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Propagation of sound in water. A molecular-dynamics study
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Fluctuation phenomena occurring in a system of 216 water molecules, studied by molecular
dynamics at 1 g cm and 10 C, indicate that (i) transverse currents persist in the form of
propagating collective coordinates even for a wavelength of about 20 L, with indications that
the same will happen for much longer wavelengths. The velocity of propagation is 1.05x 105
cm sec ~. In the region of 20 A the lifetime of the fluctuation appears to increase linearly
with increasing wavelength. (ii) Density fluctuations at 20 A are found to be propagating but
only marginally; the corresponding velocity of sound is 1.8x10 cmsec . (iii) The spectrum
of density fluctuations exhibits a secondary maximum at a much higher frequency than the
normal frequency of sound propagation and it is suggested that experiments should be directed
to the region of this "high-frequency sound. "

I. INTRODUCTION

In recent years we have reported the results of
molecular-dynamics (MD) studies of the structure
of water and of the motions of molecules in that
liquid. An initial study' showed that it was feasible
and fruitful to undertake such calculations on the
basis of an "effective" noncentral pair interaction
that produces a computer liquid with properties
similar to those real water is known to possess.
However, the discrepancy between the calculated
and the observed structure of the liquid was such
as to motivate an improved simulation with ap-
propriate modifications in the potential. The re-
sults of this improved simulation were indeed
very encouraging" as far as the structure was
concerned, and hence we have undertaken a de-
tailed analysis of the dynamical properties of the
computer liquid. One such study has already been
reported'; it concerns the motion of protons as
they are carried around by the parent molecules
which translate and rotate in concert with and
hindered by the neighboring molecules. This
study of proton motions is of interest to the ex-
perimental technique of neutron inelastic scatter-
ing; in the case of H,O the cross section of such
scattering is in large measure determined by the
motion of protons alone.

In this report we present the analysis of fluctu-
ations in density and in transverse currents in the
liquid. Several such studies of monatomic liquids
have already been made and have led to the ac-
cumulation of a wealth of information regarding
the space-time characteristics of these fluctua-
tions for short wavelengths. Theoretical interpre-
tation of these results for monatomic liquids has

deepened the understanding of the nature of these
fluctuations. Water differs from simple mona-
tomic liquids in that the immediate neighborhood
of a molecule is far from being "well packed";
each molecule has only about four to five near
neighbors with very strong bonds which resist
change of shape as well as of volume of the local
structure. Hence, for short wavelength distur-
bances, the behavior of this strongly bonded liquid
is expected to pose new problems in the under-
standing of fluctuation of density and transverse
currents. We hope that the results presented here
will be of help in this development.

Section II is devoted to formal definitions of the
various collective coordinates to be dealt with in
this report. Some of the basic properties have
been stated; the notation is essentially the same
as that used in an analysis of fluctuation phenom-
ena in liquid sodium made by one of us. '

In Sec. III the essential elements of the molecu-
lar-dynamics calculation on water have been
summarized. For further details one should use
Ref. 2. We have also given a brief outline of the
manner in which space-time data generated in a
molecular-dynamics run are Fourier transformed
to give wave-number-time behavior of various
collective coordinates.

The time behavior of the collective coordinates
is presented in Sec. IV; already at this stage,
before further analysis, one sees that transverse
currents in our water model show a certain per-
sistence which is absent in the results obtained
for monatomic systems.

Sections V and VI are devoted to a spectral
analysis of transverse and longitudinal currents,
respectively. In the latter case the memory-func-
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tion approach has been used as an extrapolation
device to extend the data to times longer than
those attained by the molecular-dynamics calcu-
lation.

Finally, in Sec. VII the results of this analysis
are discussed in terms of existing experimental
data on water and in terms of experiments that
might be performed in the light of these results.
The results of a dynamical-matrix analysis on
single crystals of ice are also mentioned in Sec.
VII, as well as the experimental data on sound
propagation in polycrystalline ice.

II. DEFINITIONS AND FORMAL CONSIDERATIONS

Let r, , v, denote the position and velocity of the
center of mass of molecule j in the liquid con-
sisting of N molecules, each having mass M.

The density at T at time t is defined as

p(r, t)= P5(r-r, (t));

its Fourier component for wave vector TI, is then

qg t) ~—z/2p et x ' x/(o

(4)

Starting with the velocity current density,

J(g~ t) ~—1/2 gv/(t)ek K' r j(o

we define two correlations, C( and C, :

Cii(~, t) =&Jii(Tc, s)Jii*(K, s+t));
C, (~, t) =&J, (T(, s)J, *(T&, 8+t)) .

