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In this paper, we examine the theory of the rate at which spin-spin interactions produce
energy transfer across an interface between a degenerate Fermi gas (liquid He3) and a sys-
tem of electron spins. We consider first the case where the electron spins are conduction-
electron spins in a metal, and examine the rate of energy transfer produced by spin-spin
interactions of dipolar form, and also by a short-range exchange interaction. In the former
case (dipolar coupling), the Kapitza conductance exhibits a T3 ln T dependence on tempera-
ture, but is very small in magnitude. In the second case (short-range interaction), the
Kapitza conductance varies as T, with a magnitude that is also small. We conclude that
neither dipolar interactions nor short-ranged interactions of the exchange type can produce
a significant transfer of energy from the He spins to conduction-electron spins in metals.
We also calculate the rate at which the He3 spins transfer energy to an array of paramag-
netic local moments. We recover a result similar to that obtained earlier by Leggett and
Vuorio. In contrast to Leggett and Vuorio, we use the full form of the dipolar interaction
to couple the He3 spins to the local moments, and in all the calculations reported here, the
effect of the surface on the single-particle wave functions is included by treating the surface
as a barrier of infinite height.

I. INTRODUCTION

Some time ago, Wheatley' suggested that the
anomalously small thermal boundary resistance'
between cerium magnesium nitrate (CMN) and
liquid He' has its origin in the coupling between
the electron spins in the CMN and the He' nuclear
spins. More recently, Leggett and Vuorio' have
carried out an explicit calculation of the contribu-
tion to the boundary conductance from this source,
and they obtain a good account of the temperature
dependence, magnetic field dependence and the
order of magnitude of the anomalous thermal
boundary conductance at the He'-CMN interface.
A recent experimental study4 of the boundary re-.
sistance between He' and several metals which
contain magnetic impurities in low concentration
suggest that for these systems, a similar mecha-
nism also plays a role.

In the present paper, we wish to explore some
aspects of this phenomena further, from a theo-
retical point of view. Our investigation has been
motivated by two considerations. First of all,
Bishop, Mota, and Wheatley' have studied experi-
mentally the Kapitza resistance R~ associated
with the interface between He' and Pt metal. They
find that the Kapitza conductance varies as T',
a behavior distinctly different from the classical
T' law, or that observed at the He'-CMN inter-
face. It has been suggested' that the contribution

to the He'-Pt interface conductance has its origin
in the transfer of energy between the He' nuclear
spins, and the conduction-electron spins in the
Pt. We investigate the possibility that this may
be so in the present paper by examining the theory
of the Kapitza conductance between two degenerate
Fermi gases for the case where the spin-spin
interaction has the dipolar form, and also for the
case where it has the form of a short-ranged ex-
change interaction. In the first case, we find
that the Kapitza conductance exhibits a T'lnT
variation with temperature, but it is estimated
that it is several orders of magnitude smaller
than typical values observed for the thermal
boundary conductance, even if exchange enhance-
ment effects in both the He' and the metal are
strong. In the second case, we find a T' varia-
tion of the boundary conductance which may be
larger than that which comes from the dipolar
interaction, but which is still quite small, for
reasonable values of the interaction strength. We
conclude that energy transfer between He' spins
and conduction-electron spins in metals is too
small to make an observable contribution to the
thermal boundary conductance.

We also wish to reexamine the problem con-
sidered by Leggett and Vuorio, which is the rate
at-which energy is transferred across an interface
between a degenerate Fermi gas (He'), and an
array of paramagnetic local moments. There are
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two assumptions in their work we would like to
remove. Their theory presumes the He' nuclei
and the local moments interact via a short-ranged
interaction of the contact form. The He' nuclei
thus "see" only electron spins very close to the
crystal surface, in their model. For quantitative
purposes, Leggett and Vuorio adjust the strength
of the contact interaction to mimic that of the
dipolar interaction. It is not obvious that the di-
polar interaction, which is long ranged, can be
replaced by a contact interaction. Indeed, in our
study of energy transfer between He' spins and
conduction electrons, we find qualitatively different
results for the behavior of the Kapitza conductance
for the dipolar interaction and a short-ranged
interaction, as one can see from the remarks of
the preceding paragraph.

We have concern about one other approximation
made by Leggett and Vuorio. They compute R~
from a Kubo formula (as we do also) which relates
the energy transfer rate to certain integrals over
the spectral densities associated with spin-spin
correlation functions. For the He' spins, they
use a form for the spectral density appropriate to
the bulk region of the fluid. But if one accepts the
fact that the dipolar interaction is equivalent to a
short-ranged interaction of some strength, then
in the Kubo formula it is important to use a form
for the spectral density appropriate to the surface
region of the Fermi fluid. If the interface is re-
garded as an infinite barrier to the He' atoms,
the spectral density function must vanish identically
right at the surface where the contact interaction
acts, since the wave function of each He' atom
vanishes there. Thus, the use of a proper form for
the spectral density in combination with a contact
form of the He'-paramagnetic-spin interaction
should greatly reduce the predicted rate of energy
transfer.

Nonetheless, despite these concerns, the success
of the Leggett-Vuorio theory is most impressive.
In our calculation of the rate of energy transfer
between He' nuclei and local moments, which uses
both the full form of the dipolar interaction and
spectral densities appropriate to a surface that
behaves as an infinite barrier, we find a formula
for the Kapitza conductance identical in form to
that obtained by Leggett and Vuorio, except the
numerical coefficient differs from theirs, as one
would expect.

An investigation of the Leggett-Vuorio contribu-
tion to the Kapitza conductance which includes the
dipolar interaction explicitly has also been re-
ported by Guyer, ' who also recovers results simi-
lar to those of Leggett and Vuorio. Our method
avoids approximations introduced in his work. For
example, along with Leggett and Vuorio, we
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need not assume the spin correlation functions
are diagonal in coordinate space for the He'
atoms. Indeed, for a Fermi fluid, we believe
this approximation is poorly satisfied. Guyer has
also not considered the effect of the surface on the
wave functions in the Fermi liquid, and replaced
the anisotropic dipole-dipole interaction by an
isotropic exchange interaction.

In their paper, Leggett and Vuorio have not taken
exchange enhancement effects in the He' into ac-
count explicitly, although they modify their final
formula in a phenomenological manner before
quantitative estimates of the Kapitza conductance
are made. In the presence of the surface, inclu-
sion of exchange enhancement effects for either
the He' spins or the conduction electrons con-
sidered in the earlier portion of the paper is quite
difficult at the present time, ' and these effects
are omitted from our work also, although for the
case where He' spins are coupled to conduction
electrons via dipolar interactions, it will be clear
from physical considerations how the final result
is to be modified.

This paper is organized as follows. In Sec. II
we begin with a brief derivation of the Kubo formu-
la for the Kapitza conductance similar to the one
used by Leggett and Vuorio. In Sec. III we study
the form of a spectral density function that enters
the calculation. In Secs. IV-VI we derive the
formulas for R~ for these cases described above
(coupling to conduction electrons via dipolar and
contact interactions, and coupling to local moments
via dipolar interactions). Finally, a discussion
of the results is presented in Sec. VII.

II. THEORETICAL FRAMEWORK

A. General considerations

The purpose of this section is to derive an ex-
pression for the Kapitza resistance for two sys-
tems coupled by spin-spin interactions, and to
case this expression in a form suitable for use
later in the paper. Consider a volume of He'
bounded by a plane surface, and let s(x) be the
spin density operator for the He'. The coordinate
system is oriented so that the x, axis is normal
to the bounding plane, and the x, and x, axes lie
in the plane. The He' lies in the region x, &0.
We attach the subscript

~~ to any vector which lies
in the x, -x, plane, or the projection of any vector
onto this plane. Thus xg xy xy+x2x2 By means
of spin-spin interactions, the He' nuclear spins
are in contact with the spins in a material with
spin density S(x) which lies in the lower half-space
with x, &0. We write the interaction between the
two sets of spins in the form
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V= d~xd~ydas(x —y)sn(x)~s(y)y (2.1)

r25
y' (2.2a)

We shall consider also an interaction with short
range. For this case we choose d„t)(r) to be of the
form

where in Eq. (2.1) and the equations displayed be-
low, e and P refer to the three Cartesian coordi-
nate axes, the integration over x covers the region
x3 0 and that over y the region y3 & 0.

