, indicates that the present pro-
cedure does have considerable merit.

A method with fewer approximations and with
the capability of including three-body effective
potentials is currently being investigated.

to obtain equations for the pair effective potentials.
In this appendix, a method for doing this will be
presented. The basic idea is to replace (Y —Yz }
by a sum of pair functions y&, that are the equiv-
alent functions for a two-particle system with an
average potential that contains the effects of the
rest of the particles in the system replacing the
Coulomb potential. We believe this to be a sort
of Born-Oppenheimer" approximation, but are
unable to prove this. We will treat a proton-
electron pair first. Since F, =0 here, we have

W~'~ =c g P~, e

X' =c g e VQ„*, ~ Vg„, ~

n, l, nt

(AS)

In this Appendix, n denotes the principle quantum
number, and we have defined n=(1+5)n, .

The procedure will be used to determine g„,
a,nd E„ from the average potential, to evaluate
9'~'~ and X~', to obtain u'~ from

(A4)

and to insert the results into Eq. (A1) to obtain
y,z. Henceforth, the superscripts indicating that
the quantities are for a two-particle system will
be dropped, as only two-body quantities are con-
sidered in this appendix.

The first problem is finding an expression for
the average potential. Clearly, it must be Cou-
lomb at small distances and must go to zero at
large distances due to shielding by the other
particles. . %'e will assume it to be a truncated
Coulomb potential which is zero beyond the ion-
sphere radius r, . Using Bohr units, the average
potential is
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In Sec. II it was found to be imperative to ex-
press (Y —Yz) as a sum of pair functions in order

=0, x&r, . (A5}

In principle, one could obtain all of the g„, 's and
perform the summation (integration for the con-
tinuous states) by a procedure similar, to Barker's.
However, since y is a small term in the equation
for the effective potentials, we are willing to
sacrifice some accuracy for the sake of simplicity.
One simple method would be to use the Thomas-
Fermi approximation (TFA)."'" Unfortunately,
the TFA is not a good approximation for hydrogen.
Hence, we will use a modified form of the TFA.
which treats the ground state of the atom sep-
arately; this method proves to be quite good.
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In this approximation, the radial paxt of the
wave function is given by"

Z„=—I/n'+ 2/~, (A18)

Since me want to exclude + = j. from the sum in

W„, me take

E,=E,g, = —4/9+2/r, (A19)

=0, r r„r-r„
(A6)

Thus, the TFA mill be used for all the states ex-
cept the ground state. Then we have

where r, and r, are the classical turning points
and

(AV)

(A8) The result of doing the integrations is

(A20)

A2=4m p 'dr .

The function p is restricted by the condition

r2
pdr =(n+I + —,')v,

Fg

implying that

(A9)

(A10)

(All)

Wz —-e "erfc(PPO)+(2PPO/vw )e 8sc

where

po = max [0,E, —u(r) ]

From Egs. (A1V) and (A18), W~ is given by

5' —8m'~2~3~2e 2"
g P

mhere

E, = —I+(2/r, ) .

(A21)

(A22)

(A23)

Inserting the wave function into the Slater sum
and replacing cos' by its average, &, we obtain

(4wP)'~2 ~ ~ 2I yi

n

(A12)

where X is defined by

g(x) =1, x& 0

(A13)

The summations mill nom be converted to integrals.

We mill calculate X in a similar manner. First,
we easily find

(A25)

In the spirit of the TFA, the Wentzel-Kramers-
Brillouin (WEB) approximation to the gradient
term in X~ mill be used:

v% + ~ v@„, =@+ g„, [E„—v(r)] .
In a manner analogous to that leading to Eq. (A20),
me obtain

(A14)

" A2
2 dE, (A15) (A2V)

O'= Wg+ %~ (A16)

If the ion-sphere radius is sufficiently large, the
ground-state wave function may be approximated
by that of an isolated atom:

(A17)

and the energy will merely be shifted by a con-
stant from the strict Coulomb case

where we have used Eg. (All). If we wished to
sum over all states, E, mould be taken to be nega-
tive infinity. However, since that procedure gives
poor results, W will be calculated as a ground-
state term plus a xestricted sum which contains
the remaining states: u(r) = —In(We + Wa) (A29)

At very low densities, this function reproduces
Barker's x esults as well as the effective potential
obtained by integrating the differential equation
(see Figs. 1 and 2).

The quantity y is obtained by inserting the re-
sults from E|ls. (A21), (A23), (A25), (A28), and
(A29) into Eq. (A1).