(6)

(7)

In Eq. (6) J() stands for z '(2 J) and in Eq. ('7)

J~ is written for a component of J normal to Tc.

Analogous to Eq. (4), the spectra of C~, and C
are denoted by C

H (~, ~) and C, (z, ur), respectively.
Using

d Q(Tc, t)= i~J„(Tc, t),

Normalization with N ' ' is a matter of later con-
venience. The density fluctuation for the wave
vector with magnitude x =

~ «~ is defined as

F(~, t) = &Q(a, s)Q*(TI, s+t)),
where ( ) is an average over initial conditions
s and over the directions of vectors Tc of magnitude
x. Of course, it is assumed that the system is
in dynamic equilibrium at temperature 7.'. The
frequency spectrum, S(v, &u) of density fluctuations
is defined as

it is easy to show that

d
~'C„(~, t) =—,F(x, t),

However, C~ is in no obvious way related to
S(K~ (d ).

Assuming throughout that we are dealing with a
system obeying the laws of classical statistical
mechanics and that it is in equilibrium, it follows
that all time correlations defined above are even
functions of time and consequently the spectra
are simply the cosine transforms of the respective
time correlations. For the spectrum S(v, &u), we
shall write

co"S(~, cu) d&u (10)

for the nth frequency moment, which of course
depends on n and on ~. Under the assumption just
mentioned, all the odd moments of S(z, &u) are
zex'o.

Some essential formal properties of the various
functions defined above will now be given:

S(~) -=F(~, 0)

=N exp'~ r s -r. s 11

represents the space Fourier transform of the
instantaneous pair structure of the system; it is
usually referred to as the structure factor. It is
easy to see that

&uP) =S(~);

&&u') = tPksT/M= a C~~ (tc, t=0) .

We shall write the Taylor-series expansion of
F(v, t) as

F(K, t)=S(a)(1 (o',t'/2! -+(o',(o2gt'/4!. . .), (14)

where u)', = ~'k~T/MS(~) =&(o')/&(u') and (o', =&(o')/
&&o'). From Eq. (8) it follows that

C, (K, t) =k T/M(1 —&u', t'/2! +. . . ) .
Similarly, we write

C, (», t)=k, T/M(I -~', t'/2! +. . . ) . (16)

The suffixes l and t in ro', , ~', stand for longitudi-
nal and transverse, respectively.

One can express u,', ur', in terms of the potential
and the pair-correlation function only in the
speclRl cRse of monatomic systems with pRlx' in-
teractions. "Moreover, for the special case
mentioned, cu', and co', are simply related to the
lnflnlte frequency elRstlc modull. ' No such
simple relation seems to exist in the general case.
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Equation (9}shows that C,~(z, e =0) =0; this is
a direct consequence of the conservation equation:
Q =ta J~~, Eq. (7'}. However, C~ (z, e = 0) in gen-
eral does not vanish.

In the limit of long wavelength, i.e., as ~- 0,
S(e)-nk~T }tr=ksT/Mc'» wherenisthenumber
density, X~ is the isothermal compressibility, and c~
is theisothermal soundvelocity. Inthelimit ~-0,
S(z, ar) is expected to show the three-line phenom-
enon, i.e., the spectrum is concentrated sharply
around co =0 and co = a zc„where c, is the adia-
batic sound velocity; the widths of the three lines
are determined by viscosity and heat conductivity.
In other words, for long wavelengths one has
propagating density fluctuations with rather long
lifetimes. For extremely short wavelengths
(z-~) these are over-damped fluctuations which
do not propagate. The central question, to be
answered' by the method of molecular dynamics,
concerns the behavior of density fluctuations for
wavelengths comparable to the distance between
neighboring particles in the liquid.

For transverse currents the situation is differ-
ent. As A.-~ (tc 0) a liquid is unable to propa-
gate shear waves so that C~(v, &u) exhibits a max-
imum at ~ =0, and no recognizable nonzero
frequency of propagation [analogous to e =+ zc,
for C„(z, &u)]. However, for shorter wavelengths
the behavior is not obvious and molecular dynam-
ics is in fact the only method known that can throw
light on this question.

III. MOLECULAR DYNAMICS OUTLINE

The analysis of density fluctuations being re-
ported here was made from trajectories of water-
molecules generated in a molecular-dynamics cal-
culation' on liquid water in which the total poten-
tial energy is written as a sum of effective pair
potentials. This potential uses a four-point-
charge model for each molecule; the molecule
itself is considered to be a rigid structure.
Specifically,

V(l, 2) = V (r„)+S(r„)V,~(1, 2),
where r„ is the oxygen-to-oxygen distance. V~
is a Lennard-Jones (6, 12) function:

V~(r) = 4m[(o/r)" (o/r)'), —

form precise tetrahedral angles (109'28') with one
another. Finally,

S(r) = (r R~)'(3R~ -R~ —2r)/(R~ -R~)'

for R~ &r &RU, joining smoothly to the value 0
for r&R~ and to the value 1 for r &R~. The values
of R~ and R~ are 2.0160 and 3.1287 A, respective-
ly.