For the case of dipolar coupling between nuclei
with magnetic moment p, „, and electron spins with
moment Ij, , we have

electron-spim system to the He' spins is

Q = g (E —E„)W(nN- mM)P„P„
nN
mg

(2.4)

—W(mM —nN) P„P„] (2.4a)

= —~ (E„—E„)(P„P„—P P„)W(mM- nN).
1 ~

nN

Now consider the term which corresponds to a
particular set of states nN, mM and combine it
with the term with nN, mM interchanged, i.e.,
we write Eq. (2.4) in the form

Q = — (E„—E„)[W(nN- mM)P„P„
1

nN

dns(r) =d(r)6„t)y (2.2b) (2.4b)

W(nN- mM) =2m l&ml&M I
VIN&ln&l'

X 6(E„t. E„—E„—e ). (2.3)

The rate at which energy is transferred from the
electron-spin system to the He' by this particular
transition is just (E„—E„)W(nN-mM). If P„and
PN are the probabilities of finding the He in state
n and the electrons in N, respectively, the total
rate Q at which energy is transferred from the

where the function d(r) is sharply peaked about
r=0.

In what follows, all quantities which refer to the
He' will be described by lower-case letters, and

the quantities which refer to the system of electron
spins by upper-case letters. When V =0, the eigen-
states of the entire system assume the product
form lM&lm& with energy Ejy+e . The rate at
which V induces transitions between these states
is found from the golden rule of perturbation theo-
ry. With h =1, we have

P„=e /Z„, (2.5)
P„= e'~ s/sZ,

where P,. =1/ksT, and Z, , Z„are the partition func-
tions of the electron- and helium-spin systems,
respectively. To first order in 6T =T, —T» Q is
proportional to ~T. We write

Q = A(ty. T/R„), (2.6)

where A is the area of the interface between the
two systems, and AK is the Kapitza resistance
per unit area. Then upon using the explicit form
of the transition probability W(mM- nN) we have

From Eq. (2.4b), and the energy conservation
condition EN+a„=E„+c, it is clear that when
both systems are in thermal equilibrium at the
same temperature, PnPN =P P„and Q =0. We
presume that the electron spins are at the temper-
ature T, and the He' spins at temperature T» where
Tj T2 is small . Then

2 I )'!" P'f «y' ' y'yyy' ysy(yy)&"s (
' —y')( Iy. ( ')I &( Iy ()Iy&

K B a8 nNa'8' mN

x &Nlss (y'}IM&&MISs(y)IN &(Es - Ee)'6(e. +Es e Ee), -- (2.7)

where in this expression P„'o' =e s ~/Zs.
We next proceed in the standard manner by re-

expressing the & function as an integral over time:

6(8) = —e'".+" dt
27r

It will be convenient to use the energy-conserva-
tion condition to write (E„—E„)'= -(e„—e„)
x (E„—E„). Furthermore, if s„(x, t) =exp(iH„t)

x s„(x}exp(- iH„t), with a similar relation for
S (x, t}, where H„ is the Hamiltonian of the He',
then note

(e. —e )&nls (x't)lm&(mls„(x0)ln&

—(nl s „(x't)l m &(ml s „(x0}ln&.
1 d
i dt

By utilizing the expressions given above, the
expression for RK may be put into the form
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n'8'

d'x d'x' d'y d'y' d„&&

&& (x —y) d„8 (x' —y') && ' dt
dt

x(s„(x't') s (x 0)) (S—
(& (y't)S(&(y 0)).

(2.8)

dxdx dydy d~&&
E B a8

+ 0O

x(x —y}d,e(x' —y')] dt
dt (e(x t), '

B. Application to coupling between paramagnetic systems

So far our discussion has been quite general.
For convenience, we now restrict attention to the
case where both spin systems are paramagnetic.
The extension of the results below to more general
situations is straightforward. In this case, the
spin correlation functions satisfy the isotropy
condition

(s„e(x't) s (x0))=5 „t(s,(x't) s,(x0))

so that for RE we have

and

8(x'x Q)= e'"}(' "(} "}(8(x'x ~
I& Q}y (2 )3 3 3y

(2.12a)

dk
A(y'y Q}= ' e'"}}' &'f(-Y(} A(x'x k Q}.y

(2 }3 3 3y

(2.12b)

Then define a quantity

D, (X„e;x,)=)dxte'"t'"td e(x). (2.12c)

Then in terms of the quantities defined in Eqs.
(2.12), we may write

/ I
R 4 k T2 d 3dx3dy3dy3~ d k]D„8

E ~ B n8

+ 0O

X ('k( x y )D t(xk(&)( «3 y3)X dQQ n(Q)

true in the presence of a surface. However, since
we choose the surface to be a plane, translational
invariance in the two directions parallel to the
surface still obtains. Thus 8(x'x; Q) is a function
of x~~

—x, ] only, although it depends on x3 and x3
separately. We write

&&s.(x 0)) d, (S,(y't)S, (y 0)}. (2.9) x[1+n(Q)] 8(xxx3' k(Q)A(yxy3' k;(Q).

Now we introduce the spectral densities asso-
ciated with the spin correlation functions by writing

(s,(x't) s, (x0)) = t dQe""'n(Q) 8(x'x; Q),
~ 00

(2.10a)
+0O

(y, (y't)y, (yD)) = j dt)e*'"' (t}}A(Fy;t}),

(2.10b)

where n(Q) =(e "—1) ' is the Bose-Einstein func-
tion. The spectral densities satisfy the condition

n(-Q)A(y'y; -Q) =[1+n(Q)]A(y'y; Q), (2.10c}

with a similar relation for 8(x'x; Q). Then the ex-
pression for RE becomes

(2.13}

In Eq. (2.13), the integration over x, and x,'
ranges'from 0 to ~, while that over y, andy, from
-~ and 0.

C. Form of RE for dipolar coupled spin systems

An important special case we wish to consider
here is the case where the two spin systems are
coupled by dipolar interactions. Then the form
of d„&&(r) has the form given in Eq. (2.2), and one
has after some straightforward algebra,

D~8;],Z D„8

=157& pp, /Pe , (}&.
x+3 & . (2 l4)

We then introduce the quantities

d xd x'd yd'y'
E B

+0O

&& g d
&&

(x' —y') d„&& (x —y) dQQ'n(Q)
n8 ~ 00

&&[1+n(Q)]8(x'x; Q)A(y'y; Q). (2.11)

Now we make use of the translational invariance
of the model we consider. In the infinitely extended
system the spectral densities in Eq. (2.11) are
functions of x' —x and y' —y only. This is no longer

P(k(}yQ) = dxdx'e '}(x+x ) 8(x «' gt Q)
0

(2.15a)

0

F(%)},Q) = dy dy' e (("+" 'A (y'y; t&;}Q).

(2.15b)

Then for the case of dipolar coupled spin sys-
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]6 2 2 2 oo

dkq k.
i

dAII n(Q)
R~ k~T 0

'

()

x [1+n(Q)] 6:(k
~

0)F(kg 0). (2.16b)

In Sec. III we study the form of the functions

F(k~, , II) and the spectral density for a set of
fermions bounded by a rigid wall.