We have also considered more complicated and
realistic forms for the average potential, and

The final expression for X„ is easily shown to be

Xs = (3/2P)W„+(2P'P', /Wv)e ~s~ . (A28)

The effective potential implied by this treatment
18
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have solved the Schroedinger equation numerically
to obtain the ground-state %ave function and ener-
gy. Using the resulting y in the differential equa-
tion makes essentially no difference at the den-
sities considered, although the results will be
sensitive to the choice of the average potential if
the density becomes sufficiently large.

For a two-electron or two-proton system, there
is no dominant ground state, and the TFA can be
used for the entire sum over states, implying
E, = —. This gives

y22=y» =X/W —3/2P=O . (A30)

Since we feel that this should be the dominant
term in y, it would appear to be best to neglect
the other terms in y until a better approximation
is developed for X and W in this case. Therefore,
for the electron-electron and proton-proton equa-
tions, we will assume

y~ 0 (A31)

as was done in Ref. 25. As may be seen in Fig.
3, this approximation does not appear to cause
great harm for low densities.

APPENDIX B

In this appendix, a method will be presented for
obtaining the fraction of electrons which are in
the ground state of an atom from the MC data. It
will be applicable only when the temperature is
sufficiently high that the number of molecules
formed is negligible. Also, the density must be
sufficiently low that the ground-state wave func-
tion of an atom is not substantially different from
tha, t of an isolated atom. Let P(G) be the proba-
bility that a proton is part of an atom in the
ground state; P(i) equal the probability that a
proton is part of an atom in the ith excited state;
P(F) equal the probability that a proton is not part
of an atom; P(R~ G) be the conditional probability
that an electron in the ground state of an atom is
within a distance R of the proton; P(R

~
i) be equal

to the conditional probability that an electron in
the ith excited state of an atom is within a distance
R of the proton; P(R~E) be the conditional proba-
bility that a free electron is within a distance R of
a particular proton; and P(R) equal the probability
that a particular proton has at least one electron
within a distance R.

The last quantity is obtained from the MC data.
By the laws of probability, it is given by

P(R) = P(G)P(R ( G) +P(F)P(R ( E) ++P(i)P(R ~ i)

(B1)

We will neglect the last term involving the excited

=1 —(1+2R+2R')e '", (B2)

where R is measured in units of ao. Under the
simplifying assumption that the free electrons-
and protons are completely uncorrelated, P(R~F)
is given by the density of free electrons multiplied

by the volume enclosed by a sphere of radius R
(provided that p& V«1):

P(R i E)= P(F)pr V . (B3)

Using P(F) =1 —P(G), we then obtain

P(G)P(R) G)+ [1—P(G)] p&V P(R) =-0 . (B4)

Solving Eq. (B4) for P(G), we obtain

P(G)= (2pRV —P(RIG)+(P'(RIG)

+2PPV(P(R) —P(RIG))&'*) 2pPV

(B5)
Note that if P(G) is nearly unity, then

P(G) P(R)/P(R i
—G), (B6)

in agreement with the intuitive result.
If this method is to be useful, then P(G) must

be relatively insensitive to R. If P(G) is sensitive
to the choice of R, then at least one of the approx-
imations is breaking down. It is difficult to conceive
of any of the approximations breaking down with-
out causing P(G) to be sensitive to the choice of
R. Distances varying by a factor of 3 were used
to determine the sensitivity. Typical results are
given in Table V. The maximum difference here
is 0.05. At the higher temperatures there is a
trend for P(G) to increase as R increases. This
is probably due to the correlation of the large

TABLE V. Estimated fraction of particles in the
ground state of an atom as a function of the radius
chosen in Eq. (B5); p=6.76x10 ' electrons/cm, R&
= 1.025ap.

T ('K)

56.00 x 10
18.67 x 10
11.20x 10'
8.00 x 10
6.22 x 10
5.09 x 10
4.31x 10

Rg

0.02
0.06
0.16
0.25
0.37
0.52
0.66

2R)

0.02
0.08
0.16
0.27
0.38
0.51
0.62

3R(

0.02
0.09
0.18
0.30
0.40
0.52
0.62

Mean

0.02
0.08
0.17
0.27
0.38
0.52
0.63

states. These form a majority of the bound states
only in a very small temperature range where
there are few atoms. Using the ground-state
wave function for a single isolated atom, we ob-
tain

R

P(RI G) =
~
(j)„(&)I'dr

0
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number of free particles which are present at
the higher temperatures. In computing P(G),
which is used in Fig. 14, we have used the aver-
age of P(G) calculated for the three radii (approx-
imately lao, 2a„and 3a,).

This method should be contrasted with the ex-
pedient of merely computing the fraction of elec-
trons within a given distance (e.g., 2a, ) of a pro-
ton and taking this to be the fraction of atoms pre-
sent.

*Work supported in part by a grant from the National
Science Foundation.
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