The molecular-dynamics run' was made with
216 water molecules at a density 1 g cm ' and
T =10'C. The total time of integration of the
equations of motion was 381004t, the step 4t
being 10 v, where r =2.126 psec.

This potential seems to give a moderately good
account of the properties of liquid water. Details
have been published elsewhere. ' '

As in all extensive molecular-dynamics calcu-
lations, the trajectories are recorded on magnetic
tape. For the present purpose we can refer to
this as the (r, t) tape which contains a record of
positions r~(t) and velocities v&(t) of the centers
of mass of all the 216 molecules.

Since the calculation is made on a strictly
periodic system in x, y, z, with periodicity inter-
val L=18.62 A, we define a mesh of wave vectors
TI = (l, m, n)2w/L, where l, m, n are 0, +1, +2, . . . ,
etc. Using the (r, t) tape, one creates its Fourier
transform, a (Tc, t) tape. This consists of the
values of Q(TI, t) and J(TI, t) [Eqs. (2) and (3)].
Next, the (T&, t) tape is used for calculating the
autocorrelations F(K, t), C „(a, t), and C, (a, t) [Eqs.
(3), (6) and (t)]. Finally, the spectra S(~, &u),

C ~~(z, &o}, and C (z, &u) are calculated from the
autocor relations.

The smallest nonzero value of v is 2v/L. For
this the (v, t) tape contains information with three
vectors X (note that Tc does not -give new informa-
tion). Similarly for v=(2v/L)v2 one has six
vectors over which to average. This multiplicity
is easily worked out for any triplet l, m, n defining
z and is involved in the averaging indicated by
(.. .) in Eq. (3). For transverse currents the
multiplicity is obviously twice as big.

Normalizing the raw data on E, C ]}, and C~ to
unity at t = 0, the coefficients &u'„&u'„&o', [Eqs.
(14)-(16)] can be evaluated by numerical fitting.

The properties of the Fourier transforms, i.e.,
the spectral function, will be considered in a
later section.

with ~=5.2605x10 "ergs and 0 =3.1A. Each
molecule has four charges +q contributing 16
Coulombic interactions gathered into V„(1,2); ~ q~
=0.2357e or 1.13194X10 "esu. The two +q's
are 1 A from the oxygen at the positions of the
two protons. The -q's are 0.8 A from the oxygen.
The four lines joining the oxygen to these charges

IV. DESCRIPTIVE PRESENTATION OF RESULTS
ON TIME CORRELATIONS

In this paper we will be interested in studying
wavelengths that are not too short compared to
the interparticle separation; hence, calculations
were performed only for values of z up to about
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2.5 A '. The results for the time correlations
I', C II, and C~ will now be summarized.

The value of F(», t) at f =0 is the structure
factor S(») [see Eq. (11)] for the positions of the
centers of mass. This is shown in Fig. 1. Note
that S(») clearly shows a local maximum at about

0
2 A '. We recall' that x-ray scattering experi-
ments, which, to a good approximation, can be
considered to monitor the positions of the oxygens

0
alone, also show a local maximum at 2 A '. Since
the oxygen is fairly close to the center of mass of
the molecule, it would thus appear that the local
maximum seen in Fig. 1 has the same structural
origin as the one seen in x-ray experiments.

The top part of Fig. 1 shows the values of Cg(» t)
and C~(», t) at t =0. In principle, these should
be kBT/M, independent of »; expressing kiT/M
in units of e/M, we get T*=k~T/&=7. 43 for T
= 10 C. This value is also indicated in the figure.
The fluctuation around this value indicates that
for K below about 0.8 A ', much longer dynamical
runs are required to reduce the statistical errors.

Figure 2 displays the time correlations for five
values of K chosen so as to bring out the remark-
able change that occurs in going from K-0.3 A '
(or X-20 A) to «-2.4 A ' (or A. -2.5 A=the first-
neighbor distance in the system).