III. CONSTRUCTION OF SPECTRAL DENSITY
AND FUNCTION F(kii, Q) FOR
A DEGENERATE FERMI GAS

A. General remarks on spectral density

We first begin with a few general remarks. Con-
sider a gas of noninteracting fermions, where

y„(x) denotes the orbital part of the wave function
for an electron of spin cr, and the index i refers
to all quantum numbers excluding the spin. With
5=1, in second-quantized notation, the spin den-
sity operator S,(x) is given by (with p =+1 for spin
up and -1 for spin down)

S,(x) = —Q p, rp,', (x) rp„(x) C~t, C„,
ija

where C„and Cj, are the appropriate fermion
annihilation and creation operators. From the

(3.1}

tems,

4g 2 2 +oo

d'k, k' dnfi2n(n)
R~ k~T ~ oo

x[1+n(II)] P(k~, , 0)F(k,~, II). (2.16a)

Since the integrand is an even function of 0, and

depends only on ~k~~~ for the systems we consider,
Eq. (2.16a}becomes

definition of the spectral density A(xx'; Q) in Eq.
(2.10), one has

x (f; -f;)6(II + e, - e&). (3.2)

We apply this form to a gas of free fermions,
free to move unconstrained in the x, -x, direc-
tions, but confined in the x, direction to a well
of width L and infinitely steep sides. Periodic
boundary conditions are applied in the x, and x~
directions to a region with cross-sectional area
A. In this geometry, the single-particle wave
functions are characterized by the quantum num-
bers Q„and Q, , and have the form

y& o (x) =e'oui'"oisin(Q, x,)(2/AL)'~',

where

(3.3)

Q, =nw/L, n=1, 2, 3, . . . .
Notice that Q, &0, necessarily. The energy of
the state Q~~, Q, is

E(Q~~, Q.) = (I/2M)(Ql~+Q', ). (3.4)

We then have

n(II)A(x'x; II) = —Qy,', (x') (p„(x)y,*,(x)
ifo

xqr„(x') f„(1 f~,—)6(A+&,, —E„),
where e„ is the energy of the state i,o, and f„
is the Fermi Dirac occupation function for this
level. A bit of rearrangement yields, for the case
where the single-particle energies and wave func-
tions are spin independent,

A(x'x; n) = —Q y,*. (x') y, (x) qr,'(x) y,.(x')
ij

A(x'x; II)=, , exp[i(Q~~ —Qt~) (x(~ -x~~)] sin(Q, x,') sin(Q, x,) sin(Q,'x, ) sin(Q,'x', )

og~g

(3.5)I f(E(Qg, Qg)) —f(E(Qii, Q.))]6(II +E(QliQg) —E(Qg Qg))

We next recall the definition of A(x,'x„k~, Q) implicit in Eqs. (2.12). If the sums over Q~~ and Q~', in Eq.
(3.5) are converted to integrations in the standard manner, then Eqs. (2.12) may be inverted to yield

2

A(x,'x„k~~ 0) = sin(Q, x,') sin(Q, x,) sin(Q,'x, ) sin(Q,'x,')
QgQg

[f(~(Q~~+ g,Qg)) —f(E(Qg, Q, )) 16(&+E(Q)(+kg, Qg) —E(Qg, Qg)). (3 6)

B. The function F(k~~~,Q)

To compute the Kapitza resistance for dipolar-
coupled spin systems, we saw in Sec. II that we
require the function

(kF~~, II) = dXg Ck& e II "3+"3A (Xg X» kg II).
0

Upon noting that
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dp
dx e '((" sin(Q, x) sin(Q,'x)

2kllQs Qg
[k))+ (qg —Q~)'] ["))+(qg+q')'] '

one finds that F(k((Q) is given by

i) ~ &'Q
ll
Q'.Q."

[f(E(Q„+k((,Qg)) —f(E(Q((, Qg))]
[k;, + (q, +q,')']'

x 5(Q + E(Q)) + k(), Q,') —E(Q(), Q, )).

(3.7)

To evaluate the function F(k,(, Q) in closed form
even for a degenerate Fermi gas at T =0 is a
formidable task, for general values of k~~ and Q.
However, we shall be able to extract from the
general form in Eq. (3.7) sufficient information to
allow computation of R~ at temperatures T small
compared to the Fermi temperature T~. At such
low temperatures, we only need to consider the
behavior of F(k((, Q) for frequencies Q «Ez. We
first consider the case Q-O for k, l

fixed and arbi-
trary, and then consider the region where both
k(( and Q are small, but the ratio Q/Vrk)( is arbi-
trary.

8

sE(q)(, Q.)
= ~6(E, —E(q, , q, )). (3.8)

Elsewhere in Eq. (3.7), we set Q =0. The last
statement in Eq. (3.8) assumes T«T~. Then as
Q -0, we have

F(k Q) II Q [
QIIQsqg

of 2 [k2 (q q )2]12

6(E~ —E(Q)(, Qg)) 6(Er —E(Q))+k,(, Qg))
[k((+ (Q. +Q.')']'

(3.9)

Now replace the sums over Q, and Q,' by integra-
tions according to the prescription

do, .
Q 1T p

Furthermore, let Ez ——kzo/2M so that we have

a. Behavior of F(k((, Q) for k(( fixed, Q-O. To
obtain the behavior of F(k)(, Q) in this limit, we
make the following replacement in Eq. (3.7):

f(E(Q((+k)) Q )) f(E(Q(( Q.))

=f(E(Q((, Qg) -Q) —f(E(Q(), Qg))

8QM
Pp

Q, Q,' 6(k),.—(k((+Q(() —Q,' ) 5(k), —Q „-Q,)
[k)) + (Q, —Q!)'] '[k') + (Q. +Q.')'] ' (3.10)

Now define the function

(3.11)

and notice that, if 8(x) =1 for x & 0 and 0 otherwise,

t dQ. g(q. )6(q', —q'. ) =
2 g(q. ).

p 0

By the use of this identity, the integrations over
Q, and Q,' which appear in Eq. (3.10) may be eval-
uated to give

2Qk'M'
F(k(( Q) d Q

q. (9(()qo(Q((+ k())
{k', +[q,(q, ) -q, (q, +E„)]'}'

q'(k„+Q))) =k -Q(( —2k((Q„cos8.

After some algebra, one may demonstrate that

(k'+[q. (Q, ) -q.(Q +k )]'}'
x(k') + [qo(Q)() +qo(Q() +k()] '}'

= 16k(((k —Q(( sin' 8)'

Then we have

M Q 2r
F(k,(, Q) = 8,k, dQ((Q, )

de
7r "il p 0

qo(Q(()qo(k((+jj)(() 8(k q )(ko qo sino 8)o

x 8(k lk) +)c()()l).

e(k —lq l)e(k —lq, +tl )"
&k((+ [qo(Q(() +qo(Q((+ k((H '}

(3.12)

In the integration over Q„, introduce the dimen-
sionless variable x by setting

The expression in Eq. (3.12) can be simplified
further. If 6) is the angle between Q, l

and k~~, then

Qll -u~x.

Then if we define a function g(g) by the statement
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3 1

g(~) = dxx(I -x')"

J
~~ d8(I —P x~ 2@cos8)

X
(1 -x'sin'8)'

x 8(1- P -x' —2@cos8),

the expression for F(%,~, Q) becomes

M~Q k"" "'=6 kgk77 I
I F

(3.13)

(3.14)

where we now replace kII by its magnitude in the
argument of F, because I' is independent of the
direction of k]I.

It is straightforward to establish that g(() =0
for (&2, since the argument of the 6) function is
then never positive. This means that for k~I & 2k~,
F(k„,Q) vanishes identically. Furthermore, in
the limit (-0 one has

3 t- I
lim g(g) = — dxx(1 -x')
~-o 4& o

d61

J
x . =1.

(1 -x' sin'8)' (3.16)

0.8

0.6

g (6)
0.4

0.2

0 I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 1. The function g(() defined in Eq. (3.11) of the
text, for 0&) &2.

For values of g which lie between 0 and 2, where
g($) is nonzero, we have calculated g($) numeri-
cally. The results are displayed in Fig. 1.' While

g($) indeed approaches unity as $-0, as stated
in Eq. (3.15), notice that g($) decreases linearly
with $ for small $, and in fact g($) rapidly becomes
small as $ increases toward unity.

The, qualitative behavior of the small Q limit of
F(k~~, Q) may be deduced from the remarks in the
preceding two paragraphs. For fixed Q, as k~I-O,
from Eq. (3.14) we see that F(kt, , Q) diverges as

Because of the rapid falloff of the function
g($) with increasing $, as k~~ increases toward 2kr
where F(k~~ Q) vanishes, F(kg Q) decreases more
rapidly than k]1'.