(i) C~(», f): Even at »-0.3 A ', this correlation
oscillates around zero as it decays; in a liquid
we expect that as K-0 a transverse current fluc-
tuation will be overdamped because of the inabili-
ty of the liquid to transmit shear waves of long

l.o I.C
0.3374 A

wavelength. Figure 2 shows that in water, pre-
sumably because of the considerable rigidity of
the hydrogen-bond network, the system has a
certain elastic behavior in response to a shear
even at ~-20 A. For larger K, as seen from
Fig. 2, the correlation C, (», t) starts to reflect
the behavior of the velocity autocorrelation of
the center of mass of the individual molecules
(see, e.g., Fig. 13 in Ref. 2). The Lennard-Jones
liquid molecular dynamics calculations have
shown that at »-0.25 A ', C, (», t) has a simple
overdamped decay. Thus by comparison' the
model of liquid water studied here shows a very
different behavior at a comparable wavelength.

(ii) F(», t): For small values of » the behavior
of this function (Fig. 2) indicates an initial fast
decay and then a much slower one; in other words,
there are two rather disparate time scales in-
volved in the time dependence of F(», t) at the
small values of K studied here. For large K,

Fig. 2 shows F(», t) to be a relatively simple de-
caying function with much less obvious structure.

(iii) C „(», t): Because of the conservation
equation for the number density, the correlation
C

~~ (», t) has zero mean value-in other words,
C „(», &u = 0) = 0. Since C

~~ (», t = 0) & 0, sign changes
are inherent in C ~~(», t). Apart from this obvious
property, the behavior of C

~, (», t) seen in Fig. 2
does not seem, at first sight, to show any parti-
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FIG. 1. Structure factor S(~) for center-of-mass posi-
tions. The main peak is beyond the region of K shown.
The top part of the figure shows the values of C II(f(, t =0)
and C~(K, t =0); see Eqs. (15) and (16). Temperature of
the system (10 'C) is shown with dashes; T* indicates
the temperature in dimensionless units (see Sec. IV).

FIG. 2. Overall view of the time correlations investi-
gated. Note that the time scale has been modified appro-
priately for various values of K. All correlations have
been normalized to unity at t =0. The legends should
therefore be read as F(K,t)/5'(~, 0), etc.
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cularly remarkable feature. However, as will be
seen later, there is indeed considerable infor-
mation in the time dependence of C, ~ (v, t) regard-
ing the characteristic propagation of density
fluctuations in the water model considered.

V. SPECTRAL ANALYSIS OF TRANSVERSE
CURRENTS

A. Propagation of shear waves

The function wC~(x, ~)/C~(~, t=O) is the one-
sided cosine transform of C~(x, t)/C~(t&, t=O).

FIG. 3. Spectral functions for transverse currents. It
is clear that freely propagating shear waves have a very
well-defined frequency of maximum response ~ (see
Fig. 5) and considerable lifetime.

It is shown in Fig. 3 for three small values of
~ and in Fig. 4 for one large value. From Fig.
3 it is obvious that we have propagating shear
waves with a very well-defined velocity of propa-
gation and a not so ill-defined lifetime. On the
other hand, in Fig. 4 the spectrum is a wide band
extending from &a =0 to about 50 psec ' (or 250
cm '); this spectrum is essentially the same as
that of the velocity autocorrelation of the center
of mass of the molecule (see Fig. 13 in Ref. 2).
Thus around tc =0.3 A ' the transverse current
describes a well-defined collective coordinate,
whereas by the time K is 2 A it contains infor-
mation regarding the motion of just single mole-
cules. Even when the collective coordinate is
well defined, its time dependence shows some
features related to the single-particle motion;
the high-frequency part of the spectrum in Fig. 4
can be seen to be present but with very low in-
tensity even for the values of K shown in Fig. 3;
for v = 0.5843 A ', e.g., there is a clear long tail
iri the spectrum on the high-frequency side.

In Fig. 5 we have drawn co, the frequency of
maximum response, as a function of a. The two
thick arrows on the high-z side of Fig. 5 repre-
sent the positions of the maxima in Fig. 4. From
the initial slope of ~ against K, we deduce a
velocity of 1.05&&10' cm sec ' for freely propagat-
ing shear waves. The arrows shown in Fig. 3
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FIG. 4. For large ~ transverse current collective
coordinate behaves mostly like a single-particle mode.
The spectral function shown above is essentially the
same as the spectrum of the center-of-mass velocity
autocorrelation function (see Fig. 13 in Ref. 2).

FIG. 5. Relation between ~ and ~ for transverse cur-
rent fluctuations; velocity of propagation is 1.05x105
cm sec ~. Frequency ~, defined in Eq. (17) is also
shown. The square of its slope gives the infinite fre-
quency shear modulus [see Eq. (18)]. The arrows on
the right give the positions of the bands shown in Fig. 4.
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give an estimate of the reciprocal of the lifetime.
Measured in this manner, the lifetimes in units
of 7 are 0.28, 0.20, and 0.14 for x'=0.3374,
0.4771, and 0.5843 A ', respectively; note that
the lifetime increases essentially as z ' and not
as ~ ', the result expected for density fluctua-
tions in the limit of infinitely long wavelengths. '

Note that the straight line indicating the slope
of ~ should not be extrapolated to x=0; at long
enough wavelengths, shear waves cannot propa-
gate in a fluid and hence have no velocity of prop-
agation. In the future, molecular-dynamics cal-
culations on much larger systems wHl certainly
allow us to probe longer wavelengths; however,
there is no indication from Fig. , 3 that we are
anywhere near the wavelengths where the spec-
trum will show, starting from co =0, a smooth
monotonic decay to zero as ~ increases.

B. Response to high frequency shear

From Eq. (16) it follows that

e'C~ v, ro de =co', k~T M .

This is analogous to Eq. (13) for the second mo-
ment of 8(», &u).

We have shown in the Appendix that in the limit
of small ~, ~', is related to the infinite frequency
shear modulus of the system.

lim(u', /«' = c', = G„/d,
K 0

(18)

Figure 5 shows e, and leads (since 0= 1 g cm ')
to G„=9.4X10"gcm 'sec '. For liquid argon
near the triple point, the value of G„ is only

1 0 & 10' g cm ' sec ' showing that the hydroge
bonded water network is one order of magnitude
more rigid for shear applied at large frequency.

%'e do not know of any calculations or experi-
ment for determining G„ for ice. One would expect
that the high-frequency modulus of rigidity of the
solid would be somewhat larger than the value for
the liquid.

C. Mean-square force on water molecules

In the Appendix we have shown that

co', =»'ksT/M+N 'M '

where d is the mass density and G„ is, the shear
modulus. G„ is defined' in terms of the frequency-
dependent viscosity coefficient, at infinite wave-
length q(cv) through the limit

G = llm l (d7/((d) .

where K is assumed to define the axis z.
We see from Fig. 5 that when ~=2A ', we have

m', 7' = 5625 and essentially independent of x. At
« =2 A ', the kinetic part of u&', ~' [namely,
7'(«'&AT/M)] is only =240. This implies that the
major contribution to e', around v=2 A ' comes
from the potential term in Eq. (A6), and also
(because of no dependence on «) that only the
self-term j= 1 contributes significantly (this being
rigorously correct as «- ~). Hence it is reason-
able to write

2 U'
= 5625 —240 = 5385M &x

=5385.

Thus the ratio of the mean-square acceleration
(a') of a particle to its mean-square velocity
(u') is

(a')/(v')= 5385~ '=1.184&&10"sec '

or

(a') =1.5&&10" cm'sec '.
We note in passing that the data published

earlier' on the velocity autocorrelation of the
center of mass of the molecules lead to a value
(a')/(v') =1.13&&10"sec '.

For comparison, we note that liquid argon near
the triple point and also liquid rubidium at 300 'K
have (a') = 10"cm' sec ', a value two orders of
magnitude lower. The reason must be that our
water model incorporates a stiff hydrogen-bond
network that produces large fluctuations in the
forces as the network is slowly modified with the
passage of time.

The experimental technique to determine (a')
for structureless molecules makes use of isotopic
fractionation for a liquid in equilibrium with its
vapor. For monatomic liquids this poses no grave
problem. In the case of polyatomic liquids the
circumstances are n.uch more involved, owing to
the presence of internal degrees of freedom.
Moreover, the mean-square torque will also enter
into the picture. A mixture of H,O and D,O-leads
to the formation of the intermediate molecule
HDO, adding further, perhaps insuperable, diffi-
culties. We suggest, therefore, that isotope-
separation experiments should be performed with
mixtures of H,O" and H,O" for investigating the
mean-square force and the mean-square torque
on the molecules in the liquid.
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VI. SPECTRAL ANALYSIS OF LONGITUDINAL

CURRENTS

A. Propagation of density fluctuations (sound

waves)

As seen in Fig. 2, E(», f) is a rather slowly
decaying function of time and hence its Fourier
transform 8(», &u) [Eq. (4)] cannot be obtained
unless the function is extended to much longer
times than shown in Fig. 2. The second time de-
rivative of F(K, f) is proportional to C,~(K, t) the
longitudinal current fluctuations [Eq. (8)] and

Fig. 2 shows that a numerical transform of C „(K,f)
is a more feasible procedure to get 8(K, &o) through
C„(», a&) [Eq. (9)]. However, for the three small
values of K among the five shown in Fig. 2, C ~~(», t)
is an oscillatory function and one knows that a
numerical transform of a truncated oscillatory
function leads to spurious oscillations in the spec-
trum. Hence it is necessary to use an extrapola-
tion procedure even for C

~~ (K, t). For this purpose
we will adopt the formalism of the memory-func-
tion approach due to Zwanzig" (see Ref. 5 for
details).