The form of F(k,~, Q) for small Q may now be
inserted into the expression for the Kapitza resis-
tance given in Eq. (2.16b), if we wish to compute
the boundary resistance between two dipolar cou-
pled Fermi gases, or between one Fermi gas,
and a system of local moments, so long as we are
interested in temperatures small compared to T~.
However, one may readily appreciate the fact that
the form displayed in Eq. (3.14) will lead to diffi-
culties, if used as it stands. To see this, con-
sider the calculation of the rate of energy transfer
between two degenerate gases of noninteracting
fermions. For small k~~, the product P(k, ~, Q)
x F(k„,Q) is proportional to k~~ ', and the integral
over kI, diverges logarithmically when this factor
is multiplied by the explicit factor of k~~ which
appears in the integrand. The divergence at small
kII means that spin fluctuations of very long wave-
length make an anomalous contribution to the
Kapitza conductance. The dipolar character of the
spin-spin interaction plays an important role in
bringing about this divergence, as one can see
from the factor exp[-k~, (x, +x,')] that appears in
the definition of F(k,~, Q) [see Eq. (2.15a)]. The
physical origin of this divergence is that a spin
fluctuation of long wavelength sets up a macro-
scopic magnetic field and the coupling between
two such long wavelength spin fluctuations (one on
each side of the surface) becomes very large.

b. Behavior of F(k~, , Q) for Q«Er, kg«kr, but
arbitrary Q/Vjpkq, A closer examination of the
general expression for F(kg Q) shows that the form
displayed in Eq. (3.14) requires for its validity not
only the criterion Q «E~ stated earlier, but in
addition one needs the condition V~k(1 &Q fulfilled,
where V„ is the Fermi velocity. When V~k11 is
comparable to or smaller than Q, the form of
F(k~, , Q) is modified in a manner which eliminates
the divergence in the Kapitza resistance calcula-
tion. Recall that in the bulk of the material, for
small Q, the spectral density is a function of the
ratio Q/Vrk. We thus find here a similar behavior
for the function F(k„,Q). We conclude this section
by deriving an expression for F(kl Q) valid in the
region k,I«k„, but for arbitrary values of the
ratio Vrk~~/Q.

If we consider the form given in Eq. (3.12) for
F(k~~ Q) for the case where k~~ «kr, the factor of
[k'~+[q, (Q~~) —q, (Q~~+k~~)]'j' becomes proportional
to k', ~, while the remaining factors in Eq. (3.12)
remain insensitive to k]I, and smoothly approach
their limiting values as k,1-0. Thus, for kII «k~
and Q «E~, we may obtain an expression for
F(k~~, Q) valid for arbitrary values of the ratio
Vrk~, /Q provided we use an improved approxima-
tion for this one sensitive factor; we can then set
kII =0 in the remaining quantities in the integrand.



350 . D. L. MILLS AND M. T. BEAL-MONQD 10

We begin by writing Eq. (3.7) in a slightly dif-
ferent form:

ment of the ~ function vanishes when

Q,'=+[2MQ+Q +2QII k)I-'k)I]' (3.17a)
2k2 Q2 Q/2

F(k)I, Q) =
4 dq2dq2 rPQII [k2 (Q Ql)2]2

X [f(E(QIIQ ) II) f(E(QII Q ))1
[k)I+ (Q. +Q.')'] '

X6(A+E(QII+k)I, Q2) —E(Q)IQM)).

(3.16)

Now perform the integration over Q,'. The argu-

Q,'=+ (2M)"[n 4-E(Q q ) -E(Q„—&I), 0)]'

(3.17b)

where for the argument of the & function in Eq.
(3.16) to vanish, it is necessary that the quantity
inside the square brackets in Eq. (3.17b) be posi-
tive. The expression for F(k,), Q) may then be
written in the form

F(») d'Q * ' 8(E(Q)-E(Q -k) II)v4 [k2+ (q Q )2])2[k2 + (Q Q+))]2II II + (3.iS)

where in Eq. (3.16), Q,' is the quantity defined
in Eq. (3.17b), E(g) —= E(QII, Q,), and the 8 function
in the integrand ensures that the quantity inside
the square root in Eq. (3.17b) is always positive.

Now for 0 «Er, we make the replacement (as
before)

[f(E(Q) -&)—f(E(Q))] 8(E(Q) -E(QII k)I)+&)

=—+Q~(E(Q) —E2) 8(E(Q) E(QII k)I)+»

=@6(E(Q)—E ) 8(E +0 —E(QII —k)I)) ~

The quantity Q,' now assumes the form

q' —(2M)&~2 [E +II E(Q k )] &~2

Now the integral over Q, may be performed
exactly as before, with the use of the identity ex-
hibited just after Eq. (3.11). If in the following
expression we let

Q —(2M}4)2(E Q2/2M)»2

[this quantity was called q, (QII) earlier; a slightly
different notation appears useful here], then

( )
2M Qk)I I" d Q IQ IQ 28(2EM —E(QII)) 8(E2 +0 —E(QII —k)I))

v4 [k2 + (q q))2] 2[k2 4 (Q 4 Q&)2] 2 (3.19)

We now suppose that kll is small, but we make no assumption about the relative order of magnitude of V~k, l

and Q. Then E(QII —k)I) =E(QII) (1/M) XQII'~II)

Q' =I&M) I& (2gQ)+ IM()/M))' 'Q II —= (2M) IM R(Qi)I ) +
" "]E —E

Q,

(MQ + QII
' k)I)

Hence, for both 0 and kll small, we have

Q,' —Q4= (I/Q, )(MQ+QII k))),

while at the same time

Qg+Q. =—2Q,

k)I + (Q, + Q,') = 4Q, .

When these approximations are put together,
and the results rearranged, we have for kll«k~

and 0 «E„
M 0

F(k)I, 0) =
ll

ded( ((I —t2)

„, [(i —]')+(t.cose+n/V, k, )']' '

(3.20)

We have not been able to evaluate the integrals
in Eq. (3.20) for arbitrary values of Q/V~k)I. How-
ever, this form serves to illustrate the behavior
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of E(ki, n) for fixed Q, as k~, -0. When V~k„»n,
note that the expression in Eq. (3.20) reduces to
that in Eq. {3.14), with g(kg/kp) equal to unity, the
limit appropriate to the region k„«k~. However,
the behavior is qualitatively different in the oppo-
site limit V„k,, «n. There Eq. . (3.20}becomes

M~V4 k~
F(k n)= 16n' n' ' (3.21)

M ~V~ k2I) 0
+(kii, n) = s s (3.22a)

g —~', —«y„3.22b

where a plot of the function g(f) is presented in
Fig. 1, and a more complete expression for
E(k~~, Q) valid for arbitrary Vrk~~/n is given in

Eq. (3.20), provided we have both k~~ «kr and
Q«E .

These results mill provide ingredients for the
considerations in sections which follow.

Quite clearly, this result shows that when the
proper form for E(k;~, Q) is employed in the Kapitza
resistance calculation, no divergence mill oeeur
because of the k,

I
integration.

To summarize with the conclusions reached in
the rather lengthy analysis presented in this sec-
tion, me find the following behavior for the func-
tion E(k~~, Q) introduced in Sec. 11, for a degenerate
gas of noninteraeting fermions, provided 0 «E„:

ular case, me shall see that the nature of the
modification me make is w'ell justified from physi-
cal considerations.

In what follows, the mass of the He' atom mill be
denoted by M„, its Fermi wave vector and Fermi
velocity by kr(H) and Vr(H), respectively, and the
corresponding properties of the conduction elec-
tron will be denoted by M, , k~(e), and V~(e).