We llltl'oduce a 11ew function M(K, f) wllicll satls-
fies

&t

d C(((K, f)= —(do i Cp(K, Q)d1C
40

—((o', —(oo) C, i (», u)M (», I —u) du .
0

(2o)

Using the expansion given in Eq. (15), we see
that M(», 0) = 1. Taking the Laplace transform
(denoted by a caret) we get

used, through Eq. (20), for a least-squares fit
with the data for C,~ (K, I) shown in Fig. 2. Apart
from computational facility, there is no particu-
lar merit in the above choice of the form of M(K, t).
When the memory-function approach to fluctuation
phenomena is itself the main theme of investiga-
tion, one is required to build the memory function
on the basis of physical insight and to consider
the reasons why the memory function has a certain
structure. In this paper, however, we propose
to use M(K, t) only as a computational fitting de-
vice.

At ~=0.3374 A ', for example, the data on

C1(K, t) shown in Fig. 2 consist of 200 equally
spaced points at ht =v/200 (T defined in Sec. III).
The first 150 of these are used with a seven-pa-
rameter (o.o, C„n„C~, n„C„o.,) function
M(K, t) for a least-squares fit. The resulting
8(K, ru) is shown in Fig. 6(a). Note that S(K, ru)

has its main intensity around v = 0; this is as ex-
pected from Fig. 2, where the area under F(K, t)
is obviously seen to be very large. However, the
modulation of the slowly decaying E(K, f) is such
as to produce an unmistakable "sound" peak at
~ =12.6v ', leading to a velocity of propagation
c = &u/» = 1.8X 10' cm sec '. The width of the peak,
however, is so large, and the intensity relative
to the central region (&o = 0) so low, that the fluc-
tuation can hardly be characterized as a freely
propagating wave.

24.9

3
g 0.05-

C ii (», t = 0)
E +6 QPO+ (u11 —Qlo)ff (K) E)

Putting e =i&a and collecting the real part [which
will contain the sine and cosine transforms of
M(», t)], we get wC1(K, &u), the required function;
Eq. (9) then gives S(K, &u).

The merit of Eq. (20) is that it explicitly incor-
porates the short-time information about I'(x, t)
to order t' [Eq. (14)] as input-namely, the values
of C

~~ (K, I = 0), &o„and v', -and compacts the rest of
the information about F(», t) into the new function
M(K, t), the so-called memory function.

We have used the memory function as a device
for extrapolating C1(», f) to large times by writing

with C, = 1. The parameters n„C„n„.. . are

g 0.75

3
g" 0.50

0.25

-0.050

—0.025

0
0 IO 20 50

FIG. 6. S(f(:,cv), the spectrum of density fluctuations
(a) and C&I(~,~), that of longitudinal currents (b); ~
=0.3374 A . The main peak for sound propagation
occurs at ~7 =12.6. However, considerable intensity
persists at ~T-25. The peaks are clearly seen in
C,t(~,~) since C~t(K, ~) ~~~8(~,~). S(ff,~) is shorn on
two different vertical scales for purposes of visibility.
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O

=0.050
C3

3

'~ O.O25

35.0

0.50

3

0.25
I

4

(a) -0.050

—0.025

0
0 IO 20

M7

I

30 40.

FIG. 7. Same as Fig. .6 but for ff =0.4771 A . The
dashed arrow is at ~~=12.6 x 0.4771/0.3374, where a
sound peak would be expected in going from ~ =0.3374
to 0.4771 A, ~ Ã there were no dispersion in the veloc-
ity of propagation.

In Fig. 6(a) we see that S(e, &u) shows noticeable
structure again at the larger frequency ~ = 25m '.
This high-frequency structure in S(z, u&) becomes
quite clear in C~~(z, &u), shown in Fig. 6(b). The
characteristic frequencies are ~ = 13.3~ ' and
24.97 '. In monatomic liquids C ~~(z, &u) has always
been found to have one peak only which, for ~ not
too large, is sharp enough to persist as a sound
peak in S(z, e) when C „(K, &u) is divided by &a'. In
our model of water we have a clear indication
that the current fluctuations have taboo frequencies
of major response. At smaller values of e (not
attainable in the present calculation with 216 mole-
cules at a density of 1 gem ') we can expect to
see two well-defined peaks in S(z, to) giving an
"ordinary-sound" peak (usually called the Brillouin
component of density fluctuations) accompanied
by a "high-frequency-sound" peak.

At ~=0.4771 A ' only a suggestion of the low-
frequency peak is discernible in S(~, &u} and
C~~(tc, u&), as seen in Figs. 7(a) and 7(b). However,
the high-frequency peak in C ~t(~, ~) clearly occurs
at &o = 35.0 '; in Fig. 6(b) this was at 24.9v '. The
ratio 35.0/24. 9 is rather close to the ratio 0.4771/
0.3374 =2' ' of the values of ~; thus the high-fre-
quency response in C (tc, &u) shows normal linear
dispersion in going from ~=0.3374 to 0.4771 A '.
The dashed arrow in Fig. 7(a) is drawn at &u

=12.6T '&&2' '=17.87 '; we see the presence of a
shoulder in S(e, v) at a slightly lower frequency
than this value.

Results for ~=0.6747 A ' are shown in Figs.

8(a) and 8(b). The dashed arrows are drawn at
frequencies twice as large as those appearing in
Figs. 6(a) and 6(b) (v=0.3374 A '}.

It is clear from the disparity between the posi-
tions of the dashed arrows and the shoulders and
peaks in the, respective spectra that as z increases
the frequencies of maximum response are showing
a normal type of dispersive behavior.

It is also clear that we are dealing with wave-
lengths such that, even for the largest, the col-
lective coordinate is barely propagating and be-
comes less so for the others.

At high values of K, as the collective aspect of
the coordinate Jt~(z, t} becomes less marked, the
spectrum C ~~(K, u&) tends to become independent of
K and similar to C (tc, &o) (see Fig. 5, thick ar
rows).

B. Short-time behavior of the longitudinal

current fluctuation

From Eq. (15) it follows that

(u'C „(~, (o) d(o =(o', (k~T/M) . (23)

0.050

O.

3.0.025

3O

I

0.50 —0.050

V)

3
rn 0.25

I

0
0 IO

t

I I

20 30
4J 7

(a)

I I

40 50

—0.025

FIG. 8. Same as Figs. 6 and 7, for K =0.6747 A

This is analogous to Eq. (13) for the second mo-
ment of S(z, ru). We have seen in Sec. V that ~'„
the second moment of C, (~, &u), is related to the
high-frequency shear modulus at infinite wave-
length. In systems with two-body central forces,
the relation of e', to the high-frequency bulk mod-
ulus has been demonstrated in the literature. We
have not found a corresponding relation in the case
of two-body noncentral forces, which is the case
in our water interaction.

We shall first state the relation of u', to t"„and
~„, the high-frequency shear and bulk moduli, re-
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spectively, in systems with tmo-body central
forces."Let

1lm (d i /K =Cs ~

Then we have, for mass density d,

C', = (~~G„+K„)/d .

(24)

(25)

VII. CONCLUDING REMARKS

A system of 216 water molecules packed at a
density of 1 gcm ' in a cubic box of side I., with
periodic boundary conditions, does not permit the
study of phenomena with wavelength greater than
L. Hence in the above report the lowest value of
e is 2v/L=0. 3374 A '. Our calculations show that
at this value of ~ there is a fairly well-defined
Bril1.ouin peak in the spectrum of density fluctua-
tions giving a sound velocity of 1.8& 10' cm sec '.
In laboratory experiments with water, at 10 C,
a velocity of 1.5~ 10' cm sec ' is obtained. We
conclude that our computer model of liquid water
is able to simulate the phenomenon of density
fluctuations with considerable fidelity. However,
at smaller wavelengths the calculations show only
marginal evidence for the existence and propaga-
tion of these fluctuations. Hence a calculation
with a larger system is called for, and me are

Thus in this special case co', and ~'„ in the limit
~- 0, determine G„and E„.

In Fig. 9 we have shown ~, as a function of x; it
is seen that in the mater model we have C3 22 09
x 10' cm'sec '.

In the absence of a rigorous relation between

C,' and the tmo modu1. i, me shall, tentatively, ex-
press C,' in the form given above (which is correct
for central forces} to derive "A„"= 9.57x 10"
gcm 'sec '.

For a Lennard-Jones liquid near the triple point,
and presumably for liquid argon as well, "K„/G„- 1.6, whereas the values of "K„"and G„obtained
for water are very nearly the same. There is no
reason to believe that the quantity denoted above
as K„ is the infinite-frequencey bulk modulus in
the model of water with which me are eoneerned.
It is to be expected, however, that in the stiff net-
work formed by the hydrogen bonds between mole-
cules which are spatially not well packed (coordina-
tion number =4 and not =12), A„/G would be less
than its value in a monatomic liquid.