Consider the expression for R~ given in Eq.
(2.161). We first perform the integration over k~, ,
then that over Q. In the region where both Vr{H)k~~
&Q and also Vr(e)k))&n, both F(k)), n) and E(k((, Q)
may be replaced by the forms given in Eq. (3.221).
Upon noting that Vr {e)»V+(H), in the intermediate
region where Q/Vz(e) «k~, «n/V„(H), we need to
replace 6:(k~;, Q) (which describes the He') by the
form in Eq. (3.22a) while E(k, , n) may still be
approximated by Eq. (3.22b). Finally, when k,

~

«Q/V~(e), both functions 6(k~~ Q) and E(k~, Q) may,

be approximated by Eq. (3.22a). Actually, if one
examines the nature of the integrand, the third
region makes a negligible contribution to the inte-
gration This is because once F(kii n) is replace"
by Eq. (3.22a}, the resulting integrand no longer
diverges as k~~-0 (in fact it approaches zero as
k~'~), and the region near k~~ = 0 makes a small con-
tribution to the integral. Thus, me shall be able
to approximate E(k~, , Q) by Eq. (3.221) throughout
the entire region of the integration. %e then have
from Eq. (2.16b) that

IV. RATE OF ENERGY TRANSFER BET%(EEN
LIQUID He3 AND CONDUCTION-ELECTRON

SPINS: CASE OF DIPOLAR COUPLING

3m k~T2 „I dnn s(n)[I+s(n)]

dk))

o II E(e
(4.1)

In this section me apply the formalism developed
in Sees. II and III to the computation of the rate
at which energy is transferred from He' nuclear
spins to conduction-electron spins in a metal for
the case where the spin-spin coupling has the di-
polar form. Vfe shall proceed by inserting the ex-
pression for E(k~, , Q) developed in Sec. III into
Eq. (2.161).

When me do this, me are using an extremely
oversimplified picture of the nature of liquid He',
since this amounts to treating it as a noninteracting
collection of fermions. Actually, it is by nom mell
established that liquid He' is strongly exchange
enhanced. This is clear when the order of magni-
tude and the temperature dependence of the nu-
clear-spin susceptibility are examined. '0 We
shall proceed for the moment as if the He' is a
fluid of noninteracting fermions, and at the end of
the discussion, physical considerations mill lead
us to modify the final formula me obtain to correct
for exchange enhancement effects. In this partie-

Now, as we have seen in Sec. III, P(kt~, Q) van-
ishes for k, ~

&2k+(H). Since kr(H) is small com-
pared to kr(e), we can replace g(k~~/kz(e)) by its
value at k, I

=0 throughout the integration with little
error. Then Eq. (4.1) becomes

R~ 3g k~T2
dn n n(n) [1.n(n)]

2k@{H)
X dkii klan 6:(kii, Q).

0
(4.2)

We lack a simple closed formula for 6'(k~~, Q}
valid for all, values of Q/Vrk~~ . Our procedure
will be to use Eq. (3.22a) for k~~

~ n/V~(H), and

Eq. {3.221) for k„& Q/Vr(H) If we equ.ate these
tmo expressions in the small k, ) region, we find

they become equal when Q =V„(H)k~~(-, )'~'
=0.78'(H)k~~. This procedure thus extrapolates
the form of 6'(kg Q) valid for small kg up to larger
values, and that valid for large k„down until the
tmo extrapolated functions become equal. This
procedure leads to the correct qualitative behav-
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ior of the integral, and should not lead to serious
Thus, we have

2k~ (H ) M2 V H 4 olv~&H)

0 0

QM M 0 y''"
3 + 364@ 6m n/v (H)

quantitative errors.

MH 0 y'' ' dkll

dk M2 0 2k''H) dk kIl H ll ll

The integrand in the third integral is nonsingular in the limit kll-0 since, as we have seen,
g(k~~/k~(H)) =1+0(k~~/k~(H)) as k„approaches zero Th.us, we may set the lower limit of this integral
equal to zero. Then we find

J( ki~dll~fF(k„, A)=
6 ill( & }+ ~~ (~+

& Jf ( f~(c)-&l). (4.3)

A numerical integration based on the numerical
evaluation of g(g) presented in Fig. 1 yields

Thus, for the Kapitza resistance we have

'dg—[ g(() —1]=- —1.66, (4.4) 1 4 p2p2M2M2

RE 9& k~T „0
dQ Q'n(Q)

so that our approximation for the integral which
appears in Eq (4.3}.is

J
2k~ (H ) M 0

0

(4 5)

&&[1+n(Q)] [in(4E (H)/Q) —1.55]. (4.6)

In the integration over frequency, let 0 =k~T),
where ( is a dimensionless variable. Then

dQ Q'n(1 +n)[ln(4E~(H)/Q) —1.55] = (ksT}5 dg g'n(1+n) In
k

—1.55
4E (H)

0 0 k~TQ

=(ksT}'1n ~ d$ $4n(1 +n}+(ksT)' I d$ $4n(1+n) ln ——1.55
4E (H) 5

"
4

kaT 0 0

Now we have

r dg $'n(1+n) =24'(4),
0

~ kn g, P, '„M~MH2(keT)'
1 32K(4)

g 7T

x ln ~ —2.92 (4.9)

ks p. ', p2M,'M'„(ksT)',1 32'(4)
g 1T

4E (H) "dg t4n(1+m),
k,T ', 24'(4)

(4.7)

We have calculated numerically the integral
which remains in Eq. (4.6), and we find

l
"

dg g~n(l +n) ink
24' (4)

(4.8)

Thus, our final result for the Kapitza conduc-
tance assumes the form (with k inserted explicitly)

where i(4) is the Riemann & function with argument
4, so that we have From Eq. (4.8), we see that as T-O, the con-

tribution to the Kapitza coupling from dipolar cou-
pling between the He' nuclear spins and the con-
duction-electron spins in the metal exhibits a
T' lnT variation with temperature. The
lnT portion of the temperature dependence has its
origin in the near divergence in the integration
over k~, that occurs because in the region Vz(H)k~,
&Q, the function F(k~~, Q) increases as k,~' as k~~

decreases.
One major approximation in the result displayed

in Eq. (4.9) is that the liquid He' was treated as a
noninteracting Fermi fluid, while it is known that
exchange enhancement effects are very large in
this system. It is extremely difficult to modify
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our calculation in a manner that takes proper
account of exchange enhancement effects, largely
because the description of the magnitude of the
exchange enhancement near a surface is quit~
difficult. The theoretical investigations of this
question which have appeared to date' have all
confined their attention to static properties of the
surface region, and the extension of these descrip-
tions to the construction of the spectral density
for nonzero frequencies near the surface is non-
trivial. Indeed, even in the static limit, the phys-
ics is still not completely clear.

However, in the region where the T'lnT behavior
characterizes the Kapitza conductance, physical
considerations suggest a simple modification of
the result in Eq. (4.8) should be adequate. In the
T'lnT region, the dominant contribution to the
Kapitza conductance comes from values of k,

~
the

order of kaT/Vz(H), as we see from the divergent
behavior of the k~~ integration in Eq. (2.16b), if
careful account is not taken of the behavior of
'F(k, ~, 0) for values of k~~ the order of A/V~(H).
Now when we construct 3'(k„,0) from the spectral
density 8(x'x; k,~A) [see Eq. (2.12a)], we average
the spectral density function over a spatial dis-
tance the order of k~~'. Thus, to compute 6'(k~~, Q)
for k, , the order of kaT/V„(H), we take an average
of the spectral density function over a rather ex-
tended region from the surface, a distance the
order of V~(H)/ksT. Thus, we should be able to
calculate F(k~, , 0) from the bulk paramagnon prop-
agator to obtain the Kapitza conductance in the
T'lnT temperature range, since the effect of the
surface on the spectral density must be small
over much of the volume involved in the calcula-
tion of 6'(kg 0) for these small values of k~~. For
long wavelengths, in bulk-paramagnon theory,
the spectral density is enhanced over the value
appropriate to the noninteracting Fermi gas result
by the factor (1 —I ) ', where I is the Stoner ex-
change enhancement factor. As long as the wave
vector of the paramagnon is small compared to the
Fermi wave vector, the enhancement of the spec-
tral density is wave-vector independent. Thus,
if (1 —I„) ' denotes the exchange enhancement
factor for the He', and (1 —T,) ' that for the con-
duction electrons in the metal, then in the T' lnT
regime, we may presume that

1 32)(4) k~ p,
2

p, 2M2M„' „, 4E~(H)

(4.10)

Two additional comments should be made. Since
(1 —I„) ' varies with pressure, "the contribution
to the Kapitza conductance from this contribution
should vary with pressure. Second, since the

interaction between spin fluctuations across the
interface involves coupling between regions rather
far from the surface, at least at low temperatures,
this contribution should be insensitive to a layer
or two of He4 or solid He' deposited on the inter-
face.

While previous authors' have suggested that the
anomalous temperature dependence of the Kapitza
resistance of the boundary between Pt metal and
He' may be explained by transfer of energy be-
tween He' nuclear spins and the conduction elec-
trons of the Pt, the present results show that the
contribution to the Kapitza conductance from this
mechanism is too small by many orders of magni-
tude to explain the order of magnitude of the ob-
served boundary resistance, if the coupling pro-
ceeds through the dipolar interaction. From Eq.
(4.9}with I, =0 and I„=0.9, we estimate that the
product

2 x 10' cm' 'K4 secRT=
ln(4'(H)/kaT} erg

2 x10" cm' 'K'
in(4Ez (H)/k a T) W

At the boundary between He' and metals at low
temperatures, the Kapitza resistance per unit area
is smaller than this estimate by some ten orders
of magnitude. This discrepancy is so large that
even with strong enhancement in the host matrix,
(I, near 1), the calculated and observed rate of
energy transfer cannot be reconciled. Our con-
clusion is therefore that the contribution to the
interface conduction from the present mechanism
is so tiny that it plays no role in any current ex-
perimental configuration.

V. RATE OF ENERGY TRANSFER BETWEEN LIQUID He

AND CONDUCTION-ELECTRON SPINS: SHORT-RANGED

EXCHANGE INTERACTION

In this section we consider the energy transfer
between the He' nuclei and conduction electrons
which results from a short-range spin-dependent
interaction of the exchange type. The formalism
of Sec. II applies quite directly to this case, of
course. We presume the interaction is an isotropic
exchange interaction, so the quantity d„8(x -y)
which appears in Eq. (2.1) has the form given in
Eq. (2.2b):

d„~ (x —y) = 6„~d(x —y).

We cannot take the interaction to be a contact
interaction strictly speaking, since both the He'
and conduction-electron wave functions vanish at
x3 y 3

= 0 fo r our mode 1. We adopt the fo1lowing
form for d(x):
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d(x) =(-,'go}6(x~~)e ' "&'. (5.2)

We shall assume the interaction length l = o ' is
smaller than all other lengths in the problem (i.e.,
the Fermi wavelengths} for convenience in per-
forming the'algebra. In the end, we shall rewrite
the result obtained on that basis in a form we feel
is valid more generally.

If we begin with Eq. (2.13}, and follow steps
quite analogous to those which lead to the form
in Eq. (2.16), for the present case we find we may
write

dQQ n(Q}[1+n(Q)]3g2'

where

x dkiik, ig(k„, 0) G(kii, 0),
0

(5 3)

g(kg, 0) =
4 J( dQddQd d'Qg [~ (Q Qd)2]

, [f(E(Q +&,Q.')) -f(E(Q „Q.)))
[e'+ (Q. +Q!)]'

g(k)), A} = dxdx'e ""'* 8(x xd kiif~) (5 4)
0

By using the explicit form of 8(x'x; k~, 0}obtained
in Sec. III, and proceeding in the same way as the
derivation which led to Eq (3.7),. we have

d(d„, a)= ~, I W. dQlQ. Q' J+Qln'& 0

x 6(E„—E(Q~~Qd)) 5(Q —E(Q~~ +k(), Qd)).

(5 7)

Since E(Q~~, Q, ) =(I/2M)(Q~~+Q,'), the integration
over Q, and Q,' is readily performed to yield

G(kii f1)= J~ dQiiQ (k' -Q')' '
0

p 2 1I

x
l d0 kg — »»+kl»

' 8 kp — »»+k»»
0

(5.8)

where again, 8(x) is unity for x ~ 0 and 0 for x & 0.
The integral in Eq. (5.8) cannot be evaluated in

closed form. However, quite clearly at k»» =0,
G(k~~, O} remains finite, with no divergence as in
the case of the dipolar interaction, where we found
that E(k„,0) varied as k~~' for k,

~
«k~, and V~k~~

&Q. The absence of the divergence means that the
region of small k»l need not be treated with care,
and we shall find R~' will vary as T'. Since the
integral cannot be evaluated in closed form, we
shall explore two special limits, and then use an
interpolation formula to extrapolate between these
limits. The use of an approximate form for
G(kg 0) in the calculation of Rr will affect the
numerical coefficient of the result, but not its
temperature dependence.

(i) The limit k»»-0. A straightforward integra-
tion shows that

x 6(fi + E(Qii +%i„Q,) —E(Qi„Q,)). G(0, 0) =QM 'k~/v g (5.8a)
(5.5)

As stated above, we consider the limit that
l = v ' is very small. Thus, the factors of v'
+ (Q, +Q,')' in Eq. (5.5) may be replaced by a' to
yield

d(d„, A) = dQ, dQ,'Q', Q,"fd'Q„
7F

x[f(E(Qq+~[) Q )) f(E(Q)(Q ))]

x 6(Q +E(Q, +%, , Q,'}—E(Q, Q,)).

(5.6)

As before, we need the form of g(k~~, O) for small
Q. Furthermore, we shall not encounter difficul-
ties at small k»» similar to those that proved diffi-
cult in the dipolar case. Thus, we may keep the
term linear in 0 in g(k~~, Q), and presume V~k~~ is
large compared to Q. Upon expanding the Fermi
functions as we did in the discussion which pre-
cedes Eq. (3.17), then keeping the term linear
in 0, we have

(ii) The limit k~~ 2k'. The function G(kg 0)
vanishes for k»»&2k~. We study the manner in
which G(k~~, Q) approaches zero as k~~-2k+.

If the structure of the integral in Eq. (5.8) is
examined for k»» near 2k~, then only values of Q»»

near k~ enter the integration, along with values of
8 near n. Thus, if we let

k~~ =k~(2 —e},

IQ, ~I
= kr(1 n), -

and

then for e «1 the integral may be transformed to
read

4nM'k4

0 - (E'- 7))

xdy[e —q —y']'t'

8AM~k~ sl2
15@''v'



10 CONTRIBUTION TO THE KAPITZA CONDUCTANCE FROM. . . 355

or

8QM kF 2k~ k]I
G(k((, Q) = 15, , k, k(} near 2k~.

15m '0' kF

The quantity (kl2~) measures the overlap between
the probability density of an electron at the Fermi
surface and the interaction region near the surface.
In terms of this quantity we have (with k inserted)

1 16g M„M, 4

75 v 8ozok T2 kz (H)kz (M)

2~(H )

x I dQ Q'n(Q) [1 +n(Q)] t dk(} k}}
J0 0

kk (H} —
k~~,

'~' kk (M} —k,„)'~'
(

k„(H) k, (M)

where k~(H) and k~(M) are the magnitudes of the
Fermi wave vector of the liquid helium and the
metal, respectively. The integral over frequency
is carried out to give

64 2M2 M2

k~ (H) k~ (M)

For convenience, we next presume that k~(M)» k~(H), so the last factor in the integral may be
replaced by 2' '. The integral over k]I is then
readily performed to yield

1
0 45 g M&Mekk. (H)k&(M)

(k Tp (5
R~ g 9~2g10 B

We rewrite this result in a form which makes the

factors which appear in it more transparent. First
we introduce the length l =v ' which measures the
range of the interaction. Then notice that for
kFL « 1,

—'k2l'= sin2k z dF F
0

dz =- (+~z).
0

(s.12)

(s.9b)

The general form of G(k,},Q) is evident from the
results displayed in Eqs. (5.9a) and (5.9b). The
function is finite at kII =0, and decreases mono-
tonically to zero at k], =2kF. For k]] near 2kF, the
manner in which G(k(},Q) approaches zero is de-
scribed by Eq. (5.9b).