Apart from v» Fig. 9 also shows the frequency
of the main high-frequency peak in C „(z, &o) (marked
as &u ) and the one value (marked as a circle} of
the frequency mhieh stands out unambiguously in
S(z, &o} at «=0.3VV4 A ' [Fig. 6(a)]. The variation
of co„with ~ gives a "high-frequency-sound" veloc-
ity of 3.5x10' cmsee '.

i00

E
3
z 50

h
3

25

0
0 2.0

FIG. 9. Circle shovels the frequency ~ =12.6& ~ (from
Fig. 6) plotted against ~. The shoulders in Figs. 7 and
8 are not distinct enough for picking out a clear fre-
quency of response. Tentatively, one may conclude that
the molecular-dynamics model suggests a velocity of
sound of 1.8x105 cm/sec. ~~ is the frequency at vrhich
C

jJ (I(, ~) is maximum for various ~. ~, is a frequency
related to the fourth frequency moment of S{~,~); see
Eqs. (14) and (15). Its slope is indicated as C3.

presently undertaking such a calculation on 1728
molecules; one cannot but mention that this larger
system taxes the available computational resources
to a considerable extent.

The overall philosophy behind the technique of
molecular dynamics, applied to a phenomenon as
complicated as liquid water, should be the achieve-
ment of reasonably good agreement with the exper-.
imental values of several static and dynamic
properties. Given such agreement, if the calcu-
lations, in addition, provide evidence of subtle,
hitherto unsuspected, properties, it can be con-
sidered worthwhile to direct experimental effort
towards such properties. An example of this is
the presence of high-frequency sound waves with
a velocity almost tmice that of ordinary sound.
We mould like to suggest that neutron inelastic
scattering experiments on D,D water at ~& 0.3 A '
covering an energy-transfer range up to 6 meV
should be able to register the effects of such maves
if they exist.

From Figs. 3 and 6 one ean see that the ratio
of the low-frequency response in C(«, &u) [corre-
sponding to the ordinary sound peak in S(«, e)] and
the frequency of maximum response in C~(s, +)
is 13.3/6. 6= 2. This should be compared with the
ratio of longitudinal and transverse sound veloci-
ties in polycrystalline ice, which is also very
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APPENDIX

Assuming, without loss of generality, that the
wave vector z of magnitude K is in the z direction,
we get from Eq. (5),

J + 1/2
vxe SKAG j (A 1)

(A2)

where v",. and a",- are the x components of the ve-
locity and acceleration of the CM of molecule j.

From Eq. (16) we have

nearly 2." This is further evidence that the mo-
lecular-dynamics simulation is indeed close to

. a real-water system. We should remark here
that molecular dynamics is the only technique we
know of which can be used to study the behavior
of transverse-momentum current fluctuations in
liquids; hence, there is no possibility of compar-
ing our results on transverse currents with data
from the laboratory. Data from experiments on
the solid (in this case ice) is the only comparison
possible. Of course, it will be useful to have
molecular-dynamics data on ice itself; this is one
of the calculations being planned for the future.

The lattice dynamics of ice has been considered
by Forslind"; he used a dynamical matrix con-
structed on the basis of the motion of the oxygens
alone which interact only with their first neighbors;
the elastic-moduli data were then used to deter-
mine the force constants and the dynamical matrix
solved for the normal modes and their frequencies.
The dispersion curves were determined only for
vectors 7& in and normal to the hexagonal plane.
This work is mentioned here only to point out that
the range of the calculated frequencies (12 for
each vector T&) extends from zero to 5&&10" sec ',
which is precisely the overall range of frequencies
that occur in the molecular-dynamics model of
water.

( I ~.l') = 4T/M.

Now ( ~
J,~') has cross terms containing two ve-

locities in normal directions and these terms
average to zero. This gives

(A3)

(~lz, ~l'& = (rv 'P Pa' *, 8'"'

+ w'X ' ~ v".v'v"v'e'"~'j '&j jul
(A4)

If U denotes the potential energy of the system,
Eq. (A4) becomes

(~Z, ~'& =I,r/M'N

~ U, i.(.,—., )

+ x'(n, T/M )'.
Hence, by the definition of &u', in Eq. (16),

(A5)

&u'=K2(k T/M)+N 'i'Vf

eiK(a j -8&) (A6)

In the limit z- 0 we get

(d2 = K2C2
t

where

(A7)

g2 U
Mc', =k~T-— z,. —z, ' . A8

We note that Eq. (34) of Zwanzig and Mountain'
is applicable to general forces, and by comparison
with Eq. (A8) we see that

c', = G„/d.

However, in the case of general forces we have
not been able to prove a similar result for the
longitudinal currents. The case of central forces
has been treated by Zwanzig and Mountain and by
Zwanzig. '

*Work performed in part under the auspices of the U. S.
Atomic Energy Commission.
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