In our calculation of the Kapitza resistance, the
region near kI~ =0 is relatively unimportant, be-
cause of the explicit factor of kII that appears in
Eq. (5.3). Thus we shall proceed by presuming
G(k}},Q) may be described by the form in Eq.
(5.9b) for the important values of k(, . This ap-
proximation seems reasonable, since, if the re-
sult in Eq. (5.9b) is extrapolated back to zero, it
gives a result of the same form as that in Eq.
(5.9a), but with a numerical coefficient that differs
by a numerical factor of roughly 3. Thus we have

1 g2M„M2 [1k~(H)] 2

R B &2@9

x l&@p(H)) I' l&q'2~(M)& I'(k, T)'. (s.13)

cm' 'K4
= 5x10'

W
(5.14)

Thus, this estimate indicates that while the
contact interaction is far more efficient than the
dipole-dipole interaction at transferring energy
from the He' nuclear spins to the conduction-elec-
tron spine (presuming that our estimate of g is
reasonable), nonetheless, the contribution from
this source is also many orders of magnitude
smaller than the observed thermal boundary con-
ductance. While our estimate of g may have led
us to assign a value to this quantity that is too
small, g would have to be some three orders of
magnitude larger than our choice to fit the data.
Such a value for g seems quite unphysical. We

thus conclude that neither dipolar coupling between
the He' spins and the conduction electrons nor
short-range interactions of the exchange type can

We expect this result to be valid even when l is
the order of the Fermi wavelength, since each
factor in it has a simple physical interpretation;
the factor of k~(H) measures the amount of phase
space available to the fluctuations with wave vector
parallel to the surface [k}( is limited to the range
between 0 a.nd 2k+(H) when kz(H) & kz(M)), and the
factors I(4~2) I

measure the strength of the spin
fluctuations that lie within the interaction range.

We conclude this section with an estimate of the
magnitude of the contribution to the Kapitza con-
ductance in Eq. (5.13). If the interaction length
l is the order of 1 A, then we expect the dimen-
sionless factors (ki2~(H)), (klr2(M)), and k~(H) l to
be close to unity in value. The major uncertainty
is the value of g, which has the dimensions of
energy times volume. Now the parameter I, which
measures the spin=dependent interaction between
two He' atoms in the liquid in paramagnon theory
(through the term Ig,n, }n, ~ in th. e Hamiltonian)
is =5'K. If we assume the spin-dependent inter-
action between the conduction electron and the He'

atom to be similar in strength, then g will be a
number the order of an atomic volume (10 '4 cm')
multiplied by an energy of 10 "erg, i.e., g=10 ~

erg cm'. With this number we estimate

1 cm sec 'K4

R~T erg
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transfer a physically significant amount of energy
across the surface.

VI. ENERGY TRANSFER FROM He NUCLEAR SPINS
TO AN ARRAY OF LOCAL MOMENTS

In this section we examine the contribution to
the Kapitza conductance from the dipolar inter-
action between He' nuclear spins, and an array
of paramagnetic local moments. We begin by
examining the spin correlation function that ap-
pears on the left-hand side of Eq. (2.10b}. We have

S,( yt) = Qs, (1 t)6 (y —T)

Now we can expect that the spectral density
A-, (Q) is independent of T( and depends only on t „
if all spins in a given layer are equivalent (or if we
perform an average over a dilute array of local
moments}. The sum over 1,

, )
then gives a factor of

N, , the number of spins in each layer. We let

n, =N, /A,

the number of local moments per unit area. Also,
we shall not encounter divergences in the integra-
tion over ki for small k,l, so we may use the form
in Eq. (3.20b) for 6'(k(j 0) We then have

so that

A(v'v; II) =e(v -v')+6(y —1)A)(fl),
1

where

+ oo

(S,(T()S,(TO))= f d() e"™e(())d,(()).

(6.1)

If this form for the spectral density is inserted
into Eq. (2.11), then we have

d'xd'x'd„( ' —T)

x d„,(x- T)f d()()'e(())

x[1+n(Q)]8(x'x; Q)A, (fl). (6.2)

&S,(y't) S,(y0)) =+e(y —1 )
11

xe(y'- T')&s, (T't)s, (T0)).

If we assume that the local moments are para-
magnetic, and the spins are dynamically indepen-
dent, then

&S.(1't)S.(10))= 6 7$ &S.(1 t) S.(Io)&

It then follows that the spectral density A(y'y; 0)
defined in Eq. (2.10b) has the form

xe '~:,i'3 dQQ'n 1+n Ag 0 . (6.4)

The integral over k, j
in Eq. (6.4) has a distinctly

different structure than the integration encountered
in Sec. IV. If we set l, =0, then the dominant
contribution to the sum comes from values of ki,
the order of k~(H), the Fermi wave vector of the
He'. It then follows that if a0 is the spacing be-
tween successive layers of spins, and 2k+(H)ao»1,
then the dominant contribution to the sum comes
from the spins in the surface layer l, =0. This
condition is well satisfied in CMN, but may be
satisfied less well in other solids, where the dis-
tance between near-neighbor spins is far smaller
than CMN. If we keep only the term l, =0 in the
sum in Eq. (6.4), then we can regard the dipolar
interaction as formally equivalent to a contact
interaction between the He' spins, and the local
moment. It is important to stress that. this equiva-
lence obtains only if 2k+(H}a,» 1, and one may
encounter systems for which the approximation of
the dipolar interaction by a contact interaction is
less good. Then if we keep only the term l, =0,
we have

4M2 k2 ~ + oo"'"""a

dilly'n(I+n)A

(O)

If we now insert the expression for 8(x'x; 0)
given in Eq. (2.12a) into Eq. (6.2), then note the
definition of D g(%(j ' xs) in Eq. (2.12c) along with
the identity in Eq. (2.14), we obtain

where

2

d5 4(5) =o 26,
0

(6.6)

(6.6)

8m2 00

dkl, kil e
Rlf Ak~T

lll13

x dQQ2n 1+n 7 kil, Q A . (6.3)

In this expression, we have written l = lii+zl 3,
and we have assumed that the spins are distributed
over a set of layers, each of which is parallel to
the surface.

where the numerical value of 8 has been obtained
from a numerical integration.

This result is equivalent to that obtained by
Leggett and Vuorio, except for an over-all numeri-
cal factor. To make the comparison between our
work and their earlier work explicit, we display
their result in their notation ignoring for the mo-
ment the exchange enhancement factor they insert
in a phenomenological fashion:
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(6.7)
(Rr) ~.v 32m '

(R+)present
(6..11)

where n. is the number of spins per unit area, and
their factor g, for the case where the local mo-
ments have spin —,

' is denoted by —,'p. ,p. „in our work.
(Their spin variables o and S are the Pauli ma-
trices, while our s and f are spin operators ).The
function dn/de is the density of states of the fluid
at the Fermi surface, so that

dn M„k~(H)
cR lP

so that in our notation, Eq. (6.7) becomes (with 8
=1)

rr e@-(-PePn s k 7q (7 H) (6 8)
(Rr)„.v 16m'

After a slight modification of Eq. (21) in Ref. 3,
their function Q, may be written

Q, =
(

3 g d00 n(0)[1+n(0)JX, (0),
B rr

where

X,„=—g e 8 i(niS [m)J'
1

nm

x[ (E6„-E —0) -5(E„-E +0)] .

In zero magnetic field, the only case where our
final result applies [we have used the assumption
that H=O which precedes Eq. (2.9); this assump-
tion is readily relaxed] X&~ becomes independent
of n, so that

3 ~+ oo

~ =2(k, g . . d00'n(0)[1+n(0) JX, (0) .

(6.9)

1 3M„'k~(H)p, g'„n,
(Rrr)r v 8w'ksT'

x dQQ'n(0)[1+n(0)JA (0) . (6.10)

If Leggett and Vuorio's expression for the
Kapitza resistance is compared with ours, one
has

It is a straightforward exercise to show that
when the local moments have spin —,', their function

X, (0) is 4Ao(0) in our notation, where the factor'g
of 4 has its origin once again in the fact that
their S is a Pauli matrix, while ours is the spin
angular momentum of the local moment. After
this identification is made, and Eq. (6.9) is sub-
stituted into Eq. (6.8), in our notation Leggett and
Vuorio's expression for the Kapitza resistance
becomes

Thus, while the two calculations produce the
same final formula for R~ to within an over-all
constant, there is an appreciable quantitative dif-
ference between the two. Our result suggests that
Leggett and Vuorio's approximation procedures
lead them to underestimate the contribution to the
Kapitza conductance form dipolar spin-spin inter-
actions. If we accept Leggett and Vuorio's phe-
nomenological modification of the result for RE to
account for exchange enhancement effects, then
we find a value for the Kapitza conductance larger
than that observed experimentally at the He'-CMN
interface. In view of the uncertainty of the ex-
change enhancement correction, along with differ-
ences between the ideal surface that forms the
basis for this calculation and the real interface,
we do not regard this discrepancy as significant.
In experimental-grade He', a tightly bound mono-
layer of solid He4 may be present on the solid sur-
face, unless the He' is extremely pure. This will
increase the distance of closest approach between
a He' atom and the local moments in the surface,
and decrease the rate of direct energy transfer
between the two systems. (The rate of transfer
between the He' nuclei in the liquid, and those in
any adsorbed layers may be small compared to the
transfer to the local moment system, because p. „
«p, ,). For reasons such as this, one can regard
the value of R~ provided by our calculation to be
a lower limit on the value this quantity may as-
sume in practice.

We also see from our work that the notion that
the dipolar interaction can be replaced by a con-
tact interaction is valid as long as 2k„(H)a, » 1. This
criterion seems valid both for CMN, where a,
=15 A, and also in the alloy systems studied re-
cently.

VII. GENERAL DISCUSSION

There are two general conclusions which follow
from the present work. First of all, we have re-
derived the result of Leggett and Vuorio in a man-
ner which removes two important assumptions
which were introduced by them. Second, we have
examined the contribution to the Kapitza conduc-
tance which arises from spin-spin coupling be-
tween He' nuclei and conduction electrons at He'-
metal interfaces, and we find that this contribution
is quantitatively very small. We begin this section
with a comparison between the two cases consid-
ered here, the case where the He' spins couple to
local moments, and the case where they couple to
conduction electrons.

First, consider the case where the He' nuclei
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couple to -conduction electrons. The results for
the short-ranged exchange interaction and for the
dipolar interaction are quite similar in form, ex-
cept for the ln T factor, which owes its existence
to the peculiar long-ranged nature of the dipolar
interaction. For simplicity, we confine our gen-
eral comments to the first case, which gives a T'
variation of the Kapitza conductance.

The T' variation of the Kapitza, conductance in
this case is identical to the result for direct trans-
mission of phonons across the interface. In fact,
one can see that the physics in the two cases is
quite similar. The fermion systems on each side
of the interface experience thermodynamic fluc-
tuations in spin density. These fluctuations obey
Bose statistics, as one can see from the Bose
factors n(Q) which appear in the expression for
n(Q). The exchange interaction couples spin fluc-
tuations in the He' with spin fluctuations in the
metal, and allows for the possibility of energy
transfer. If each system is regarded as a degen-
erate Fermi gas, then the spectrum of spin fluc-
tuations extends from zero frequency to E~/h, a.

frequency very large compared to k~T, for the
conditions examined in this paper. Thus, the
transfer of energy between the two spin systems
may be described by a language very similar to
that used in the discussion of the phonon contribu-
tion to the Kapitza conductance, for temperatures
low compared to the Debye temperature OD of the
material on each side of the boundary; in fact in
each case, a T' law obtains.

In the presence of exchange enhancement, the
long wavelength fluctuations in spin density with
wave vector k «k~ are characterized by the spin-
fluctuation frequency Q.f = (1 —1)E~/8, while the
short wavelength fluctuations are still character-
ized by a maximum frequency the order of E„/h
As long as k~ T«SQ&, the T' term will be en-
hanced by a factor which is an appropriately
weighted average between the enhancement factor
appropriate to long wavelength fluctuations (near
the surface) and to short wavelength fluctuations
in the vicinity of the surface. As remarked ear-
lier, this enhancement factor is very hard to cal-
culate, given the present state of our knowledge
of the effect of a surface on enhanced spin fluc-
tuations (paramagnons).

The situation in CMN is quite different, at least
for the temperature range explored so far. The
experiments to date probe the region T& T, . The
characteristic fluctuation frequencies of the CMN
spins lie in the range from zero to roughly kT„
so we have k~T large compared to the character-
istic frequency, instead of small compared to it,
as we have when the He' spins interact with metal-
lic conduction electrons. To pursue the analogy

with the phonon contribution to the Kapitza con-
ductance further, the He'-CMN system is rather
similar to the case where for one component (the
He'), ks T is small compared to the characteristic
frequen. cy 6D but for the second, kT»6~. In the
phonon case, when 6~~& and O~D& are the Debye tem-
peratures for each constituent, and when 6~ «k~T
«6D, the Kapitza conductance is proportional to

ega)

dQQ'n(Q) [1+n(Q)] = —,'(e~ )',

kg T«6D

Thus, in this limit, the Kapitza conductance is
independent of temperature. In the He'-CMN case,
since the entities are spins each with 2S+1 levels
instead of the infinite ladder of levels associated
with each phonon in an harmonic solid, one finds
R~' - T ' in the high-temperature limit, and not
the temperature -independent result appropriate
to the phonon problem.

One may now appreciate a fundamental differ-
ence between the He'-CMN case and the He'-metal
case for the range of temperatures explored so
far. In the former, all of the spin degrees of free-
dom are thermally excited, since kTis large com-
pared to k~T, . Thus, all of the degrees of free-
dom may participate in the energy transfer pro-
cess. For the metal, quite the opposite is true.
Since k~T«E~ only a very small fraction of the
spin-fluctuation degrees of freedom are thermally
excited, and the number of modes available for
participation in the energy transfer process are
very severely reduced. The Fermi-Dirac statis-
tics obeyed by the conduction electrons thus play
an important role in suppressing this contribution
to the Kapitza conductance.

The recent discussions of the transfer of energy
from liquid He to solids via spin-dependent inter-
actions have focused primarily on the role of these
interactions in enhancing energy transfer between
liquid He and magnetic solids, i.e., on their role
in the Kapitza resistance problem. However, there
are other phenomena closely related to the Kapitza-
resistance problem where these same interactions
play a role. An area we feel particularly fruitful
for further experimental and theoretical study is
the study of the longitudinal relaxation time T, of
the He' nuclei, when the liquid is in contact with
a magnetic salt. It is well known that in practice,
the intrinsic He' relaxation time is so long that
experimental values of T, have their origin in the
interaction of the He' nuclei with the container
walls. " One should be able to use T, as a means
of studying the spin-dependent part of the He'-wall
interaction in detail. If one is interested in the
study of this interaction, and the physical informa-
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tion that may be obtained by this means, T, mea-
surements may be mo' re useful than the study of
the Kapitza resistance, because the 7, measure-
ment singles out the spin-dependent part of the
ihteraction, while the Kapitza conductance studies
include the sum of all processes which contribute
to the energy flow between the liquid and the solid.

There are two examples of the use of 7, to study
spin-dependent interactions between He' and mag-
netic salts that strike us as particularly interest-
ing, from a physical point of view. The interaction
between He' nuclei and the CMN surface may be
studied at higher temperatures (say around 1'K),
where the behavior of the spin system remains
simple, but the liquid He' exhibits large deviations
from Fermi-liquid behavior, and behaves more
like a classical fluid. " It is presumably difficult
to, study this regime via the Kapitza resistance,

since the boundary conductance is dominated by
the phonon contribution, and the contribution from
spin-dependent interactions is a small fraction of
the total. Qne may turn the situation around, and

study 7, at iow temperatures (say below 100 mK)
where the He' behaves like a good Fermi liquid,
and use T, as a probe of spin dynamics very near
the surface of a magnetic salt. There are a num-
ber of salts which order magnetically near or be-
low 100 mK, in a range convenient for experi-
mental study. The measurement of T, as a func-
tion of temperature for He' in contact with such a
salt would be a possible method of gaining infor-
mation about the behavior of spins very near the
surface of the crystal, as the temperature passes
through the ordering temperatures. %'e presently
have a theoretical investigation of these phenom-
ena under way.
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